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Dynamical properties of collective excitations in twisted bilayer graphene
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Employing the recently developed momentum-space quantum Monte Carlo scheme, we study the dynamic
response of single-particle and collective excitations in realistic continuum models of twisted bilayer graphene.
At charge neutrality with small flat-band dispersion, this unbiased numerical method reveals single-particle
spectra and collective excitations at finite temperature. Single-particle spectra indicate that repulsive interactions
push the fermion spectral weight away from the Fermi energy and open up an insulating gap. The spectra of
collective excitations suggest an approximate valley SU(2) symmetry. At low energy, long-lived valley waves
are observed, which resemble spin waves of Heisenberg ferromagnetism. At high energy, these sharp modes
quickly become overdamped, when their energy reaches the fermion particle-hole continuum.
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Introduction. To understand the rich physics in twisted
bilayer graphene (TBG), as well as the mechanism that gov-
erns this novel quantum system, a crucial step is to identify
the ground state and to characterize the associated low-
energy excitations [1–23]. Recently, many new insights have
been obtained using real-space effective model analysis and
large-scale numerical simulations [e.g., quantum Monte Carlo
and density matrix renormalization group (DMRG)] [24–30],
which indicate that even at integer fillings, correlation effects
give rise to a very rich phase diagram with a variety of com-
peting quantum phases. A key advantage of this approach
is that these lattice models can be easily incorporated with
well-established numerical techniques, but it remains a chal-
lenge to determine the effective control parameters utilized in
these models from first principles. Another parallel approach
utilizes continuum models with flat bands and fragile topology
[31–33], where Coulomb interactions and first-principles ma-
terial parameters can be easily incorporated. In this approach,
a key theoretical challenge is to handle the strong Coulomb
interactions. In certain special limits, exact solutions exist due
to emergent high symmetry [34]. For realistic material param-
eters away from these special cases, Hartree-Fock mean-field
and DMRG calculations suggest that the ground state is
likely to be an intervalley coherent (IVC) state [20–23,35–
38], which mixes electron states from the two opposite valleys
and breaks the Uv (1) valley charge conservation. There have
been many studies about symmetry-breaking ground states of
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such systems [36,39–42], while finite temperature results and
the collective excitation are matters of widespread concern.
To fully understand such a complex many-body system, unbi-
ased numerical methodology, which can solve such correlated
problems efficiently and accurately, is in great need.

In this Letter, we utilize the momentum-space quantum
Monte Carlo (QMC) method [43–46] to achieve this objective.
The implementation of this method in continuum models of
TBG has been developed recently [45,46], but a dynamic re-
sponse, in particular the spectral information of the collective
excitations, has not yet been obtained. Here, we employ the
momentum-space QMC method, accompanied by the stochas-
tic analytic (SAC) continuation scheme [47–53], to compute
the spectra of both single-particle and particle-hole excita-
tions. We find that, at the charge neutrality point (CNP), the
IVC state is the leading instability, with strong competition
from the VP state. More interestingly, although the valley
SU(2) symmetry is broken explicitly when control parame-
ters take realistic values (with a kinetic term), the dynamic
response of particle-hole excitations still exhibits an approxi-
mate SU(2) symmetry. At low energy, long-lived valley waves
are observed in close analogy to spin waves of a Heisenberg
ferromagnet, and these modes become overdamped as their
energy reaches the particle-hole continuum. These results
reveal a complex dynamic response in TBG and provide a
foundation for the study of other intriguing physics at and
away from charge neutrality, such as the mechanism of super-
conductivity and its possible topological origin [18,22,23,54].

