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It was recently shown that the XX central spin model is integrable in the presence of a magnetic field
perpendicular to the plane in which the coupling exists. A large number of its eigenstates are such that the
central spin is not correlated to the environmental spins it is coupled to. In this work, we first demonstrate that
the XX-central spin model remains integrable in the presence of an arbitrarily oriented magnetic field. We then
show that, provided the coupling is strong enough, dark states can actually be found even in the presence of an
in-plane magnetic field. We finally provide a simple explanation of this result and demonstrate its universality
for a variety of distinct distributions of the coupling of the central spin to the various bath spins.
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I. INTRODUCTION

The integrability of the XX central spin model in the pres-
ence of a z-axis magnetic field,

Ĥ = Bz
0Ŝz

0 +
N−1∑
k=1

�k
(
Ŝx

0Ŝx
k + Ŝy

0Ŝy
k

)
, (1)

has recently been demonstrated [1]. Moreover, it was shown
that a fraction of its eigenstates can be characterized as dark
states for which the central spin Ŝ0 remains, independently
of the magnitude of the coupling to the k = 1 . . . N − 1 bath
spins, in an eigenstate |↑〉 or | ↓〉 of the magnetic field part
of the Hamiltonian, Bz

0Ŝz
0, as if completely decoupled from

the bath spins [1]. The idea was further studied by explicitly
showing the existence of these dark states through a Bethe
ansatz approach [2]. The dark state structure was also shown
to be robust against certain perturbations [3].

In spin qubits, based on the spin of single electrons trapped
in quantum dots [4], the coupling of the qubit to the bath of
environmental spins is detrimental in that it ultimately leads
to decoherence of the central spin and to the loss of the
quantum information it should store [5–7]. Dark states (and
dark subspaces of the Hilbert space) then become remarkably
desirable since they can provide protection against these bath-
induced negative effects leading to long-lived quantum states
of the qubit [8,9] both in nitrogen-vacancy centers in dia-
mond [10–12] and in semiconductor quantum dots [13–15].
This extreme anisotropy of the XX model, characterized by
its lack of coupling along the z axis, can, when placing
oneself in a properly chosen rotating frame, be used to de-
scribe nitrogen-vacancy centers [12] or in the context of more
generic quantum chips [16].

II. INTEGRABILITY OF XX MODELS IN A GENERIC
MAGNETIC FIELD

In this work we study the fate of the dark states in XX
central spin models submitted to an arbitrarily oriented mag-
netic field. Adding XY-plane components to the magnetic
field breaks the rotational U(1)-symmetry of the model (1)
and therefore, the total z-axis magnetization of the system
is no longer conserved and the eigenstates no longer have a
fixed value of

∑N−1
i=0 Ŝz

i . Nonetheless, they remain integrable,
a fact that we now demonstrate by taking an appropriate
limit of the integrable N spin-1/2 nonskew symmetric elliptic
Richardson-Gaudin (RG) models. The latter are defined by a
set of N operators [17,18]:

R̂ j =
N−1∑

k=0( �= j)

(
�x

jk Ŝx
j Ŝ

x
k + �

y
jk Ŝy

j Ŝ
y
k + �z

jk Ŝz
j Ŝ

z
k

)

+ Bx
j Ŝ

x
j + By

j Ŝ
y
j + Bz

j Ŝ
z
j, (2)

where, in any given direction α ∈ {x, y, z}, the coupling con-
stants and magnetic field components, are given by

�α
jk = g

√
(ε j + jα )(εk + jβ )(εk + jγ )

εk − ε j
, Bα

j = Bα√
ε j + jα

(3)

with β and γ the two directions orthogonal to α. These models
are known to be integrable in that, for arbitrary values of
the parameters εa, jα , and Bα , the N operators (2) commute
with one another and consequently share a common set of
eigenstates.

