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Footprints of Kitaev spin liquid in the Fano lineshape of Raman-active optical phonons
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We develop a theoretical description of the Raman spectroscopy in the spin-phonon-coupled Kitaev system
and show that it can provide observable signatures of fractionalized excitations characteristic of the underlying
spin-liquid phase. In particular, we obtain the explicit form of the phonon modes and construct the coupling
Hamiltonian based on the D3d symmetry. We then systematically compute the Raman intensity and show that
the spin-phonon coupling renormalizes phonon propagators and generates the salient Fano lineshape. We find
that the temperature evolution of the Fano lineshape displays two crossovers, and the low-temperature crossover
shows pronounced magnetic-field dependence. We thus identify the observable effect of the Majorana fermions
and the Z2 gauge fluxes encoded in the Fano lineshape. Our results are consistent with the phonon Raman
scattering experiments in the candidate material α-RuCl3.
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Introduction. Raman spectroscopy has proven to be a sen-
sitive experimental probe to study the ground-state properties
and the dynamics of various strongly correlated systems [1].
For magnetic insulators, the Raman process couples to the
dynamically induced electron-hole pair that connects to the
low-energy magnetic states. In magnetically ordered states,
the magnetic Raman response shows polarization-dependent
peak structure, arising predominantly from one- and two-
magnon excitations [2–7]. In the quantum spin liquid (QSL)
phase, the Raman spectrum of such low-energy states reveals
characteristic low-energy continua, which are fundamentally
different from the dispersive collective modes in ordered
states. These continua reflect the fractionalization of spins, a
hallmark of the QSL [8–16].

Recently, significant efforts were made in the investiga-
tion of the QSL state of matter. Mott insulators with strong
spin-orbit coupling, e.g., α-RuCl3 [17–28], are promising to
realize Kitaev QSL. This QSL is motivated by the famous
Kitaev spin model with bond-dependent Ising interactions
on a two-dimensional honeycomb lattice [29]. It is exactly
solvable with a known gapless QSL ground state. In this
model, the spins fractionalize into static Z2 gauge fluxes
and itinerant Majorana fermions amenable to experimental
detection.

While various dynamical probes [9,14,30–34] were ex-
ploited in several materials to look for signatures of spin
fractionalization and their proximity to the Kitaev QSL, em-
ploying phonon dynamics and the spin-lattice coupling to
detect Kitaev QSL has been less investigated. It was recently
suggested that sound attenuation from the phonon decaying
into a pair of Majorana fermions [35–37] and the Hall viscos-
ity induced by the time-reversal breaking spin Hamiltonian
[36,37] may potentially serve as such a probe. The impor-
tance of the spin-phonon coupling in the Kitaev materials is
also shown in the interpretation of the thermal Hall transport
measurements [38–40].

In this letter, we focus on the Raman spectroscopy of
optical phonons, and particularly on the salient Fano line-
shape, which arises when the phonon resonance peak couples
to the magnetic continuum [41]. This effect is attributed to
spin-dependent electron polarizability [42,43], which involves
a microscopic description of both spin-photon coupling and
spin-phonon couplings. The recent work of the authors of
Ref. [16] shows that even the simplest form of the couplings
can give rise to the Fano line shape. In the experimental
studies of the candidate material α-RuCl3 [23–27,44], the
pronounced temperature and field dependence of the Fano
lineshape indicate rich information about the underlying spin-
liquid phase that awaits exploration. However, up to now
a clear theoretical description of the Raman scattering in a
Kitaev spin-phonon-coupled system is still missing, mainly
due to the lack of a proper description of spin-phonon and
spin-photon couplings [16].

Here, we make use of the D3d group symmetry of the
Kitaev model [45] and propose a theory to describe the Ra-
man scattering of the Kitaev spin-phonon-coupled system.
We show that our theory, in which the spin-phonon coupling
and spin-photon coupling are explicitly built from the sym-
metry constraints, quantitatively characterizes the temperature
evolution and field dependence of the Fano lineshape of two
low-energy optical phonons, observed in the Raman scattering
experiments in α-RuCl3 [23–27,44]. These results reveal the
clear effects of the Majorana fermions and the Z2 fluxes,
which provide observable signatures for experimental detec-
tion of Kitaev QSL.