Model and method. In this study, we utilize the contin-
uum model of a TBG flat band introduced in Refs. [1–6]. In
the plane-wave basis, the single-particle Hamiltonian can be

2469-9950/2022/105(12)/L121110(7) L121110-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3332-4557
https://orcid.org/0000-0002-8614-0519
https://orcid.org/0000-0003-3580-5506
https://orcid.org/0000-0001-9771-7494
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L121110&domain=pdf&date_stamp=2022-03-16
https://doi.org/10.1103/PhysRevB.105.L121110


PAN, ZHANG, LI, SUN, AND MENG PHYSICAL REVIEW B 105, L121110 (2022)

(a)

(b) (c)

FIG. 1. (a) The moiré Brillouin zones (mBZs) at one valley. The red solid line marks the high-symmetry path �-M-K1(K2)-�. G1 and G2

are the reciprocal lattice vectors of the mBZ. Yellow dots mark the possible momentum transfer in QMC simulations, q + G, and the blue
dashed circle is the momentum-space cutoff. Because the form factor decays exponentially with G [34], scatterings with momentum transfer
larger than this cutoff are ignored. Here, we show a 9 × 9 mesh in the mBZ, with 300 allowed momentum transfers. In (b) and (c), blue
lines are single-particle spectra of L = 6, T = 0.667 meV, u0 = 33 and 60 meV (realistic case [36,55–58]), respectively, obtained from the
momentum-space QMC with analytic continuation. The red stars and lines indicate the bare dispersions of H0, which is the kinetic energy in
our model in Eq. (3).

written as

H τ
0,k,k′ = δk,k′

(−h̄vF (k − Kτ
1 ) · σ τ U0

U †
0 −h̄vF (k − Kτ

2 ) · σ τ

)

+
(
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)
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(

0 U τ
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2 δk,k′+τ (G1+G2 ) 0

)
, (1)

where vF is the Dirac velocity, τ = ± is the valley in-
dex, and στ = (τσx, σy) defines the A,B sublattices of
the monolayer graphene. The Kτ

1,2 are the correspond-
ing Dirac points of the bottom and top layers, which are
twisted by angles ∓ θ

2 , respectively. As shown in Fig. 1(a),
G1 = (− 2π√

3LM
,− 2π

LM

)
and G2 = (

4π√
3LM

, 0
)

are reciprocal lat-
tice vectors of the moiré Brillouin zone (mBZ), with
LM = a0/[2 sin(θ/2)] and a0 = 0.246 nm. Interlayer tunnel-

ings are described by U0 = ( u0 u1

u1 u0

)
, U τ

1 =
(

u0 u1e−τ 2π
3 i

u1eτ 2π
3 i u0

)
,

and U τ
2 =

(
u0 u1eτ 2π

3 i

u1e−τ 2π
3 i u0

)
, where u0 and u1 are the intra- and

intersublattice interlayer tunneling amplitudes. In this Let-
ter, we set h̄vF /a0 = 2377.45 meV, θ = 1.08◦, and u1 =
110 meV, which means the moiré bands are completely flat
at the chiral limit u0 = 0 [55–58].

We then project the charge-density operator at q +
G to the nearly flat bands relative to the filling of

CNP,

δρq+G =
∑

k∈mBZ,m1,m2,τ,s

λm1,m2,τ (k, k + q + G)

×
(

d†
k,m1,τ,s

dk+q,m2,τ,s − 1

2
δq,0δm1,m2

)

= (δρ−q−G)†, (2)

where d†
k,m.τ,s is the creation operator for a Bloch eigenstate,

|uk,m,τ,s〉, with m, s, τ the band, spin, and valley indices. The
form factor is defined as λm1,m2,τ (k, k + q + G) ≡ 〈uk,m1,τ |
uk+q+G,m2,τ 〉. As shown in Fig. 1(a), q ∈ mBZ and q + G
represents a vector in extended mBZ, with G = n1G1 + n2G2,
n1, n2 ∈ Z [56,57]. After projecting to the flat band, the
Hamiltonian reads

H = H0 + Hint,

H0 =
∑

m=±1

∑
kτ s

εm,τ (k)d†
k,m,τ,sdk,m,τ,s, (3)

Hi n t = 1

2�

∑
q,G,|q+G|
=0

V (q + G)δρq+Gδρ−q−G,

where εm,τ (k) is the eigenvalue of the continuum model in
Eq. (1). We define the long-ranged single-gate (screened)
Coulomb potential: V (q) = e2