In order to reach the XX model limit, we first choose
jy = jx = j⊥ which leads to an XXZ model where the cou-
plings along both the x and y directions are equal. Taking now
the specific value ε0 = − jz + �, choosing Bz ≡ Bz

0

√
� and,

finally, taking the � → 0 limit of the operator R̂0, one then
finds that the XX model, in an arbitrarily oriented magnetic
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field

Ĥ ≡ lim
�→0

R̂0 = Bz
0Ŝz

0 + Bx
0Ŝx

0 + By
0Ŝy

0

+
N−1∑
k=1

�k
(
Ŝx

0Ŝx
k + Ŝy

0Ŝy
k

)
(4)

is also integrable. It remains so for arbitrary components of
the magnetic field since Bz

0, Bx
0 ≡ Bx√

j⊥− jz
, and By

0 ≡ By√
j⊥− jz

can all be chosen freely, independently of one another. The
N − 1 values of the resulting couplings in Ĥ are given by
�k ≡ g

√
( j⊥− jz )(εk+ j⊥ )(εk+ jz )

εk+ jz
and can therefore all be arbitrarily

chosen, while maintaining integrability, using the N − 1 free
parameters εk . By taking the same limit for the other R̂ j>0 op-
erators, one directly shows that the Hamiltonian (4) commutes
with the N − 1 following conserved charges:

R̂ j = Bx√
ε j + j⊥

Ŝx
j + By√

ε j + j⊥
Ŝy

j +
x,y,z∑

α

N−1∑
k �=0, j

�α
jk Ŝα

j Ŝα
k

− g

√
( j⊥ − jz )2(ε j + jz )

ε j + jz
Ŝz

0Ŝz
j, (5)

with the values of �α
jk given by Eq. (3) with jy = jx = j⊥.

The RG conserved charges (2) obey simple quadratic re-
lations [19,20] which can provide access to the spectrum and
ultimately to the expectation values of local spin operators.
Indeed, for an eigenstate labeled |ψn〉, the set of N eigenvalues
(rn

0 · · · rn
N−1) such that R̂ j |ψn〉 = rn

j |ψn〉 corresponds to one of
the solutions of the system:

[rn
j ]

2 = −1

2

∑
k �= j

Cjkrn
k +

∑
α

∑
k �= j

[
�α

jk

4

]2

+
∑

α

[
Bα

j

2

]2

, (6)

with Cjk = −g
√

(εk+ j⊥ )2(εk+ jz )
εk−ε j

, and ε0 = − jz so that Cj0 = 0.
Specific solutions to this system can be found numerically

by smoothly deforming a given g = 0 solution to the desired
coupling amplitude g [21]. Those g = 0 solutions are simply
the various tensor products

⊗N−1
i=0 |±i〉 built from the eigen-

states |±i〉 of R̂g=0
i = �Bi · �̂Si. This allows us to index individual

eigenstates, at finite coupling, simply by specifying the g = 0
parent state which is deformed into it. These will be denoted
by the sequence of g = 0 eigenstates, ordered by spin index
from left to right. For example, | + − − + . . . 〉 means the

central spin S0 is in the eigenstate of �B0 · �̂S0 with eigenvalue

+ 1
2 , spin S1 in the eigenstate of �B1 · �̂S1 with eigenvalue − 1

2 ,
and so on.

To access the expectation values 〈ψn|Ŝα
j |ψn〉, one can use

the Hellmann-Feynman theorem which expresses them in
terms of derivatives of the eigenvalues with respect to the
Hamiltonian’s parameter. In the specific problems of interest
here, one has

〈
Ŝx,y

j

〉 = √
ε j + j⊥

∂rn
j

∂Bx,y
with ε0 = − jz,

〈
Ŝz

0

〉 = ∂rn
0

∂Bz
0

;
〈
Ŝz

j �=0

〉 = √
ε j + jz

∂

∂Bz
0

[
rn

j√
�

]
, (7)

where the expression for 〈Ŝz
j �=0〉 requires taking the derivative

of rn
j with respect to Bz, before taking the � → 0 limit. Once

the values of rn
j , defining an eigenstate, have been found,

these derivatives are accessible by solving the linear system
of equations obtained after taking the derivatives of (6) with
respect to the parameter of interest [18].

III. DARK STATES

As mentioned in the Introduction, dark states are known
to occur in the XX central spin model subjected to a z-
oriented magnetic field. They are characterized by the central
spin being, for any coupling amplitude, exactly in one of
the two eigenstates of the BzŜ

z
0 operator [1]. They can,

therefore, in general, be written as a tensor product | ↑0〉 ⊗
|ψbath

n 〉 (or|↓0〉 ⊗ |ψbath
m 〉) where the various possible states of

the bath spins can be found as a solution to a set of reduced
Bethe equations [2].

