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Splitting of the Fermi point of strongly interacting electrons in one dimension:
A nonlinear effect of spin-charge separation

O. Tsyplyatyev
Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue Straße 1, 60438 Frankfurt, Germany

(Received 3 January 2022; revised 21 February 2022; accepted 1 March 2022; published 22 March 2022)

A system of one-dimensional electrons interacting via a short-range potential described by Hubbard model
is considered in the regime of strong coupling using the Bethe ansatz approach. We study its momentum
distribution function at zero temperature and find one additional singularity at the 3kF point. We identify that
the second singularity is of the same Luttinger liquid type as the low-energy one at kF. By calculating the
spectral function simultaneously, we show that the second Luttinger liquid at 3kF is formed by charge modes
only, unlike the known one around kF consisting of both spin and charge modes. This result reveals the ability of
the spin-charge separation effect to split the Fermi point of free electrons into two, demonstrating its robustness
beyond the low-energy limit of Luttinger liquid where it was originally found.
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Interactions have a dramatic effect on electrons in one
dimension (1D) that has been attracting a significant interest
in condensed-matter physics for a long time [1]. Their low-
energy excitations become quantized density waves described
by the Tomonaga-Luttinger liquid (TLL) theory based on lin-
earization of the spectrum around the Fermi points [2–4]. A
hallmark prediction of this theory is separation of the spin and
charge degrees of freedom of the underlying electrons into
density waves of two distinct types with different velocities
[4,5]. Two linear dispersions originating from the Fermi point
were observed in experiments on magnetotunneling spec-
troscopy in semiconductors [6,7], on photoemission in organic
[8] and strongly anisotropic [9] crystals, and on time-resolved
microscopy in cold atoms [10], establishing firmly this phe-
nomenon.

More recently, the theoretical interest was focused on
spectral nonlinearity since it breaks construction of the TLL
theory altogether [11] but, on the other hand, is unavoid-
able at any finite distance from the Fermi energy in a Fermi
system. The Boltzmann equation approach to weakly inter-
acting Fermi gas predicts a finite relaxation time due to
nonlinearity [12–14], suggesting decay of the many-body
modes. Application of the mobile impurity model to Lut-
tinger liquids predicts survival of spin-charge separation,
at least, in a weak sense as a singularity—consisting of
a mixture of spin and charge modes—at the spectral edge
with nonlinear dispersion [15–17]. At the same time, the
continuing experimental progress is starting to provide in-
formation on effects beyond the low-energy regime [18–22].
In one of these experiments [22], the spin-charge separated
modes at low energy were observed to extend to the whole
conduction band forming a pair of parabolic dispersions
characterized by two incommensurate masses, raising the
question if the spin-charge separation phenomenon mani-
fests itself directly in other properties of the whole Fermi
sea.

We explore such a possibility theoretically in this Letter by
studying the momentum distribution function for a Fermi sys-
tem with short-range interactions described by the Hubbard
model in which the spin-charge separation is well established
in the TLL limit [1]. Using the microscopic methods of the
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FIG. 1. (a) Momentum distribution function nk in the ground
state of the model in Eq. (1) evaluated in the U/t = ∞ limit using
Eqs. (6)–(9), and (11) where the two leading levels of the hierarchy
of modes l � 1 were taken into account in the sum in Eq. (11) for
N = 200 particles (solid line) and for free particles U/t = 0 (dashed
line). The inset: Zoom in around 3kF. (b)–(d) First derivative dnk/dk
around the kF, 3kF, and 5kF points, respectively.
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Bethe ansatz in the strong-coupling limit (U = ∞) not re-
stricted to low energy [23], we find (at T = 0) one extra
divergence at 3kF in addition to the usual Fermi point at kF,
see Fig. 1. Both singularities are of the same order in the
first derivative dnk/dk, revealing the ability of spin-charge
separation to split one Fermi point of free electrons into
two [24]. It is a direct manifestation of this phenomenon in
the whole Fermi sea, far away from the TLL limit. Around
the second point, we find a power-law behavior of nk , nk ∼
· · · + sgn(k − 3kF)|k − 3kF|α3kF with a real exponent of the
TLL type α3kF = 0.787 ± 0.067. However, this exponent does
not correspond to the known exponents for spinful or spinless
TLLs at kF [1]. By calculating simultaneously the spectral
function we show that, out of the spin-charge separated linear
modes around kF, only the charge branch extends through the
nonlinear region to form a TLL around 3kF, identifying it as a
TLL of a new kind.