Model. We consider the spin-phonon Hamiltonian

H = Hs + Hph + Hs-ph. (1)

The first term is the extended Kitaev honeycomb model [29]
Hs = −J

∑
α,r∈A σα

r σα
r+Mα

− κ
∑

〈r,r′,r′′〉αγ
σ α

r σ
β

r′ σ
γ

r′′ , where
σα

r are the Pauli matrices, α = x, y, z and Mα are nearest-
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(a) (b)

FIG. 1. (a) Crystal structure of α-RuCl3. The unit cell shown
in blue-dashed lines is defined by n1 = (

√
3, 0) and n2 = ( 3

2 ,
√

3
2 )

and includes two Ru3+ and six Cl− ions. Mx,y = ( ±
√

3
2 , 1

2 ) and
Mz = (0,−1) are nearest-neighbor vectors. The sites r, r′, r′′ form
a generic three-spin link 〈r, r′, r′′〉yx as described in the text. (b) Vi-
sualization of the eigenmodes of E 1

g and E 2
g phonons in xy plane,

obtained by linear representation theory (see Sec. A of SM Ref. [49]).

neighbor vectors; J denotes the Kitaev interaction; κ is the
strength of the time-reversal symmetry-breaking term, which
mimics the effect of an external magnetic field [46]. The three-
spin link notation 〈r, r′, r′′〉αγ labels bonds rr′, r′r′′ by types
α, γ , respectively, and β �= α, γ . r, r′, r′′ are counterclock-
wise ordered adjacent sites [see Fig. 1(a)]. The leading-order
term in this Hamiltonian, i.e., the pure Kitaev model, has
a symmetry described by the D3d group [47]. The κ term
lowers the symmetry to the S6 group by breaking the two-fold
rotation, but we still consider D3d symmetry, which gives the
strongest constraint on the theory.

Hs is exactly solvable by the four Majorana fermion rep-
resentations of spin σα

r = ibα
r cr [29]. In this representation,

Hs = 1
4

∑
〈rr′〉 hrr′crcr′ , where hrr′ = 2J iηrr′ + 2κ iηrr′ηr′r′′

is the Hamiltonian matrix and ηrr′ = ibα
r bα

r′ = ±1 is the static
Z2 gauge field on the α-bond, which generates conserved Z2

fluxes. Within each flux sector, Hs can be further diagonalized
to be Hs = ∑

i εi(β
†
i βi − 1/2), where εi are the fermionic

energy levels and β
†
i , βi correspond to the fermionic eigen-

modes. Hereafter, the energy and temperature unit will be
J unless otherwise specified, which is estimated to be J ≈
2 meV = 23 K [23,48].

The second term in Eq. (1) is the bare phonon
Hamiltonian Hph = Hph(pi(r), qi(r)), where qi(r) =
(x1, y1, z1, . . . , x8, y8, z8)r denotes the displacement field
in a unit cell at r, which contains two Ru3+ and six Cl− ions,
shown in Fig. 1(a) and S1 in the Supplementary Material
(SM) [49]; pi(r) is the corresponding momentum. Hereafter,
we will drop the r dependence in the phonon fields since
the long wavelength of incident light leads to uniform
lattice vibrations. By using the D3d of symmetry α-RuCl3,
i.e. [D3d , Hph] = 0, the eigenmodes of Hph aresolved to
be the irreducible representations (irreps) of thegroup,
written as linear superpositions of the displacement field
(Here, it would be confusing to skip the statement that “the
eigenmodes are solved to be the irreducible representation of
the groups”): u	m = ∑24

i=1 u	m,iqi. Here, 	 labels the irrep,
i.e., 	 = 2A1g + 2A2g + 4Eg + A1u + 3A2u + 4Eu, among

which the Raman active modes are 	R = 2A1g + 4Eg [24,50]
and m is the dimension of the irrep. (See Sec. A in the SM for
a detailed analysis [49]).

In this work, we focus on the two low-energy phonon
modes in the Raman spectroscopy [23,24,27]: E1

g and E2
g ,

whose energies (around 14 meV and 20 meV, respectively) are
comparable to the magnetic continuum. They are visualized in
Fig. 1(b). The corresponding free phonon Matsubara propaga-
tors are written as D(0)

	m,	′m′ (iωn) = −〈Tτ u	m(τ )u	′m′ (0)〉ωn =
2ω	

(iωn )2−ω2
	

δ		′δmm′ , where ω	 is the frequency of the optical
phonon and Tτ is the imaginary time ordering operator.

