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Ballistic magnetotransport in graphene
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We report that a perpendicular magnetic field introduces an anomalous interaction correction, δσ , to the
static conductivity of doped graphene in the ballistic regime. The correction implies that the magnetoresistance,
δρxx scales inversely with temperature δρxx (T ) ∝ 1/T in a parametrically large interval. When the disorder is
scalarlike, the ∝ 1/T behavior is the leading contribution in the crossover between diffusive regime exhibiting
weak localization and quantum magnetooscillations. The behavior originates from the field-induced breaking of
the chiral symmetry of Dirac electrons around a single valley. The result is specific for generic two-dimensional
Dirac materials which deviate from the half-filling. We conclude by proposing magnetotransport experiments,
which have the capacity to detect the nature of impurities and defects in high-mobility Dirac monolayers such as
recently fabricated ballistic graphene samples.

DOI: 10.1103/PhysRevB.105.L121114

Introduction. Two well-established regimes characterize
low-temperature magnetoresistance in a two-dimensional
metallic system: Weak localization [1,2] (WL) and
Shubnikov–de Haas (SdH) oscillations. WL dominates
in the low field limit ω0τ < (kF L)−1. Here ω0 is the
cyclotron-frequency, τ is the impurity scattering time,
and L = vF τ is the mean free path. This regime is reached
when the magnetic flux threading the area L2/2 is smaller
than the flux quantum [3,4]. In the high field limit ω0τ > 1,
the spectrum is fully quantized into the Landau levels,
and SdH oscillations become the dominating effect. The
crossover between two limits is (kF L)−1 < ω0τ < 1, where
the magnetic field B is nonquantizing. In this regime, the
electron-electron interactions are believed to play a significant
role [5]. Namely, the interaction correction to the conductivity
induce the B dependence in the resistivity via the relation,

δρint � ρ2
0

(
ω2

0τ
2 − 1

)
δσint. (1)

Here ρ0 is the Drude resistivity and δσint is the interaction
correction to the longitudinal conductivity.

At the nonquantizing regime, magnetoresistance in the
doped graphene has been widely studied in experiments
[6–10] in the last decade while theoretical investigations are
still absent. One may expect that the B dependence in δρint is
simply product of ρ2ω2

0τ
2 and zero field performance in δσint.

However, it is not the complete story the nonquantizing field
on Dirac electrons has nontrivial effects on Friedel oscillations
(FO) [11] and many-body physics [12].

In this letter, we report that δσint itself can carry field-
dependent corrections and thus leads to nontrivial magnetore-
sistance in graphene. In the ballistic regime T τ > 1 of the
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doped graphene [10,13], we find

δσint � λ0
e2τ

π

(
tT − p

ω2
0

48T

)
. (2)

Here λ0 is the dimensionless interaction parameter, and t ,
p are dimensionless parameters determined by the disorder
potential. Information about t and p can be extracted from
the zero-bias anomaly [12,14] of tunneling density of states.
The correction is present in a wide parameter range, where
max(ω0, τ

−1) < T < EF . Here EF is the Fermi energy. From
Eq. (1), the field-dependent correction to the resistivity reads
[15],

δρint (B) − δρint (0) � λ0ω
2
0

e2τ 2ρ2
0

π

(
tT τ + p

48T τ

)
. (3)

Temperature dependence of magnetoresistance in Eq. (3)
highly depends on the ratio, p/t , of two disorder parameters
that will be defined below. Generally, the ratio p/t can be
any real number larger than −1/2. One prominent case is
the scalarlike disorder potential, for which p/t is → +∞. To
ensure the second term is not always subleading, we will focus
on p/t > 1, where the disorder can be regarded as a perturba-
tion around a scalarlike potential. When 1 < T τ <

√
p/t , the

temperature dependence in magnetoresistance becomes recip-
rocal instead of being linear. Therefore, the parabolic curve in
magnetoresistance becomes more flattened when T increases.
See Fig. 1. Below, we present a qualitative explanation of the
observed effect.

Qualitative discussion. Coherent scatterings off Friedel os-
cillations of electron density at distances r � k−1

F from an
impurity renormalize the transport relaxation time. The co-
herent scattering is illustrated in Fig. 2. This process, leads
to non-trivial temperature dependence[16,17] in δσint. In two-
dimensional electron gas, δσint is ∼T τ in the ballistic limit
T τ > 1 and ∼ ln(T τ ) in the diffusive limit T τ < 1.

