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As a hallmark of a pure quantum effect, quantum entanglement has provided unconventional routes to
characterize condensed matter systems. Here, from the perspective of quantum entanglement, we disclose exotic
quantum physics in non-Hermitian quasicrystals. We study a class of experimentally realizable models for
non-Hermitian quasicrystal chains, in which asymmetric hopping and complex potential coexist. We diagnose
the global phase diagram by means of entanglement from both the real-space and momentum-space partitions.
By measuring the entanglement entropy, we numerically determine the metal-insulator transition point. We com-
bine real-space and momentum-space entanglement spectra to complementarily characterize the delocalization
phase and the localization phase. Inspired by the entanglement spectrum, we further analytically prove that a
duality exists between the two phase regions. The transition point is self-dual and exact, further validating the
numerical result from diagonalizing non-Hermitian matrices. Finally, we identify the mobility edge by means of

entanglement.
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Introduction. Recently, non-Hermitian systems [1,2] have
attracted increasing interest. Many striking properties, espe-
cially from the perspective of topological physics, have been
explored theoretically and experimentally, such as the general-
ized bulk-boundary correspondence [3,4], the non-Hermitian
skin effect [3,5,6], and the exceptional point [2,7]. While
many studies focus on crystalline systems, non-Hermiticity
has also been introduced to noncrystalline systems, e.g.,
quasicrystal systems [8] and disorder systems [9]. As a
paradigmatic quasicrystal lattice model, the celebrated Aubry-
André-Harper (AAH) model [10,11] provides an example of
Anderson localization [9] without disorder. Its delocalization-
localization transition can be deduced from a self-duality
argument. The absence of a mobility edge is one of the
particular features of the AAH model. In other words, upon
varying the quasiperiodic potential, all extended eigenstates
simultaneously become exponentially localized. Moreover, in
non-Hermitian disorder systems, Hatano and Nelson [12-14]
discovered that localized states can be delocalized by non-
reciprocal hopping, which has also been generalized to
non-Hermitian quasicrystal systems in recent years [15-21].

To unveil the exotic non-Hermitian quantum effect, many
theoretical approaches originally introduced in Hermitian
quantum systems have been borrowed. Quantum entangle-
ment is such an example [22-32]. Practically, the entan-
glement entropy (EE) [33,34] and entanglement spectrum
(ES) [35,36] can be obtained by partitioning Hilbert space
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into several subregions. The Hilbert space can be written
in various representations, such as real-space, momentum-
space [37-39], and orbital-space representations. While the
EE is a single number, it is generically believed that the
ES contains more information about the underlying physical
systems. It is known that entanglement plays important roles
in diagnosing exotic phases of matter in Hermitian quantum
systems, e.g., topological orders [40,41] and disorder systems
[38,39,42-46]. The aim of this work is to introduce the en-
tanglement approach and explore non-Hermitian quasicrystals
via the EE and ES of both real-space and momentum-space
partitions.

In this Research Letter, we propose a class of one-
dimensional (1D) quasicrystal models, in which two sources
of non-Hermiticity (asymmetric hopping and complex energy
potential) coexist. The feature of a quasicrystal is induced
by the presence of an irrational number « in the complex
energy potential. Then, by measuring the EE, we numerically
determine the transition point of the metal-insulator transition
(MIT). Note that the non-Hermitian density matrix p adopted
here involves both left and right many-body states in the
biorthogonal basis. Once the MIT point is determined, we
combine the real-space and momentum-space ES to identify
and explore the phase regions of both localization and delo-
calization. Inspired by the numerical results, we analytically
prove that in terms of the entanglement spectrum in both
momentum space and real space, the delocalization phase
and localization phase are dual to each other. Meanwhile, the
MIT point is analytically exact and self-dual. This analytic
result validates the numerical result of non-Hermitian matrix
diagonalization. In the end, we discuss the physics of mobility
edges from the perspective of entanglement.
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Model. We start with a non-Hermitian 1D quasicrystal
model with both asymmetric hopping and an incommensurate
complex potential:

H = Z(JRCZ_;,_ICn + JLCZCn-H) + Z VnCZCn, D

where cfl(cn) is the creation (annihilation) operator of a
spinless fermion at lattice site n. V, =V exp (—2mwian) is a
site-dependent incommensurate complex potential with irra-
tional number «. The potential strength V is a positive real
number. The ingredients of model (1) are simple and can be
realized in acoustic experiments [5,6,47]. In the actual numer-
ical simulations, we approximately set the irrational number
o as a rational number ANif for M; and N that are coprime
numbers, which has been generally adopted in the literature of
quasicrystals (see Supplemental Material [48]). Meanwhile,
to satisfy the periodic boundary condition (PBC), we should
adopt the system size L = Nj. Without loss of generality, we
setJp=1>J,anda = V2~ %.

Global phase diagram from entanglement. In non-
Hermitian free-fermionic systems, the left and right eigenvec-
tors satisfy the biorthogonal condition. We need to provide
the definition of the density matrix in non-Hermitian systems
[24-26,29] before moving forward. Below, we use the right
and left operators v, and WZ,;, to construct the right and
left many-body states |Gg) and |G.) of the non-Hermitian
system, where the real part of the energy is regarded as the
filling level [1,24,25]. Using these many-body states, the non-
Hermitian density matrix can be expressed as p = |Gg){(GL|-
When partitioning the real space of the system into two parts,
A and B, and taking the partial trace over part B, the reduced
density matrix p) = Trgp (r stands for real space) can be
used to compute the EE $” = —Tr(p} In p}) [49]. By intro-
ducing the entanglement Hamiltonian h” via p; = exp(—hF),
the spectrum of the entanglement Hamiltonian, i.e., the ES,
provides more information about the underlying system. For a
non-Hermitian free-fermionic system, the correlation matrix
C", whose elements read C;,, = (GL|cfncn|GR), is related to
the entanglement Hamiltonian via h® = In[(C "~ — 1], with
I being the identity matrix. In addition, the eigenvalue €/ of hf
and the eigenvalue &/ of C” are in one-to-one correspondence,
€ = ln[(fg’i’)‘1 — 1], so in the figures, we use &/’s to denote
the ES.

The entanglement quantities, e.g., the EE and ES, depend
on how Hilbert space is partitioned. In general, the real-space
partition is the conventional choice to probe the localized
states. At the same time, the momentum-space partition pro-
vides an insightful and complementary way to probe the
extended states. When we change the Fermi energy of the
system, the states near the Fermi energy have the most dom-
inant contribution to the ES [50]. For the present purpose of
exploring the phase diagram of quasicrystals, we shall com-
bine the two partitions. Specifically, the momentum partition
divides the momentum space (—m, 7] into two parts, A and
B, such as A = (—m, 0] and B = (0, 7 ]. As for the real-space
partition, we choose the nearly half partition Ly = (L — 1)/2,
where L is odd. We use S* and &/ to denote the EE and the ith
eigenvalue of the ES, respectively, when the momentum-space
partition is adopted.

FIG. 1. MIT point from the EE. (a) and (b) Real-space and
momentum-space EE, respectively, and their derivatives (shown in
the insets) as a function of the potential strength V. Here, J, = 0.5.

To study the entanglement properties of model (1), we
numerically diagonalize the non-Hermitian Hamiltonian by
varying potential V' with fixed J; = 0.5. As shown in Fig. 1,
we observe a phase transition point of model (1) located
at V. =V =1, where the derivative of the EE diverges;
meanwhile, the result is unchanged by changing the size
of subsystem A. This critical point, i.e., V., = 1, is a metal-
insulator transition (MIT) point whose name will be much
clearer in the calculation of the ES. When we change the
parameter Jy, the transition point is always invariant (for
a detailed discussion, see the Supplemental Material [48]).
We will also prove that this point is analytically exact when
Jr = 0. In experiments, the measurement of Rényi entropy
has been studied [34], which can be used to extract the data
of the EE (i.e., the von Neumann entropy) in this Research
Letter. Thus, in the Supplemental Material [48], we also plot
the Rényi entropy and find features similar to the EE.