4πε

∫
d2r

(
1
r − 1√

r2+d2

)
eiq·r =

e2

2ε
1
q (1 − e−qd ). Here, d

2 is the distance between the graphene
layer and single gate, with d = 40 nm and ε = 7ε0. The
volume � = Nk

√
3

2 L2
M with Nk being the number of

momentum points in a mBZ (e.g., Nk = 81 for a 9 × 9
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mesh). We choose the bare dispersion, as it is shown in
Ref. [37] that the renormalization from a remote band has
been considered in our form of interaction, while it is worth
noticing in Refs. [35,38,42] that the mean-field contribution
of the remote band interaction from the flat band is removed.
Whether this remote band interaction is strong enough
to change the parameter of the moiré potential obviously
is under debate. In our work, we choose the case where
the flat-band approximation is reasonable to carry out our
simulation.

The problem associated with the projected Coulomb inter-
action is solved via a discrete Hubbard-Stratonovich trans-
formation [28,45,59,60], eαÔ2 = 1

4

∑
l=±1,±2 γ (l )e

√
αη(l )ô +

O(α4) [details are shown in Sec. I of the Supplemental Ma-
terial (SM) [61]].

Exact ground states in the flat-band limit. When the kinetic
energy is ignored (i.e., the flat-band limit), the TBG Hamil-
tonian at charge neutrality has an emergent U (4) symmetry
and ground states can be obtained exactly [34,35,46,62]. To
see the exact solution, one just needs to realize that the
valley-polarized state, with all electrons in one valley, is a
zero-energy eigenstate of Hint. Because Hint is semipositive
definite, this must be a ground state. In addition, any U (4)
transformation of this ground state is also a degenerate ground
state, including the VP, IVC, and spin-polarized states, as well
as many other degenerate states. For simplicity, in this Letter,
we will focus only on the VP and IVC states.

We define the VP and IVC order parameters as Oa(q, τ ) ≡∑
k d†

k+q(τ )Madk(τ ), with Ma = τzη0 (η0 for the band in-
dex) for VP and Ma = τxηy or τyηy for the IVC states
[20,34,35,40,46]. It is straightforward to verify that at q = 0,
these three order parameters obey the commutation relations
[Oa,Ob] = iεa,b,cOc and they all commute with the interac-
tion Hamiltonian [Oa, Hint] = 0. Thus, they generate a SU(2)
symmetry group, a subgroup of the full U (4) symmetry. In the
ordered phase, the nonzero expectation value of these order
parameters spontaneously breaks this SU(2) symmetry, result-
ing in spin-wave-like gapless Goldstone modes, i.e., valley
waves. The same as ferromagnetism, such valley waves have
a quadratic dispersion ω ∝ k2 at low energy.

As for single-particle excitations, all these degenerate
ground states are insulators with a gap proportional to the
interaction strength. In the flat-band limit, a single-particle
Green’s function can be calculated exactly at T = 0 [34].
Despite the strong Coulomb repulsion, electrons/holes exhibit
free-fermion-like behavior, where the Green’s function shows
four fermion bands with zero damping: two conduction (va-
lence) bands above (below) the Fermi energy.

In a real TBG, away from the flat-band limit, this SU(2)
symmetry is explicitly broken by the kinetic energy down
to Z2 (valley) and Uv (1) (valley charge conservation), lift-
ing the degeneracy between the VP and IVC states. Here,
an IVC (VP) state breaks the continuous U (1) (discrete Z2)
symmetry, and dynamics fluctuations in VP and IVC states
shall exhibit different behaviors. However, if the kinetic en-
ergy term is small (i.e., small bandwidth), an approximate
SU(2) symmetry may survive, and qualitative features may
still resemble the flat-band limit. The momentum-space QMC
technique offers a probe to directly visualize the breaking

of the SU(2) symmetry as well as the remnant approximate
symmetry.