The third term in Eq. (1) is the spin-phonon coupling
Hamiltonian. It originates from the change of the Kitaev
interaction in response to the lattice vibration J (qi ) = J +∑

	,m
dJ (qi )
du	m

u	m + · · · , where dJ (qi )
du	m

is the gradient along the
u	m direction in the manifold of the displacement field. The
D3d invariant spin-phonon Hamiltonian is built as

Hs-ph =
∑
	,m

λ	�	mu	m, (2)

where �Eg,1 = ∑
r(σ x

r σ x
r+Mx

+ σ
y
r σ

y
r+My

− 2σ z
r σ z

r+Mz
) and

�Eg,2 = ∑
r(−√

3σ x
r σ x

r+Mx
+ √

3σ
y
r σ

y
r+My

) are irreducible
representations (irreps) of D3d , and λ	 are the coupling
constants.

As shown by the perturbative calculation in the SM [49],
the phonon propagator is renormalized by the spin-phonon
coupling. According to Dyson’s equation D̂ = [(D̂(0) )−1 −
�̂]−1, where �̂ is the polarization bubble defined as

�	m,	′m′ = −λ	λ	′ 〈Tτ�	m(τ )�	′m′ (0)〉, (3)

D	m,	′m′ and �	m,	′m′ are 4 × 4 matrices, in which the
2 × 2 off-diagonal blocks correspond to the mixing be-
tween E1

g and E2
g phonon modes. The components of the

off-diagonal blocks are negligible since the correspond-
ing phonon peaks in the Raman spectroscopy are well
separated [24].

As will be seen later, the phonon Raman peak parameters,
such as the width, center position, and asymmetry factor,
are directly related to the real and imaginary parts of the
fermionic loop diagrams contained in �̂ whose temperature
dependence at various values of κ is shown in Fig. S4 of the
SM [49]. When temperature increases, both Re �̂ and Im �̂,
evaluated at the bare phonon energies, generically display a
two-stage decrease, which is characterized by two crossover
temperatures. We can thus expect that this stage-wise temper-
ature dependence in �̂ should be reflected in the temperature
dependence of the phonon peak parameters, as will be shown
next.

Raman response. The Raman scattering of the spin-phonon
coupled Kitaev system (1) is described by the Raman op-
erator R=∑

μμ′ (Rμμ′
em-ph + Rμμ′

em-s)Eμ

inEμ′
out, where Eμ

in , Eμ′
out are

the electromagnetic fields of the incoming and outgoing light.
The second-rank symmetric tensors Rμμ′

em-ph and Rμμ′
em-s micro-

scopically describe the polarizability change of the electronic
medium in response to the excitations of phonons and spins
[51]. Under the D3d symmetry constraint on the Raman oper-
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ator, Rμμ′
em-ph is given by

Rμμ′
em-ph =

∑
	,m

μ	Rμμ′
	m u	m, (4)

where R	m are the Raman tensors taken from the irreps of D3d ,
which are specified as

REg,1 =
⎡
⎣

c 0 d
0 −c 0
d 0 0

⎤
⎦, REg,2 =

⎡
⎣

0 −c 0
−c 0 d
0 d 0

⎤
⎦. (5)

We take c = 1, d = 0 in the following computation. μ	 are
the photon-phonon coupling constants. The coupling of light
to spins microscopically originates from its coupling to elec-
tric dipoles, which appears as a Wilson line operator that
mediates the electronic hopping between the neighboring ions
[7,8]. Applying the Loudon-Fleury (LF) approximation [2,3],
the magnetic part of the Raman operator can be written as [52]

Rμμ′
em-s = ν

∑
α,r∈A

Mμ
α Mμ′

α σ α
r σα

r+Mα
, (6)

where ν is the photon-spin coupling constant. Rμμ′
em-s also

satisfies the symmetry constraint, which can be seen by de-
composing it into the irreps of D3d as Rμμ′

em-s=ν
∑

m Rμμ′
Eg,m

�Eg,m

(details in Sec. B of the SM [49]).
In the spin-phonon-coupled system, the Raman

intensity is expressed in the interaction picture as
I (�)=∫

dt ei�t 〈TtR(t )R(0)e−i
∫

dt ′Hs-ph(t ′ )〉, where 〈· · · 〉=
Tr[e−βH0 · · · ]/Tr[e−βH0 ] denotes the statistical average
over the Hilbert space of the spin-phonon Hamiltonian
H0 = Hs + Hph, β =1/T is the inverse temperature, and �

refers to the inelastic energy transfer by the photon. Treating
Hs-ph as a perturbation, we perform systematic evaluation
of the S-matrix expansion (see Sec. C of the SM [49] for
an explicit derivation) and obtain the Matsubara Raman
correlated function