If this product state structure can be maintained in the pres-
ence of in-plane components of the magnetic field, it could
possibly lead to a dark state in which the central spin would be

in a well defined eigenstate of the arbitrarily oriented �B0 · �̂S0.
On the other hand, the mechanism through which dark states
arise could require that the magnetic field be orthogonal to the
XY plane in which the coupling exists. In this case, an XY
plane component of the magnetic field would be sufficient to
correlate the central spin and the bath preventing the appear-
ance of dark states. In this work, we will show that dark states
can actually arise in the presence of an in-plane magnetic field,
but that they will require a strong enough coupling to do so.

Here we chose to work with a definition of a dark state
which would be valid for an arbitrarily oriented central spin.
We simply require a tensor product structure making the re-
duced density matrix of the central spin describe an arbitrary
pure state. On the other hand, a generic (bright) eigenstate
of this coupled system would, typically, lead to a reduced
density matrix for which the central spin is in a statistically
mixed state. Differentiating between dark and bright states is
then possible by computing the quantity γ0 = 〈Ŝx

0〉2 + 〈Ŝy
0〉2 +

〈Ŝz
0〉2, we will dub the purity factor. Indeed, γ0 = 1

4 for any
central spin pure state, α| ↑0〉 + β| ↓0〉, and systematically
gets reduced (γ0 < 1

4 ) when the central spin is entangled with
the bath leading to a mixed state. This generalizes the simple
definition |〈Sz

0〉| = 1
2 used, for example, in [3] and provides an

easy-to-compute alternative to the entanglement entropy.
The Hamiltonian (4) can, of course, be divided by any con-

stant without affecting its eigenstates which will only depend
on the ratio between the coupling and the magnetic field. We
will therefore rely on the rescaled coupling g̃ ≡ 1

|B|
∑N−1

j=1 � j

to characterize the system. Having zero coupling is therefore
equivalent to having an infinite magnetic field and vice versa.
In the zero-coupling limit (or infinite field limit), the various
spins are independent of one another and, for every eigenstate,
they all are found in a pure state. In this particular limit
we will therefore trivially always find γ0 = 1

4 . Alternatively,
when the coupling is strong enough for |B| to be negligible,
we find ourselves in the zero-field limit. The γ0 = 1

4 dark
states found in the absence of in-plane field still exist when
Bz = 0 and should therefore be found, in the current problem,
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FIG. 1. Expectation values of the N = 42 spins in the dark state
resulting from the deformation of the g = 0 state | − − + − −
+ . . . 〉. The coupling constants are given by � j = 7.254

√
N − j for

j = 1 . . . N − 1, and the magnetic field is oriented at azimuthal angle
θ ≈ π

4 (Bx
0 = By

0 = 2.23; Bz
0 = 3.162).

when |B| = 0. In light of these two particular limiting points, a
complete working definition of a dark state therefore requires
the existence of an extended range of finite rescaled coupling
g̃ for which an eigenstate has γ0 = 1

4 . Here, finite rescaled
coupling means that neither the magnetic field term nor the
coupling to the bath are perturbatively small in front of one
another.

In Fig. 1 we first present the expectation values of the z
and the in-plane x and y (both identical by symmetry since the
external field is chosen with Bx = By) in the eigenstate whose
g = 0 parent state is given by an alternance of two nega-
tive and one positive eigenvalue: | − − + − − + − − + . . . 〉.
They are presented, for every spin in the system, as a function
of the rescaled coupling g̃.

At g̃ = 0, the central spin S0 is naturally in the pure state

which is the eigenstate of �B0 · �̂S0 with eigenvalue − 1
2 . As

the coupling is increased, we see that it finally reaches the
down pointing state (eigenstate of BzS

z
0 with eigenvalue − 1

2 )
at large enough coupling. This resulting strong coupling state
is therefore also a pure state of the central spin, oriented just
like the dark states found for the U(1)-symmetric case (1) with
a z-oriented magnetic field.

The bath spins, at g̃ = 0, all start as ± eigenstates of the
�Bj · �̂S j and are therefore polarized in the XY plane since the
magnetic fields �Bj have Bz

j = 0 [see Eq. (5)]. As the coupling
gets stronger, we see that they get tilted out of that plane and
gain an important z-component expectation value. The central
spin has reached its strong coupling z-polarized state at g̃ ≈
5 for the parameters used in this calculation. However, the
bath spins evolve much more slowly with coupling since, at
the same value of g̃, they are still significantly changing with
increasing coupling. In the end, at strong enough coupling,
their XY-plane component finally decreases as 1

g̃ as will be
shown when discussing Fig. 2. One should notice that, at g̃ ≈
5, the Bx

0, By
0 components of the magnetic field are, in no way,

negligible when compared to the total coupling to the bath.
Nonetheless, the central spin appears to already reproduce the
dark state behavior expected in the absence of those in-plane
components of the external field.