Results and analysis. In a previous work [45], we have
shown that Hint acquires a correlated insulator ground state at
CNP. In this study, we added the kinetic term H0 and carried
out the simulations at u0 = 33 and 60 meV with 6 × 6 and
9 × 9 momentum meshes. Here, u0 = 60 meV is a realistic
case [36,55–58] which leads to a bandwidth of 1.08 meV, and
u0 = 33 meV is a case between the realistic one and chiral
limit. The single-particle spectra are shown in Figs. 1(b) and
1(c). The bare (noninteracting) dispersions are depicted as red
stars. At low temperature, for both u0 = 33 and 60 meV, inter-
actions push the fermion states away from the Fermi energy,
resulting in an interaction-driven band gap of ∼20 meV, with
magnitudes larger than that of the bare bandwidth. Although
we are using realistic parameters away from the flat-band
limit, as shown in Figs. 2(c) and 2(d), the peak of the single-
particle spectra agrees nicely with the solution of the flat-band
limit [34], indicating that the system is not far from the exactly
solvable limit. As for the width of the peak, due to the finite
temperature and the presence of kinetic energy, fermions here
exhibit some damping of the order 10 meV, which is signifi-
cantly larger than T and the bandwidth of the bare dispersion.
This is in contrast to the exactly solvable limit at T = 0 where
the damping vanishes.

The next question is to reveal the symmetry-breaking chan-
nels of this insulating state. The proposed symmetry-breaking
states at the CNP, based on a Hartree-Fock mean-field anal-
ysis, are gradually pointing towards the IVC and VP states
[35,36,39,40]. Here, we calculate their corresponding (dy-
namical) correlation

Sa(q, τ ) ≡ 1

N2
k

〈Oa(−q, τ )Oa(q, 0)〉, (4)

where Oa is the order parameter of the VP or IVC state defined
early on. For static properties, we calculate the equal-time
correlation at imaginary time τ = 0. To obtain a dynamic
response, the time-dependent Sa(q, τ ) is calculated at τ ∈
[0, β], followed by the stochastic analytic continuation (SAC)
[47–52,63–68] to obtain the real frequency spectra [61].

The static order parameters are presented in Figs. 2(a) and
2(b), where we calculate S(q = �, τ = 0), the squares of the
order parameter, for IVC and VP as a function of temperature.
Without the kinetic energy (H = Hint), IVC and VP share an
identical susceptibility, which reflects the SU(2) symmetry of
the flat-band limit. Once the kinetic energy is included [“with
kin” in Figs. 2(a) and 2(b)], this degeneracy is lifted. At u0 =
33 meV, a small splitting between IVC and VP correlation
functions is observed. The splitting becomes more significant
when u0 reaches 60 meV, closer to the realistic case [69,70],
with IVC being the more favored ground state. It is worth-
while to note that when the system size goes from 6 × 6 to
9 × 9, the IVC order S(q = �) does not change, whereas the
VP S(q = �) decreases as the system size increases. One shall
also notice that although the degeneracy between IVC and VP
is lifted, both correlation functions grow at low T , indicating
that the competition between IVC and VP remains strong
and there is no completely dominant symmetry-breaking
channel [40].
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FIG. 2. (a) S(q = �, τ = 0), the squares of order parameters, for VP and IVC at u0 = 33 meV and L = 6, as a function of temperature.
(b) The same quantity at u0 = 60 meV with both L = 6 and 9. When kinetic energy is ignored, the two order parameters are degenerate due to
an emergent SU(2) [U (4)] symmetry. When the kinetic energy is taken into account (“with kin”), which breaks the symmetry, this degeneracy
is lifted. At u0 = 33 meV, the splitting between VP and IVC is weak. This splitting becomes more pronounced at u0 = 60 meV, indicating
that IVC is more favored at low temperatures in comparison to VP, although the competition between these two symmetry-breaking channels
remains. (c) and (d) Single-particle spectra at T = 0.667 meV, u0 = 60 meV, and L = 9, which shows an insulating gap ∼10 meV. The dashed
lines are the analytic computation of the single-particle dispersion at the flat-band limit following Ref. [34]. (e) and (f) Dynamical spectra of
VP and IVC with the same parameters. Sharp and ferromagneticlike valley waves are observed in both channels near q = � and a fit of c q2