Before discussing the ES of model (1), we consider the
entanglement features of two kinds of typical quantum states,
namely, the plane-wave state and the completely localized
state. The momentum-space ES of the plane-wave state and
the real-space ES of the completely localized state only have
modes of 0 and 1, and these modes do not contribute to the
EE at all. These special features can help us to distinguish
different eigenstates in non-Hermitian quasicrystals (more de-
tails are available in the Supplemental Material [48]). Keeping
the above fact in mind, we investigate the real-space and
momentum-space ES of Eq. (1). In Figs. 2(a) and 2(b), we
demonstrate the real-space and momentum-space ES by vary-
ing the incommensurate potential V and by taking account
of the nearly half partition and half-filled occupation under
the PBC. We find that all modes of the real-space ES for
the parameter range V € (1, 2) and the momentum-space ES
for the parameter range V € (0, 1) are very close to either
0 or 1. Therefore, combining these complementary features,
we conclude that the occupied states in the parameter range
V e (0,1) [V € (1,2)] are physically extended states (phys-
ically localized states). Then the parameter range V € (0, 1)
[V € (1, 2)] represents a delocalization (localization) phase.
Consequently, the phase transition of model (1) can be re-
garded as a delocalization-localization transition, justifying
the name “MIT point” in the calculation of the EE.

Next, we focus on two typical parameter values, V = 0.5
and 2, which are located in the delocalization and localization
phases, respectively. As shown in Figs. 2(c) and 2(d), almost
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FIG. 2. Delocalization phase and localization phase from the ES.
(a) and (b) Real-space and momentum-space ES, respectively, as
a function of the potential strength. (c) Momentum-space ES as a
function of the real part of the Fermi energy; the inset shows the
real-space ES when V = 0.5. (d) Real-space ES of the real part of
the Fermi energy; the inset shows the momentum-space ES when
V = 2. Here, J; = 0.5.

all eigenvalues of the momentum-space (real-space) ES at
V =0.5 (V =2) are located near 0 or 1, so we conclude
that all eigenvalues have the same properties. Furthermore,
by varying the potential V, almost all eigenstates simultane-
ously are changed from extended states to localized states. In
conclusion, the mobility edge of model (1) is absent.

Analytically exact MIT point. Below we shall show that the
MIT point V, = 1 found in the numerical calculation of EE is
analytically exact, when J;, = 0 in model (1). Without loss of
generality, we set Jp = 1 again.

More precisely, when J;, = 0, the ES eigenvalues of this
model with the same occupation and the same partition have
the following nice identity between two ES eigenvalue sets:

[efn)) = {&rvhHl. 2)

Here, {£K(V),&5(V),&5(V), ...} is the eigenvalue set of
the momentum-space ES when the potential strength is V.
{S{(‘l,), EZ’(%), 53’(‘1,), ...} is the eigenvalue set of the real-
space ES when the potential strength is 1/V. The identity
(2) means that the above two sets are identical. Alterna-
tively speaking, the identity (2) establishes an exact duality
between the delocalization phase and the localization phase
parametrized by the potential parameter. In addition, S"(V)
and S¥(V 1) also have a dual relation as shown in Figs. 3(a)
and 3(b).