The Dirac nature of electrons in graphene [18–36] can
enrich the process of coherent scatterings because of the Berry
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FIG. 1. Magnetoresistance, [δρint (B) − δρint (0)]/R, is plotted
versus the dimensionless variable ω0τ . The sign of ω0τ indicates
the direction of the magnetic field and R ≡ λ0e2ρ2

0/π . Each curve
correspond to the resistance plotted at a corresponding temperature
shown by (blue) dots in the inset. From light to dark curves, the
temperature is increasing while the curvature is decreasing. Values
of temperature are pointed out in the inset. The inset depicts the
function f (T τ ) = tT τ + p/48T τ from Eq. (3). The (red) vertical
bar locates the minimum of the function.

phase π and chiral symmetry of Dirac electrons. Note that
backscatterings off a single impurity can be classified into
two types of Feynman diagrams. The first one is a loop type,
giving Friedel oscillations. See inset (a) in Fig. 2. Here, the
Berry phase π of Dirac electron leads to a faster decaying FO
[37]. The second one is a vertex type diagram, yielding the
correction to the density matrix. See inset (b) of Fig. 2. Here,
the matrix structure of Dirac electron induces sensitivity of the
vertex correction to the nature of disorder [14]. Two properties
together lead to the well-known result that the temperature
dependence in the conductivity in the ballistic limit is still
∼T τ but very sensitive to the disorder [37]. Importantly, if the
disorder is scalarlike, the leading temperature behavior ∼T τ

vanishes.
The presence of a weak magnetic field changes the scenario

for both backscatterings in (a) and (b) from the inset of Fig. 2.
The persistent FO emerges from loop correction [11],

δn(r) = gkF

2π2vF r2

[
1

kF r
cos

(
2kF r − r3

12kF l4

)

+ 2ϕ2(r) sin

(
2kF r − r3

12kF l4

)]
. (4)

Here the parameter g is defined in terms of the impurity
potential, V̂r, as g = tr

∫
d2rV̂r/4, ϕ(r) = ω0r/2vF and l is the

magnetic length. The ϕ(r) is the half of the angle of the arc,
corresponding to the Dirac electron traveling from 0 to r in a
weak magnetic field. See Fig. 2. The value ϕ(r) reflects the
strength of chiral symmetry breaking semiclassically[11,38].
A similar correction also emerges for the vertex correction
[12]. To evaluate the effect of the magnetic field on other
physical processes [39] for Dirac electrons, employing the

FIG. 2. Coherent scatterings between A and B paths: A is the
path of backscattering off an impurity while B is the path when
electrons hit the Friedel oscillations (or modulation of density matrix
introduced by impurities), presented by blue curves. In the presence
of a magnetic field, the path is curved, shown by the dashed arc.
The angle of the arc is 2ϕ(r) = ω0r/vF . Due to the Dirac nature of
electrons, each propagator carries a matrix M. The inset plots two
types of backscatterings off an impurity: (a) the loop type that creates
Friedel oscillations. (b) the vertex type that creates correction to the
density matrix.

chiral-symmetry breaking phase ϕ(r) could be essential as it
could lead to novel observable effects.

As the next step, we will consider the transport relaxation
time and see that the incorporation of ϕ2(r) into the estimate
of the relaxation time can generate the correction in Eq. (2). It
will help us to qualitatively extract the temperature behavior
of magnetoconductivity from its relation to the transport time
[40].

At first, let us estimate the relaxation time at zero-field,
where a linear temperature dependence emerges:

1

τ
=

∫
dθ

2π
(1 − cos θ )| f0 + f1(θ )|2. (5)

Here f0 and f1 are, respectively, the scattering amplitudes
off impurities and impurity-induced potentials. In the absence
of the magnetic field, according to Refs. [17] and [41], the
function f1 can be cast as an integral f1(θ ) = ∫

drF (r) and

F (r) = −λ0g
∫ +∞

0
dr

rT

sinh r/rT
sin(2kF r)J0(qr). (6)

Here rT = vF /(2πT ) is the thermal length, |q| = 2kF sin θ/2
and J0 is the zero Bessel function. The coefficient λ0 is the di-
mensionless interaction parameter and the main contribution
to Eq. (5) comes from the region θ ∼ π . One can expand θ =
π + δθ and q � 2kF − kF δθ2. The condition kF δθ2rT ∼ 1
translates into δθ ∼ (kF rT )−1/2. With the asymptotic expres-
sion
of the Bessel function, the power counting in the integral
becomes r−3/2 when r < rT . When δθ < (kF rT )−1/2, the
integral in Eq. (6), gives ∼(kF rT )−1/2. Thus the integral
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in Eq. (5) is estimated by (kF rT )−1. This indicates that
the interaction correction to τ is proportional to T and the
corresponding correction to δσint is also linear in T .

In the presence of a magnetic field, the trajectories of elec-
trons are curved, and the chiral symmetry of Dirac electrons
is broken. Thus the suppressed backscattering is enhanced
by the magnetic field. The incorporation of the symmetry-
breaking effect leads to a field-dependent correction to the
scattering amplitude. Namely, f1 → f1 + δ f1 and δ f1 is given
by

∫
drF (r)ϕ2(r). Here ϕ2(r) changes power counting to r1/2

and the integral gives ∼ω2
0(kF rT )3/2. The θ integral remains

the same. Thus the field-dependent corrections to τ and δσint

are proportional to ω2
0T −1.