gives rise to c = 31.32 ± 0.03 meV/k2
θ [black solid line in (f)]. At the energy scale of twice the single-particle gap, ∼20 meV, valley waves

are overdamped into the particle-hole continuum. The dashed lines are the analytic computation of the Goldstone mode at the flat-band limit
following Ref. [34].

In addition to static correlations, we also compute the
dynamic correlations of IVC and VP as defined in Eq. (4)
and their spectra with a system size of 9 × 9 for the realistic
case with the kinetic energy at u0 = 60 meV at low tem-
perature T = 0.667 meV, much lower than the scale of the
single-particle gap. The results are shown in Figs. 2(e) and
2(f), with Figs. 2(c) and 2(d) the associated single-particle
spectra. The dashed lines mark the single-particle dispersion
and Goldstone modes when the kinetic energy is ignored
[34]. Measured from ω = 0, the single-particle gap is of size
∼10 meV and both the VP and IVC spectra develop a clear
and sharp valley wave dispersion at low energy near �. Re-
markably, although the static susceptibility indicates that the
SU(2) symmetry has been explicitly broken at u0 = 60 meV
and the degeneracy between IVC and VP is lifted [Fig. 2(b)],
the IVC and VP spectra are almost identical and are strik-
ingly similar to the flat-band limit [34,71]. These sharp
Goldstone-like modes are in strong analogy to SU(2) ferro-
magnetic Goldstone modes with ω ∝ c q2 and c = 31.32 ±
0.03 meV/k2

θ [where kθ = 8π sin(θ/2)/(3a0) and the lattice
constant of the monolayer graphene a0 = 0.246 nm], indicat-
ing an approximate SU(2) symmetry survives in our model. It
is worthwhile to highlight that this SU(2) approximate sym-
metry is not an exact symmetry and it breaks at low energy.
Thus, at very small q and ω, this magnonlike excitation will
exhibit a linear dispersion ω ∝ q, due to the broken SU(2)
symmetry [20]. For our study, because this SU(2) symmetry
breaking is really weak, such a linear dispersion is not visible
in the QMC data.

One other interesting feature of these valley waves is
that above the energy scale of ∼20 meV, the sharp col-
lective excitations become heavily damped, which is not
seen in the analytical solution [dashed line in Figs. 2(e)
and 2(f)]. The analytical solutions (without kinetic energy)
are only consistent with QMC results (with kinetic energy)
at the low-energy mode near the � point, which means
that our results are beyond the mean-field type of calcula-
tions. The damping of collective modes has two origins: (1)
scattering between collective modes and (2) damping due
to the fermion particle-hole continuum. The second damp-
ing channel arises for energy larger than twice the fermion
gap, and thus is responsible for the overdamped features
at energies above 20 meV shown in Figs. 2(e) and 2(f).
This is in strong analogy to the damping of ferromagnetic
spin excitations in the graphene nanoribbons, where the
flat band gives rise to the ferromagnetic long-range order
but the spin waves become overdamped in the particle-hole
continuum [71–73].

Discussion and outlook. The quantum dynamics of collec-
tive excitations holds the key to the understanding of many-
body effects in twisted bilayer graphene and other quantum
moiré systems. This study suggests that the momentum-space
QMC method offers a powerful tool to tackle this problem.
In particular, the spectral function obtained via this unbi-
ased method offers a bridge to directly connect theoretical
studies with experimental measurements, especially spec-
troscopy methods, such as inelastic light or neutron scattering
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and tunneling spectroscopy, making it possible to compare
measurements in experiments and large-scale quantum sim-
ulations at the quantitative level.
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