We analyze fermions with spin-1/2 interacting via a short-
range potential that are described by the 1D Hubbard model,

H = −t
∑
j,α

(c†
jαc j+1,α + c†

jαc j−1,α ) + U
∑

j

n j↑n j↓, (1)

where c jαs are the Fermi operators at site j, α is the spin-1/2
index ↑ or ↓, n jα = c†

jαc jα is the local density operator of the
spin species α, t is the hopping amplitude describing the ki-
netic energy, and U > 0 is the repulsive two-body interaction
energy. Below, we consider the periodic boundary conditions
c j+L = c j for a 1D lattice consisting of L sites and for N-
particle states we impose the constraint of low particle density
N/L � 1 [25]. In the strong-interaction limit U/t = ∞, the
spectrum of the model in Eq. (1) is given by the following
Lieb-Wu equations [26,27],

Lk j − Ps = 2π I j, (2)

Nqm − 2
M∑

l �=m

ϕlm = 2πJm, (3)

where ei2ϕlm = −(eiql +iqm + 1 − 2eiql )/(eiql +iqm + 1 − 2eiqm )
are the two-spinon scattering phases, the total spin momentum
Ps = ∑

m qm is defined in the interval of −π · · · π , and N
nonequal integers I j and M nonequal integers Jm define the
solution for the charge k j and spin qm (quasi)momenta of
the N-particle state. This solution gives the eigenenergy of
the many-body state as E = t

∑
j k2

j /2 and its momentum as
P = ∑

j k j .
In the same limit, the eigenstates are factorized, |�〉 =

|�c〉 ⊗ |�s〉, into a Slater determinant (such as for free parti-
cles) for the charge and a Bethe wave function (such as that for
a Heisenberg chain) for the spin degrees of freedom [27,28],

|�c〉 = 1

LN

L∑
Q,j

(−1)Qexp(iQk · j)a†
j1

· · · a†
jN

|0〉 (4)

|�s〉 = 1

Z

N∑
R,x1<···<xM

exp

(
i
∑
l<m

ϕRl Rm + iRq · x

)
S+

x1
· · · S+

xM
|⇓〉,

(5)

where js are charge coordinates of N particles on the orig-
inal Hubbard chain of length L, x are positions of say
M spins pointing up on the spin chain of N spins form-
ing the spin part of the wave function, and the sums over
Q and R run over all possible permutations of N mo-
menta k j and M momenta qm, respectively. These wave
functions are normalized to unity with the nontrivial nor-
malization factor of the Bethe wave function being the
determinant Z2 = det Q̂ of an M × M matrix with the
following diagonal Qaa = N − ∑M

l �=a 4(1 − cos ql )/(eiql +
e−iqa − 2)/(eiqa + e−iql − 2) and off-diagonal Qab = 4(1 −
cos qb)/(eiqa + e−iqb − 2)/(eiqb + e−iqa − 2) with a �= b ele-
ments [29]. Here, the spinless Fermi a±

j and the purely spin
S±

j operators can be recombined in the original electron

operators c†
jα by introducing an insertion (deletion) of the

spin-down state at a given position x in the spin chain oper-
ator Ix(Dx ) as c†

j↑ = a†
j S

+
x Ix, c†

j↓ = a†
j Ix, c j↑ = a jDxS−

x , and
c j↓ = a jDxS−

x S+
x [30].

The zero temperature Green’s function is expressed
in terms of the expectation values of the ladder opera-
tors as [31] Gα (k, E ) = ∑

f [|〈 f |c†
kα

|0〉|2/(E − E f + iη) +
|〈 f |ckα|0〉|2/(E + E f − iη)], where c±

kα
= ∑

j c±
jαe±ik j/

√
L is

the Fourier transform and η is an infinitesimally small real
number. The factorization of the wave functions makes this
calculation easier since the matrix elements become a product
of two factors 〈 f |c±

jα|0〉 = 〈 f |c±
jα|0〉c〈 f |c±

jα|0〉s, where 0 =
(k0, q0) and f = (k f , q f ) are the momenta of the ground
and excited states. The model in Eq. (1) has the symmetry
of swapping the spin indices ↑↔↓, which its Green’s func-
tion also possesses G↑(k, E ) = G↓(k, E ). Therefore, we will
consider only α =↑. The charge part of the matrix element
is an expectation value with respect to the state in Eq. (4)
that evaluates as a N-fold sum over coordinates j producing
a determinant of the Vandermonde type. Then, application of
the generalized Cauchy formula gives the following result for
the annihilation operator c j↑ [32,33],