In order to better understand the physics at play we present,
in Fig. 2, the γ0 purity factor for four different eigenstates
using the same set of parameters as for Fig. 1. Three of them
(including the state detailed in Fig. 1) are presented in the
top left panel and form a dark state at strong coupling. The

FIG. 2. The purity factor γ0 of the central spin (top left panel)
and the effective in-plane magnetic field acting on the central spin
(bottom left panel) in three dark states (g = 0 parent states given
by: | − − + − − + − − + . . . 〉, | − − − + + − − − + + . . . 〉, and
| − − − − + + + − − − − + + + . . . 〉). Insets: Expectation values
of the central spin components. Smaller figures on the right show a
bright state

fourth state, shown in the smaller figures on the right, remains
a bright state for all finite coupling as demonstrated by the fact
that γ0 < 1

4 .
One notices that the states which ultimately become dark

states at strong coupling, see their “darkness” reduced in the
weak to intermediate coupling regime. The central spin is
then, as soon as g̃ �= 0, in a statistically mixed state, i.e.,
not in a pure state on the Bloch sphere. Adding an in-plane
magnetic field to (1) suppresses the dark state structure over
a range of relatively weak couplings. Nonetheless, dark states
reemerge at strong enough coupling and, as noted before, they
do so even when the in-plane field is not negligible in front
of the coupling term. This seems to point to the existence
of a mechanism which allows the central spin not to feel the
in-plane magnetic field. A clear understanding of the process
involved in this reemergence of dark states can actually be
obtained, as we show next.

For the three dark states, we plot in the bottom left panel
the effective mean-field in-plane magnetic field felt by the
central spin when considering the Overhauser field contribu-
tion of the bath spins. By replacing, in a typical mean-field
approach, the bath spins by their expectation values, one can
indeed build an effective Hamiltonian for the central spin
which is simply given by

Heff = �B0 · �̂S0 + g
N−1∑
k=1

�̃k
[
Ŝx

0

〈
Ŝx

k

〉 + Ŝy
0

〈
Ŝy

k

〉]

= �̃B · �̂S0, (8)

where the various effective magnetic field components are
given by

B̃x,y = Bα
0 + g

N−1∑
k=1

�̃k
〈
Ŝx,y

k

〉
; B̃z = Bz

0, (9)
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FIG. 3. Purity factors γ0 of the central spin (top) and effective in-plane field (bottom) as a function of the rescaled coupling strength.
Panel (a): For a variety of magnetic field orientations Bz

0 = |B| cos(θ ), Bx
0 = By

0 = |B|√
2

sin(θ ), keeping a fixed norm |B|. Panel (b): For a variety

of system sizes. Panel (c): For a variety of coupling distributions always with N = 42 spins and the same total coupling
∑N−1

k=1 �k . Inset:
Distribution of coupling constants.

having defined �k ≡ g�̃k . Judging from these figures, one
can clearly see that the return to a pure state (γ0 = 0.25) is
perfectly correlated with the coupling strength at which the
effective in-plane components of the field reach B̃x = B̃y = 0.
The cancellation of the effective in-plane magnetic field (9) is
then maintained over the whole range of large couplings. This
indicates that, as was mentioned previously, the expectation
value of the in-plane components of the bath spins becomes,
at large coupling, linear in 1

g (and therefore in 1
g̃ as well).

This cancellation can only occur when the coupling is
strong enough for the in-plane magnetic field: |B| sin(θ ) to be
lower than or equal to 1

2 | ∑N−1
k=1 �k|. This value corresponds

to the maximal possible in-plane Overhauser field which can
be found when all of the bath spins are perfectly aligned
and completely in the XY plane. In terms of the rescaled
coupling, this corresponds to g̃ = 2 sin(θ ) which is then the
minimal coupling required for the effective in-plane field to
possibly cancel. This is a much less stringent requirement on
the coupling strength than g̃ � 1, which would be required
for the magnetic field to be negligible. It is therefore only
through this effective cancellation of the in-plane field by the
Overhauser contribution that we can explain why dark states
are found, even at a coupling strength too low for the field to
be negligible.