Below, we rigorously trace the current-current correlation
function to derive the temperature dependence in δσint.

Magnetoconductivity from Kubo formula. The static con-
ductivity can be evaluated from the current-current correlation
function [40]. Namely, σα,β = limω→0

i
ω
α,β (ω). Here the

α,β (ω) is obtained by taking analytic continuation of
current-current correlation function α,β (i�n) via i�n →
ω, α,β (i�n) = ∫ 1/T

0 dτ 〈Tτ ĵα (τ ) ĵβ (0)〉ei�nτ Here ĵα (τ ), α =
1, 2, is the current operator at imaginary time τ , ωn = 2πT n
is the bosonic Matsubara frequency and i�n → ω represents
the analytic continuation.

At finite doping, one can treat impurity and interaction
potential as the perturbation to Ĥ0. Here H0 is the Dirac
Hamiltonian coupled to the U (1) gauge field,

Ĥ0 = vF

∫
d2r�̂†(r)[�̂α (−i∂α + eAα )]�̂(r). (7)

Here α is summed in x and y, vF is the Fermi velocity,
�̂ = (ψ̂AK , ψ̂BK , ψ̂BK ′ , ψ̂AK ′ ) is the four-component fermion
operator and �̂x,y = τ̂z ⊗ σ̂x,y, where τ̂z is the third Pauli ma-
trix acting in K, K ′ space and σ̂x,y are Pauli matrices acting in
the space of A, B sublattices. The gauge field is adopted by
A = (−eBy, 0).

Now, we consider the Gaussian-correlated potential. Mean-
while, the symmetry-allowed disorder potential is described
by five parameters [42–44], namely,

〈V̂r ⊗ V̂r′ 〉 = δr,r′
[
γ0 Î ⊗ Î + gm

i Q̂i
m ⊗ Q̂i

m

]
. (8)

Here V̂r is the impurity potential and the bracket 〈. . .〉 is
the average over impurity distributions. Î is the identity
matrix. Here Q̂i

m = �̂m�̂i and �̂z = τ̂0 ⊗ σ̂z, �̂x = τ̂x ⊗ σ̂z,

�̂y = τ̂y ⊗ σ̂z, �̂z = τ̂z ⊗ σ̂0. We adpot the notation from Ref.
[42], gz

z = γz, gx,y
z = γ⊥, gz

x,y = βz and gx,y
x,y = β⊥. Effectively,

γ0 represents the square of the strength of static electric po-
tential averaged over the A/B sublattice. Parameters βz and
β⊥ introduce the intervalley scatterings while γ⊥ introduces
the hopping between A and B sublattices. The parameter
γz creates a chemical potential difference between the A/B
sublattices. To clarify terminology, we refer to the impurity
potential from γ0 term as the scalar potential while all other
terms in the potential as nondiagonal.

To illustrate coherent scattering quantitatively, we use the
semiclassical expression of Dirac propagators in the real space
[12], 〈G(r, ω)〉 ∼ eisgn(ω)�0(r)−r/(2τvF )M(r, sgn(ω))/kF r. Here
�0(r) is the phase including both kF r and the magnetic phase
[45,46]. The form of matrix M shows that chiral-symmetry

FIG. 3. Feynman diagrams giving leading field-dependent cor-
rections to the longitudinal static conductivity. Solid lines represent
the Feynman propagators. Dashed lines are the static impurities,
while the wavy lines represent the electron-electron interactions.

is broken in each valley but it is preserved in the Bril-
louin zone [12]. The field-dependent part in M reads, M −
M0 � −ϕ2(r)Î/2 − isgn(ω)ϕ(r)�̂z. Here M0 is the value of
matrix M in the absence of field and Î is the identity
matrix.

Applying perturbations, one finds that a series of Feynman
diagrams led to dominant contributions to the conductivity.
Up to the lowest orders of the impurity potential and inter-
actions, we find that the diagrams in Fig. 3 give the leading
field-dependent corrections to the longitudinal and static con-
ductivity, δσxx. Namely, these are diagrams that contain vertex
corrections [12], while others in the same order of perturba-
tion theory are subleading.