〈 f |c j↑|0〉c = 2N−1 sinN−1
(P f

s −P0
s

2

)
ei(P0−Pf ) j

LN−(1/2)

×

N−1∏
i< j

(
k f

i − k f
j

) N∏
i< j

(
k0

i − k0
j

)
N,N−1∏

i, j

(
k f

j − k0
i

) , (6)

where 〈 f |c j↑|0〉c ≡ 〈� f
c |a j |� f

c 〉 and the low-density limit in
which k0, f

j � 1 is already taken.
The spin part part of the matrix elements is an expecta-

tion value with respect to the states in Eq. (5) that is less
straightforward to evaluate. A mathematical technique for
dealing with these Bethe states analytically was invented in an
algebraic form [34], leading to calculation of the correlation
function for the noniternarant quantum magnets described by
the Heisenberg model [35,36]. However, this result cannot be
used here directly since the operators of the Hubbard model
c±

j↑ change the length of the spin chain, making the construc-
tions of Ref. [34] for the bra and ket states incompatible with
each other. We resolve this problem by representing operators
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of one algebra (for the longer chain) through the other (for
the shorter chain) and the spin operators of the extra site.
Then, explicit evaluation of the expectation value in the spin
subspace of the additional site restores applicability of the
methods in Ref. [23], and we obtain the spin part of the matrix
element in terms of the determinant of a M × M matrix (see
the details of this calculation in Ref. [27]),

〈 f |c j↑|0〉s = det R̂

Z0Z f

M−1,M∏
i, j

(
eiq f

i + e−iq0
j − 2

)

×
M−1∏
i �= j

(
eiq f

i + e−iq f
j − 2

)− 1
2

M∏
i �= j

(
eiq0

i + e−iq0
j − 2

)− 1
2
,

(7)

where 〈 f |c j↑|0〉s ≡ 〈� f
s |DxS−|�0

s 〉 and the elements of ma-
trix R̂ are

Rab =
eiq0

b (N−1)
M−1∏
j �=a

( − e
iq

f
j +iq0

b +1−2e
iq

f
j

e
iq f

j +iq0
b +1−2eiq0

b

) − 1

(
e−iq f

a − e−iq0
b

)(
eiq f

a + e−iq0
b − 2

) , (8)

RMb =
eik0

b

M∏
i �=b

(
eiq0

i + e−iq0
b − 2

)
M−1∏

j

(
eiq f

i + e−iq0
b − 2

) (9)

for a < M and for a = M, respectively. Together Eqs. (6)–(9)
give the complete analytical expression for the matrix element
for the 1D Hubbard model. Repeating the same calculation
for the matrix element of the creation operator 〈 f |c†

k↑|0〉,
we obtain the same expressions as in Eqs. (6)–(9) in which
the momenta are swapped, k0, q0 ↔ k f , q f , and the parti-
cle (spin) quantum number is increased by one N → N + 1
(M → M + 1).

The response of a many-body system to a single-particle
excitation at a given momentum and energy is described by
the spectral function, making this observable particularly in-
teresting for the experiments on spectroscopy. It is related
to Green’s function as Aα (k, E ) = −Im Gα (k, E )sgn(E −
E0)/π [31] giving

Aα (k, E ) =
∑

f

|〈 f |c†
kα

|0〉|2δ(E − E f + E0)

+
∑

f

|〈 f |ckα|0〉|2δ(E + E0 − E f ), (10)

where the sum over the result in Eqs. (6)–(9) [37] needs to
be evaluated over exponentially many final states f . It can
be performed based on emergence of the hierarchy of modes:
Away from the low-energy regime around the Fermi points the
many-body continuum splits itself into levels (consisting of a
polynomial number of excitations on each of them) according
to their spectral strength, which is proportional to integer
powers of a small parameter 1/L2 [38].

In the presence of spin and charge degrees of freedom
this phenomenon manifests itself on the microscopic level
in the following way. For the ground states, the charge and
spin momenta form two Fermi seas that correspond to se-
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FIG. 2. (a) Spectral function Aα (k, E ) of the model in Eq. (1)
evaluated in the U/t = ∞ limit using Eqs. (6)–(10) for N = 500
particles where only the leading level of the hierarchy l = 0 was
taken into account in the sum in Eq. (10). The single-particle dis-
persion of free particles U/t = 0 is superimposed as a dashed line.
(b) Two sets of integer numbers, Ij for the charge and Jm for spin
degrees of freedom, defining the Lieb-Wu equations (2) and (3) for
an excited state with momentum P and the total spin momentum Ps;
two “electron-hole” pairs are shown as examples of lowering the
level of the hierarchy, see the text. For a spin-unpolarized system,
the number of spin degrees of freedom is M = N/2 that makes the
charges’ density twice larger than that of the spins.