In order to confirm this picture, we present in Fig. 3(a) the
purity factor and effective magnetic field for a fixed magnitude
of the external field �B0 but for different values of its azimuthal
angle θ . One sees that the range of coupling strength over
which the purity factor of the central spin state is lower than
1
4 becomes wider with increasing angle. These results are
completely consistent with the physical picture proposed in
this work, namely, that dark states reemerge, at large enough
coupling, when the Overhauser field cancels the in-plane ap-
plied field which gets larger with large θ . In the weak coupling
regime where dark states are suppressed, the deeper dip in the

purity factor of the central spin indicates that the entanglement
between the central spin and the bath gets larger for more
strongly titled magnetic fields. Since the total magnetic field
has the same magnitude for each of the curves, one clearly
understands that the underlying physics is exclusively con-
trolled by the magnitude of its in-plane components. While
the in-plane field component could, in principle, be canceled
at the minimal coupling strength g̃ = 2 sin(θ ), doing so would
require that the bath spins be all completely aligned in the
XY plane. Since, in reality, the bath spins retain a nonzero
expectation value 〈Sz

k〉 along the z axis, the cancellation hap-
pens at slightly stronger coupling than this minimal value.
Nonetheless, as we saw previously, dark states still emerge
at couplings considerably lower than what would be required
for the in-plane field to become negligible.

In Fig. 3(b) the eigenstate which was presented in Fig. 1 is
now shown for a variety of bath sizes. The coupling constants
are given by �k = CN

√
N − k where CN are chosen in such a

way that the total coupling to the bath
∑N−1

k=1 �k stays the same
for every system size N . One finds that the dip in purity is
systematically limited to a similar range of rescaled couplings.
However, the depth of this dip is reduced by increasing the
number of bath spins. This allows us to infer that, in the
thermodynamic limit N → ∞, for this particular distribution
of couplings, the dark state structure should (as is the case
in the absence of in-plane magnetic field) be maintained for
arbitrary values of the coupling strength g̃. This demonstrates
that the factor controlling the purity dip is not, in itself, the
total coupling to the bath but actually the way this coupling is
spread out over the different spins in the bath.

We therefore present, in Fig. 3(c) results for different cou-
pling constant distributions, all characterized by the same
total coupling and the same number of spins. These re-
sults first demonstrate that the reemergence of dark states, at
strong enough coupling, is a universal feature of the model;
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it happens for every distribution of couplings. However, the
distribution of couplings does have an impact on the range
of coupling strengths over which we deviate from a perfect
dark state and the importance of this deviation. The results
are highly reminiscent of the finite size scaling shown in the
middle panel (b) and one can conclude that the purity dip
is in fact controlled by an effective number of active bath
spins. Spins which are too weakly coupled to the central
spin do not participate significantly to the Overhauser field
and to the cancellation of the in-plane magnetic field. The
thermodynamic limit discussed before will therefore depend
on the nature of the coupling distribution. When the couplings
decrease faster than 1

k , the sum limN→∞
∑N−1

k=1
�k
�1

does not
diverge at large N . In these cases, going to large N only
adds more weakly coupled spins which will not contribute
appreciably. As N → ∞, the system will still behave as a
smaller finite sized system and there will remain, at weak
coupling, a range over which the central spin will deviate
from a pure state. Dark states will then only appear at a
larger value of g̃. This fact was numerically verified explicitly
for the 1

k2 distribution, for which the results stop changing
significantly for N > 14. On the other hand, if, as in panel (b),
the couplings decrease slower than 1

k , the dip will resorb in

the thermodynamic limit since any additional spin will have a
significant contribution to the cancellation of the applied field.
Dark states should then exist for any coupling strength.

In this work we have first shown that the XX central spin
model remains integrable in the presence of XY-plane com-
ponents of the magnetic field. Dark states, which are found
for any coupling strength in the absence of in-plane field
were then shown to get suppressed at weak couplings. How-
ever, at strong enough coupling their reemergence appears
to be a universal feature of the model. It can be understood
as a consequence of the restructuration of the bath spins
such that the resulting mean-field Overhauser field exactly
cancels out the in-plane magnetic field. The resulting dark
states are such that the central spin is aligned with the z
direction just like in the absence of in-plane field. Due to
the underlying restructuration of the bath required here, it
remains an open question whether dark states will remain
stable against perturbatively small zz couplings, as is the case
in the absence of in-plane field [3]. What we can globally con-
clude from this work is that, in what seems like a paradoxical
statement, in the XX central spin model with in-plane field,
one must increase the coupling to decouple the central spin
from its environment.
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