I (τ ) = Iem-s(τ ) + R′
L(τ ) · D̂(τ ) · R′

R(τ ). (7)

Here, the dot product is on the contraction of (	, m)
indices, R′μμ′

	m,L(R)(τ )=μ	Rμμ′
	m + Pμμ′

	m,L(R)(τ ) are the renor-
malized left and right phonon Raman vertices, which consist
of the bare phonon Raman vertex μ	Rμμ′

	m and the spin-

dependent phonon Raman vertex Pμμ′
	m,L(R)(τ ) [42,43]. The

bare phonon Raman vertex generates the phonon peak
and constitutes the dominant contribution, while the spin-
dependent phonon Raman vertex generates the salient Fano
lineshape. Iμμ′

em-s(τ )=−〈TτRμμ′
em-s(τ )Rμμ′

em-s(0)〉 contributes to
the magnetic continuum in the Raman spectrum. The physical
Raman intensity is then obtained by the analytic continuation
in the frequency domain i�n → � + iδph followed by the
application of the fluctuation-dissipation theorem.

Numerical results. With the developed formalism at hand,
we now study the temperature evolution of the Raman spec-
trum and its κ dependence with the focus on the Fano
lineshape. The thermodynamic average of the Raman corre-
lation function over different flux configurations is computed
numerically by using the stratified Monte Carlo (strMC)
method [37] on a lattice size of N1 = N2 = 25. We will focus
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FIG. 2. (a) Ixx and Ixx
exp are, respectively, the strMC-simulated

Raman intensity and the experimental intensity from Ref. [23]
at T = 0.22 and κ = 0. By fitting Ixx to the experimental in-
tensity Ixx

exp, the best-fit model parameters are obtained as fol-
lows: ω	 = [7.31, 10.10], λ	 = [0.25, 0.52], μ	 = [0.38, 1.00], ν =
−0.63. (b)–(d) The temperature dependence of the E 2

g peak curve
parameters obtained from the asymmetric Lorentzian fitting: 1/|q|,
γ and ωren. Tl and Th are two crossover temperatures. In panel (b),
the computed γ was offset by a background line width obtained at
T = 101.5. This background line width mainly originates from the
artificial broadening δph as shown in Sec. D of SM [49]. The red dots
are experimental line width γexp, obtained from Ref. [23]. The two
green vertical dashed lines in panel (e) indicate T = 5 K and 150 K.
The unit conversion we use here is J ≈ 23 K.

on the xx-scattering geometry to compare with the experi-
ment, and assume δph = 0.15.

To begin with, as shown in Fig. 2(a), we first fit the
computed Raman intensity Ixx(�) to the experimental Ra-
man intensity Ixx

exp(�) obtained from Ref. [23], by tuning the
adjustable model parameters {ω	, λ	, μ	, ν} whose best-fit
values are written in the caption of Fig. 2. Ixx(�) is obtained
by using Eq. (7) and evaluated at T = 0.22 and κ = 0. The de-
tails of the fitting procedure and justification of the uniqueness
of the fitting parameters, after eliminating the overall scaling
degree of freedom by setting μE2

g
= 1, are described in Sec. E

of the SM [49]. Remarkably, the best-fit parameter λE2
g

=
0.52 yields an estimation of the spin-phonon coupling to be
0.52 ×√

6=1.3J , [with
√

6 being the norm of the bilinear
�	m in Eq. (2)], comparable to the first-principle’s calculation
of magnetoelastic coupling ≈4J given in Ref. [54].

Next, with the fixed model parameters obtained above,
we compute the evolution of the phonon Raman response
by changing the temperature and the strength of κ . To
quantitatively characterize the phonon peaks, we fit them
to the asymmetric Lorentzian curve I (�) = I0[qγ + (� −
ωren)]2/[γ 2 + (� − ωren)2], where 1/q is the asymmetry fac-
tor, γ is the half width at half maxima (which is referred to
as the line width hereafter), ωren is the renormalized peak
position, and I0 is the peak intensity.