lecting the nonequal integer numbers in Eqs. (2) and (3)
as I j = −N/2 · · · N/2 and Jm = −(N − M )/2 · · · (N + M )/2
[26], see the illustration in Fig. 2(b). The charge part of the
spectral amplitude for a generic excitation above this ground-
state |〈 f |c†

kα
|0〉c|2 given by Eq. (6) is vanishingly small in

the thermodynamic limit since it is proportional to 1/L2N .
However, the factor k f

j − k0
i in the denominator of Eq. (6)

produces a singularity that is cut off by 1/L canceling a
power of 1/L2 in the spectral amplitude each time a charge
momentum of the excited state is equal to a momentum of
the ground state. This property selects a specific set of the
excitations for which a charge is added above the ground—see
the charge state in Fig. 2(b)—and for which the 1/L2N fac-
tors are canceled altogether making |〈 f |c†

kα
|0〉c|2 ∼ 1. Adding

each “electron-hole” pairs of charges on top of these states
multiplies the spectral amplitude by an extra small parameter
1/L2 since some powers of the normalization factor 1/L2N

remain uncanceled.
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For the spin part of the spectral amplitude |〈 f |c†
kα

|0〉s|2
given by Eq. (7), emergence of a small parameter is
similar. The normalization factor 1/(Z0Z f ) makes the am-
plitude proportional to a vanishing in the thermodynamic
limit factor 1/N2M and the singularity 1/(e−iq f

a − e−iq0
b ) in the

matrix elements in Eq. (8) cancels it altogether for a subset
of states for which only one spin is added on top of the
spin ground states—see the spin state in Fig. 2(b)—making
|〈 f |c†

kα
|0〉s|2 ∼ 1. Adding each “electron-hole” pair of spins

on top multiplies the spectral amplitude by an extra small
parameter 1/N2.

Combined, these two properties result in the hierarchy of
modes for both types of the degrees of freedom with the spec-
tral power for the strongest excitations being on the order of
|〈 f |c†

kα
|0〉|2 ∼ 1 and the subleading excitations being weak as

|〈 f |c†
kα

|0〉|2 ∼ 1/(N2mL2n), where l = n + m > 0 and n and
m are the numbers of extra “electron-hole” pairs in the charge
and spin Fermi seas, respectively. Close to the Fermi points
this hierarchy of modes breaks down. The spectral amplitudes
of all excitations become of the same order forming spin and
charge-density waves, and the spinful TLL theory becomes a
better approach for calculating correlation functions [5].

Analyzing first the nonlinear regime away from the
Fermi points, we evaluate the spectral function in Eq. (10)
numerically taking into account only the top level of the
hierarchy l = 0 in the sum over f [39]. The result is
presented in Fig. 2(a) where the Fermi momentum is
defined by the free particle limit as kF = πN/2 and the
corresponding sum rule (which also includes the linear
regime around the Fermi points) is already fulfilled as
2

∫ ∞
−∞ dk

∫ 0
−∞ dE A(k, E )/N � 61% even for a large number

of particles N = 500. Unlike the case of spinless fermions
[38], the excitations at the top level of the hierarchy form
a continuum for fermions with spin-1/2 since adding an
electron with spin-1/2 adds simultaneously both charge and
spin with two different momenta P and Ps, see Fig. 2(b). In this
continuum, only two nonequivalent peaks emerge away from
the Fermi points: One connects the ±kF points and the other
connects the −kF, 3kF points (or equivalently, the −3kF, kF

points) on the E = μ line. Around the ±kF Fermi points,
these nonlinear peaks become two linear peaks that are the
manifestation of the collective spin (i.e., spinon) and charge
(i.e., holon) modes predicted by the spinful TLL model at
low energy [4,5]. This identifies the nonlinear modes as being
collective spin and charge excitations as well (see more details
in Ref. [27]) and shows that the spin-charge separation still
manifests itself in observables beyond the linear TLL limit.

The line shapes of the peaks away from the low-energy
region have the form of divergent power laws, e.g., the par-
ticular momentum-dependent exponent was predicted for the
spinon mode (which correspond to the spectral edge at finite
U ) in Refs. [15,40] and experimentally confirmed in Ref. [20].
The nonlinear holon and spinon modes were observed di-
rectly in the momentum-energy resolved magnetotunneling
experiments in semiconductor quantum wires at intermediate
coupling strength [19,22] that strongly suggests their ro-
bustness also for interactions with finite range and of finite
strength, beyond the regime of the present calculation.