In the previous discussion, we have introduced a signifi-
cant entanglement feature in the delocalization (localization)
phase: Almost all eigenvalues of the momentum-space (real-
space) ES are very close to either O or 1. At the same time,
the real-space (momentum-space) ES of the delocalization
(localization) phase does not possess such a feature. If V starts
to increase near zero, the model evolves from a simple asym-
metric hopping model and thus should be in the delocalization
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FIG. 3. Exactness of the MIT point. (a) and (b) Real-space and
momentum-space EE, respectively, as a function of the potential
strength. The insets show the derivative of the EE. (c) Momentum-
space ES as a function of the real part of the Fermi energy; the inset
shows the real-space ES when V = 0.5. (d) Real-space ES of the
real part of the Fermi energy; the inset shows the momentum-space
ES when V = 2. (e) and (f) Real-space and momentum-space ES,
respectively, as a function of the potential strength V. From the data
in (e) and (f), one can numerically check the validity of (2). J, =0
in all panels.

phase. If V starts to decrease near infinity, the model should
be in the localization phase. Therefore one can directly verify
that the identity (2) is consistent with the entanglement feature
of the delocalization and localization phases. Furthermore, the
identity indicates that V =V, = 1 is very special. When the
model is at this parameter point, the momentum-space ES and
the real-space ES of the same model are exactly the same, i.e.,

ek} = &/ (D). A3)

In other words, V. =1 is a self-dual point where both the
real-space ES and the momentum-space ES possess exactly
the same behavior. This implies that this point belongs to nei-
ther the delocalization phase nor the localization phase, which
must be the MIT point with the delocalization-localization
transition.

While a more mathematical proof is left to the Supple-
mental Material [48], below we present the most elementary
ingredients towards the identity (2). One can start with the
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model with vanishing J; . Then model (1) reduces to (model I)

H‘I/ = Z(C"Lrlcn + Ve_zma"c};cn), (4)

where the subscript V emphasizes the parameter dependence.
Introduce the Fourier transformation F and space inversion
operator P, where P transforms the lattice index n to —n.
By applying the two transformations on Eq. (4), Eq. (4) is
then transformed to Y. (Vc}, LiGnt+ et ey, where i
denotes momenta. If we interpret /7 as lattice sites, then we
have immediately arrived at a new Hamiltonian (model II):

Hy =) (Ve jen+ e cley). 5)

Interestingly, the expressions of model I and model II are
related to each other by simply switching the coupling co-
efficients of the two Hamiltonian terms. Alternatively, H‘I/I =
1% Zn(czﬂcn + V—lem2miencic,) = VH] . Since an overall
numeric factor in the Hamiltonian only scales the energy
spectrum but keeps entanglement quantities invariant, we can
conclude that the real-space ES of model II, denoted as a
set {/""(V)}, can be directly obtained by calculating the
real-space ES of model I when the potential is vl e,
(g (V)} = {£/"(V"")). Furthermore, recalling the above
construction of model II from model I where the spatial
coordinates of model II originally come from the momenta
of model I, we have another identity: {EI.H"'(V)} = {Eil’k(V)}.
Combining all these facts together and removing the numerals
“I” and “II,” we end up with the identity (2).

From the numerical aspect, we use the EE and ES to dis-
play the identical relation (2) of model (1) with J; = 0. As
shown in Figs. 3(a) and 3(b), the real-space and momentum-
space EE are symmetric with respect to V =1, and the
self-duality point V =1 is the transition point. Meanwhile,
we choose the parameters V = 0.5 and 2 to study the ES
of model (1) to demonstrate the identity (2). As shown in
Figs. 3(c) and 3(d), when we rescale the energy of Hamil-
tonian (1) at V =2 to one-half of the original energy, the
real-space (momentum-space) ES of Hamiltonian (1) at V =
0.5 is identical to the momentum-space (real-space) ES at
V = 2. Finally, we consider the ES of model (1) as a function
of potential V; these data also show that the real-space ES
and the momentum-space ES of model (1) are symmetric with
respect to V = 1 in Figs. 3(e) and 3(f); therefore we verify the
duality of Hamiltonian (1) with J; = 0 again.