The temperature evolution of the curve parameters
{1/|q|, γ , ωren} of the E2

g peak for various κ is shown in
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FIG. 3. The magnetic-field dependence of curve parameters
1/|q| and γ of two phonon peaks E 1

g and E 2
g in the computed

Raman spectrum are shown in [(a),(b)] and [(c),(d)], respectively.
The purple dots denote experimental data from Ref. [25] measured at
T = 2 K, i.e., logT = −1.1. The corresponding theoretical curve is
also colored purple. The line width γ was offset by the background
contribution (see caption of Fig. 2 for the reasoning). The inset of
panel (b) shows the density of state of Majorana fermions at various
κ [53]. The conversion from κ in the unit of J to magnetic field B in
the unit of Tesla follows from [29] κ = (μBB)3

�2
flux

, where μB is the Bohr

magneton and �flux = 0.27J is the flux energy, and J ≈ 23 K.

Figs. 2(b) to 2(d). As mentioned above, all curve parameters
display a two-stage change with temperature. Two crossover
temperatures, namely, Tl (in the blue shaded area) and Th (in
the orange shaded area), correspond, respectively, to the flux
proliferation temperature and the major fermionic excitation
temperature [37,53,55]. In the Tl region, the curve parameters
{1/q, γ , ωren} decrease significantly, which shows that they
are sensitive to the emergent disorder from proliferated Z2

fluxes. Also, the crossover temperature Tl shows an apparent
κ dependence, which reflects the increase of the flux gap
energy with κ [53,56]. In the Th region, the further decrease
of the curve parameters is due to the Pauli exclusion principle
of fermionic statistics. In Fig. 2(b), we also compare the
experimental peak width γexp obtained in Ref. [23] with the
computed γ . Remarkably, in the temperature region between
5 K and 150 K we find a good agreement between them.
This result indicates that the source of the anomalous peak
width observed in Ref. [23] can indeed be explained by spin-
phonon coupling within our theoretical framework. Another
noticeable result in Figs. 2(b) to 2(d) is that, at the lowest
temperature, the curve parameters become larger with increas-
ing κ . This is because, as the magnetic field increases, more
Majorana fermions become energetically comparable with the

phonon modes [see the inset of Fig. 3(d)], and participate in
the spin-phonon scattering. So the curve parameters become
bigger.

The magnetic-field dependence of {1/|q|, γ } of E1
g and E2

g
peak for various temperatures in the Tl region is shown in
Fig. 3. The conversion from κ to external field B is presented
in the caption, where the field direction is assumed to be [111]
for simplicity. We can see a clear trend in both peaks that, for a
larger temperature in the Tl region, the curve parameters start
to increase at a larger magnetic field. This is because the Z2

flux gap energy is proportional to κ; thus as the temperature
becomes larger, the Z2 fluxes require a higher magnetic field
to be gapped out, after which the disorder introduced by Z2

fluxes becomes weaker and the Fano effects becomes stronger.
As a result, the curve parameters start to increase at a larger
field.

The computed curve parameters can be compared with the
low-temperature experimental from Refs. [25,26]. The data
from Ref. [25] is shown in Fig. 3 in the magnetic field region
B = 3 ∼ 9T containing the putative QSL phase. Remarkably,
in Figs. 3(a) and 3(b) there is a discernible increase in the
parameters {1/|q|, γ } in the E1

g peak whose magnitude is
comparable with the theoretical increase. Our results also
suggest that if the increase of the curve parameters at higher
temperatures starts at higher fields, then this observation is
consistent with the behavior of the Z2 fluxes. In Figs. 3(c) and
3(d), the experimental field dependence of the E2

g peak curve
parameters remains featureless. This could be attributed to the
fact that the E2

g phonon has a higher energy than E1
g , thus it is

less sensitive to the increased population of fermionic modes
from the increased field.

Conclusion. We construct a theory to describe the Raman
scattering of the spin-phonon-coupled Kitaev system. Based
on this theory, we systematically compute the Raman spec-
trum and explore the temperature evolution and the magnetic
field dependence of the phonon peaks in the Raman spectrum,
which are consistent with the Raman scattering experiment
in α-RuCl3. Our theory clarifies the mechanism of how spin-
phonon coupling generates Fano lineshapes and also offers an
estimate of the spin-phonon coupling by model fitting. These
results open the possibility of experimentally identifying the
effects of fractionalized excitations of QSL hidden in the Fano
lineshape of phonon Raman peaks.
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