The exact expression corresponding diagrams in Fig. 3
can be simplified. In the leading in (T τ )−1 order,
and upon neglecting highly-oscillatory ∼ exp i2kF r terms,
one arrives at a short expression for the conductivity
correction [47],

δσxx � −λ0
e2τ

π2αtr

∫ EF

0
d�

d

d�

(
� coth

�

2T

)
ImI (�). (9)

Here the function I (�) is expressed by the integral, I (�) =∫
y−1dy(2p′ϕ2(y) + t ′)e2i(�+iτ )y/vF , λ0 = kFU0/2πvF is the

dimensionless interaction constant at zero momentum. Pa-
rameters p′ and t ′ are defined by p′ = γ0 − βz − γz and
t ′ = 2γz + 2βz + β⊥ + γ⊥. The expression of I (�) originates
from the coherent scatterings in Fig. 2. Notice the constant
t ′ does not contain γ0, while p′, representing the enhance-
ment of backscattering, depends on γ0. For short-ranged and
weak scatterers, the parameter αtr is found to be αtr = γ0 +
4β⊥ + 2γ⊥ + 2βz + γz, determining the Drude conducitivty
in graphene [44].

The integration in the expression of ImI (�) can be analyt-
ically performed, giving

ImI (�) = πt

2
+ p

(ω0τ )2

4

�τ

(1 + �2τ 2)2
. (10)
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The zero-field part shares the same integration as in Ref. [17].
The linear T dependence in δσxx at the zero field is obtained
from the property, lim�→0 � coth �/2T � 2T . The sensitiv-
ity to the disorder potential in the zero-field limit, namely
the sensitivity to parameter t , agrees well with the result in
Ref. [37].

The field-dependent correction in Eq. (9) mainly originates
from the region 0 < � < 2T . In this region, one can linearize

d
d�

(� coth �
2T ) � �/3T . Notice that the charateristic scale for

� in Eq. (10) is ∼τ−1. The integral over � does not introduce
extra temperature dependence. Thus the field-dependent cor-
rection δσxx is ∼ω2

0T −1. Tracing the integral rigorously, one
can obtain Eq. (2), where we define t = t ′/αtr and p = p′/αtr.
Inverting the magnetoconductivity tensor gives us Eq. (3),
which is the main result of the present work. The result is
specific for Dirac electron and valid in a large parameter space
when ω0 < T < EF . In Ref. [47], we provide the comparison
between the mechanism reported here and the hydrodynamics
description [48–56], which is the recent focus of studies on
the transport of graphene. We show in Ref. [47], that for
the doped and ultraclean sample, the reported ballistic mag-
netotransport mechanism is the dominating effect when the
temperature, T , within the logarithmic accuracy, lies in a para-
metrically large interval ( kB

h̄τ
) � T � ( kB

h̄τ
)[ h̄EF τ

kB ln(h̄EF τ/kB ) ]
1/2

(from now on we restore kB/h̄ prefactor in the expression
for T ).

The present technological capabilities do not allow one to
engineer the graphene samples with a given impurity type
to the best of our knowledge. Therefore, the present the-
ory allows extracting the information about the impurity in
the sample from the magnetotransport measurement. Namely,
upon fitting the temperature dependence of observed mag-
netoresistance with Eq. (3), one can extract the ratio of
p/t . This helps to understand if the impurity in the given
sample is mostly scalar type (p/t � 1) or mostly nondiagonal
(p/t � 1).

Implications for experiments. The new magnetoresistance
behavior can be observed in experiments, provided with two
conditions on disorder: (1) The disorder in the sample should
ensure the inequality, p/t � 1. (2) The sample should be
clean enough so that the ballistic transport can be observed.

To ensure p/t � 1, the type of disorder in a sample needs
to be primarily scalarlike. Namely, only a small portion of
disorder potentials create intravalley scatterings A � B, in-
tervalley scatterings K � K ′, and different on-site chemical
potentials on sublattices.

The ballistic transport sets a lower bound for temperature,
T > T0 ≡ kB/h̄τ . Meanwhile, the temperature should be low
enough so that the thermal effects and phonon effects do not
defeat the quantum effects of electrons. Thus sample should
be clean enough for T0 to represent a low temperature. In
the previous magnetotransport experiments, samples under
consideration were not clean enough for the ballistic trans-
port to be observed. For example, in Refs. [7] and [8], the
mobility of sample is μ ∼ 2 × 103 cm/Vs and the transport
time is τ ∼ 100 fs. The temperature T0 is T0 ∼ 500 K. This
is a high temperature where thermal, and phonon effects
[57–62] are strong and dominating. Nowadays, a clean sample
with highly mobile electrons can be fabricated. According to
Ref. [63], the method of chemical vapor deposition on
reusable copper can be used to fabricate the graphene device
with a high mobility, μ ∼ 3.5 × 105 cm/Vs. The subsequent
work [13] shows that the electron mobility can be enhanced
to be μ ∼ 3 × 106 cm/Vs together with the observation of
ballistic transport at 1.7 K. These recent techniques may allow
one to study the magnetoresistance of the doped graphene
in the ballistic regime [64,65]. In this regard, the predicted
phenomenon in this letter can be observed.
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