The momentum distribution function is another observable
of interest in the many-body systems. It can be obtained from
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FIG. 3. Momentum distribution function nk around 3kF on the
log-log scale for N = 80 particles where the three leading levels of
the hierarchy of modes l � 2 were taken into account in the sum in
Eq. (11). The dashed solid lines are power-law functions for k < 3kF

and for k > 3kF giving the exponent as a3kF = 0.787 ± 0.067 where
the value is the average of the two and the error bars are the differ-
ence. Inset (a): Finite-size cutoff for nk as the function of inverse
system size 1/L on the log-log scale at 3kF. The solid line is a
power-law fit giving a3kF = 0.838 within the accuracy of the fitting
nk directly. Inset (b): The value of nk at 3kF as a function of the
particle number N . The solid line is a fit of finite-size corrections,
n3kF = C3kF + b/N , giving C3kF = 0.027.

Green’s function as nk = ∫
dE �(E0 − E )Im Gα (k, E )/π

[31] giving

nk =
∑

f

|〈 f |ckα|0〉|2. (11)

One of the regions of particular interest for this quantity is
proximity of the Fermi point in which the infinite number
the “electron-hole” pairs has to be included in the sum over
f . This can be, at least, partially accounted for by adding
subleading levels of the hierarchy. The result of the numerical
calculation for N = 200 and l � 1 is presented in Fig. 1(a)
where the sum rule already accounts for 2

∫
dk nk/N � 86%

of the particles.
Singularities in nk were introduced as the definition of a

Fermi surface in many-body systems in the Luttinger theorem
[41]. Here, we use this definition to interpret the result in
Fig. 1. Due to the TLL physics, the singularity at kF is weaker
in 1D [42], e.g., instead of a discontinuity in nk in D > 1
dimensions nk is finite with a divergence appearing in dnk/dk
in 1D, see Fig. 1(b). Inspecting the result in Fig. 1(a), we find a
second singularity of same order at 3kF, see Fig. 1(c). And we
find no divergencies at any other points, e.g., see Fig. 1(d).
The second singularity can be interpreted as a direct man-
ifestation of spin-charge separation beyond the low-energy
regime, which facilitates appearance of two Fermi points at
different momenta since the density of nonlinear holons twice
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larger than that of the nonlinear spinons in a spin-unpolarized
system. Note that nk=0 � 0.7 in Fig. 1(a) is still smaller than
nk=0 = 1 for the free system so ∼30% of particles is redis-
tributed above kF providing a significant amplitude around the
3kF point.

The coinciding order of both singularities suggests that the
states around 3kF are also described by a TLL model, which
predicts a power-law behavior of the momentum distribution
function [1],

nk = C(3)kF + · · · sgn[(3)kF − k]|k − (3)kF|α(3)kF , (12)

where α(3)kF is a real exponent and C(3)kF is the value of nk

exactly at (3)kF. Fitting a linear function on a log-log plot
of nk extracts the exponent around 3kF directly, see Fig. 3.
Alternatively, the same exponent can be extracted from the
finite-size cutoff at 3kF, see inset (a) in Fig. 3. Both methods
give a3kF = 0.787 ± 0.067. The scaling of n3kF with the sys-
tem size gives a finite amplitude in the thermodynamic limit
C3kF = 0.027, see inset (b) in Fig. 3. In all of these numerical
calculations the number of the levels l used in calculating
Eq. (11) was increased until the next subleading level was

giving only a small correction to the value of nk at each point.
Application of the same procedure around kF gives CkF =
0.477 and αkF = 0.124 ± 0.020 [27], which is the well-known
result of the TLL theory αkF = 0.125 [43–45]. However, only
one attempt of using the TLL approach at 3kF was made
in Ref. [46] in which a3kF = 1.125 was obtained, suggesting
a lower order (in d2nk/dk2) of the second singularity. This
discrepancy can be attributed to using both spinon and holon
modes in Ref. [46], whereas the present microscopic calcula-
tion shows in Fig. 2(a) that only the holon modes can form a
TLL at 3kF. In conclusions, we have shown that spin-charge
separation can split one Fermi surface into two. Together with
the recent experimental observation of spin-charge splitting
of the whole band in Ref. [22], it demonstrates that this phe-
nomenon is more general than it was originally anticipated,
and that substantial features of the Fermi gas still survive in
1D despite formation of a genuine many-body continuum by
the interactions.
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