Mobility edge in general models from entanglement. In the
above discussion, we have found that model (1) does not have
a mobility edge. Usually, a mobility edge in non-Hermitian
quasicrystals can be realized by long-range hopping or special
on-site potential. Thus we introduce the model below and
identify the mobility edge from the perspective of entangle-
ment:

4 ¥
H:Z(‘]RC:+1C”+JLCZC'1+1)+chncm (6)
n n

where « is the incommensurate ratio and we fix « = /2 ~
% with lattice size L = 169, a = 0.5, and V = 2. As shown
in Figs. 4(a) and 4(b), where we consider symmetric hopping

and (6) reduces to the model in Ref. [51], the real-space
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FIG. 4. Mobility edge from the ES. (a) and (b) Real-space and
momentum-space ES, respectively, of model (6) with symmetric
hopping Jr = J; = 1 by varying the real part of the Fermi energy.
(c) and (d) Real-space and momentum-space ES, respectively, of
model (6) with asymmetric hopping Jz = 1, J, = 0.5. The insets in
(a) and (c) show the energy spectrum plotted in the complex plane.

and momentum-space ES have distinctive features near the
mobility edge (marked by the horizontal dashed lines). There,
the extended states suddenly become the localization states.
As aresult, the mobility edge is identified from entanglement,
where the real (complex) energy spectrum [i.e., the inset in
Fig. 4(a)] corresponds to extended (localized) states.

On the other hand, as shown in Figs. 4(c) and 4(d), where
asymmetric hopping is considered, the data of the ES near
the mobility edge also exhibit distinctive features. However,
now the energy of the extended states is complex, and the
relation between the real (complex) energy and the extended
(localized) states is absent, as shown in the inset of Fig. 4(c).

In addition to the above two models, we can further gener-
alize model (1) into a more general form:

H = Z(JRCZ+[C11 + JLCZCIH-j)

n,i,j

+ Z(VREZHian + VL872niu¢n )Clcna @)
n

where n is the index for the lattice site. When Jg = J;, Vg =
V1, model (7) reduces to the famous AAH model [10]; when
Jr # Ji, Vr = Vi, model (7) reduces to the model studied in
Ref. [52]; and when Jg = J;, Vx = 0, model (7) reduces to the
model studied in Ref. [53]. In addition, when we set Jg, J;, €
C, it is equivalent to implementing an external magnetic flux
in model (7). For our model (1) where Jg # Ji, Vg #£ Vi, the
existence of two distinct sources of non-Hermiticity plays a
critical role in guaranteeing the identity (2).

Discussion and outlook. In this Research Letter, we intro-
duced the powerful entanglement approach to unveil an exotic
non-Hermitian quantum effect in non-Hermitian quasicrys-
tal chains where asymmetric hopping and complex potential
coexist. We obtained the global phase diagram from both
numerical and analytical analysis of entanglement. The MIT
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point was proved to be exact. We also studied the mobility
edge by means of entanglement in general models.

In our study of model (1), we found that the real parts of
all eigenvalues of the correlation matrix are located in the
interval [0,1] similar to the Hermitian system. Nevertheless,
we found that the ES of model (6) with symmetric hopping
includes anomalous eigenvalues whose real parts are outside
the interval [0, 1], as shown in Fig. 4(a). As shown in Figs. 4(c)
and 4(d), the ES of model (6) with asymmetric hopping does
not have anomalous values, and its energy spectrum does
not have a real-complex transition. Recently, the phenomenon
of anomalous values of the ES at the critical point with an
exceptional point has been demonstrated and discussed in

various non-Hermitian crystals [24,54]. In our non-Hermitian
quasicrystal systems, we infer that the anomalous values of
the ES may have an intrinsic tie to the exceptional point of
the energy spectrum, which is left to future study. In addition,
we may also ask the following questions: How can we apply
entanglement to characterize non-Hermitian random disorder
models? How can we obtain more information from the en-
tanglement Hamiltonian, such as the localization length of
localized states?
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