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Kramers’ degeneracy for open systems in thermal equilibrium
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Kramers’ degeneracy theorem underpins many interesting effects in quantum systems with time-reversal
symmetry. We show that the generator of dynamics for Markovian open fermionic systems can exhibit an
analogous degeneracy, protected by a combination of time-reversal symmetry and the microreversibility (detailed
balance) property of systems at thermal equilibrium—the degeneracy is lifted if either condition is not met. We
provide simple examples of this phenomenon and show that the degeneracy is reflected in the single-particle
Green’s functions. Furthermore, we show that certain experimental signatures of topological edge modes in open
many-body systems can be protected by microreversibility in the same way. Our results highlight the importance
of detailed balance in characterizing open topological matter.
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Kramers’ theorem is one of the oldest and most celebrated
theorems in quantum mechanics. It states that the Hamiltonian
of a system with half-integer total spin will have a pairwise
degenerate spectrum if time-reversal symmetry (TRS) is pre-
served [1,2]. This simple claim carries deep implications,
ranging from the quantum spin Hall effect [3,4] to the robust-
ness of superconductivity in disordered materials [5].

In this paper we present an analogous degeneracy theo-
rem that pertains to dissipative many-body fermionic systems.
Dissipative systems propagate irreversibly in time, i.e., ar-
bitrary initial states flow toward a (typically unique) steady
state. Therefore it is not a priori obvious that TRS should
have any bearing on dynamics in this context. However, if
the open system is at thermal equilibrium, then TRS man-
ifests itself in terms of microreversibility (also known as
quantum detailed balance) [6–14], which has experimental
consequences in the solid state [15–18]. Here we show that in
Markovian open systems—which are governed by a Lindblad
master equation with generator L—the combination of TRS
and microreversibility protect degeneracies in the spectrum
of L. An analogous nonequilibrium open system (e.g., one
coupled to two reservoirs held at different temperatures) will
not exhibit this degeneracy; see Fig. 1.

This degeneracy can be inferred in experiments that op-
erate in a regime where coupling to an external environment
cannot be ignored, such as noisy quantum simulators. Rather
than being manifest in static properties of the steady state, the
degeneracy of L can instead be inferred from time-dependent
quantities describing the dynamical response about and/or
approach to thermal equilibrium. As an example, we show that
fermionic Green’s functions and other related correlators [19]
show signatures of the degeneracy, making our results directly
observable in the solid state [20] and atomic systems [21].

Our theorem helps us identify an important connection
between microreversibility and TRS-protected topological
phases of matter. For closed systems, certain kinds of gap-
less edge modes can be attributed to Kramers’ degeneracy
[3,4,22]. Although the irreversible effects of coupling such
systems to an environment can spoil some of their TRS-
protected properties [23], here we demonstrate that other
properties of the edge modes can persist in the open regime.

These results complement recent work regarding symme-
tries and topological phenomena in open systems [24–38].
Many of those studies are based on non-Hermitian Hamil-
tonians [39–46], for which degeneracy theorems akin to
Kramers’ are known [47–49], and have been central to explain
symmetry-protected topological behavior. Our findings are
distinct from such “non-Hermitian topological phenomena,”
which are primarily of relevance to photonic and classical
mechanical systems [50]. Indeed, the Lindblad master equa-
tion formalism used here is much more widely applicable to
interacting, dissipative quantum matter.

Kramers’ theorem for Hamiltonians—We review Kramers’
theorem in closed fermionic systems. Since fermions have
half-integer spin, time reversal is implemented by an antiu-
nitary operator T satisfying

T 2 = P, P = (−1)N , [H, T ] = 0, (1)

where N is the total fermion number, and P is henceforth
referred to as “parity.” Note that [P, T ] = 0. Physical Hamil-
tonians must conserve parity, [H, P] = 0, and so Fock space
can be decomposed into even and odd parity sectors H =
H+ ⊕ H−, wherein H and T are block diagonal

H =
(

H+ 0
0 H−

)
, T =

(
U+ 0
0 U−

)
K. (2)
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FIG. 1. (a) A fermionic system (three small circles) coupled to
an environment (big circle) in thermal equilibrium at temperature
β−1 has a Kramers’ degeneracy. (b) The same system (three small
circles) coupled to two baths (two big circles) at different tempera-
tures β−1

1 , β−1
2 will not be Kramers’ degenerate. This leads to a spin

splitting of the Green’s function (13), which can be experimentally
detected using, e.g., spin-resolved tunneling spectroscopy (bottom
panels). For both (a) and (b), the system-bath Hamiltonian obeys
TRS: [HSB, T ] = 0.

Here, K takes the complex conjugate of any scalar to its right,
and U±U ∗

± = ±I.
Kramers’ theorem states that for a TRS-invariant Hamil-

tonian (i.e., when T HT −1 = H), the eigenvalues of H− must
be twofold degenerate. Specifically, any eigenstate |ψ−〉 with
odd parity has a time-reversed partner T |ψ−〉 which is also
an eigenstate of the same energy and is orthogonal to |ψ−〉. In
contrast, H+ is generically nondegenerate.

Symmetries of open quantum systems—For the purposes
of this Letter, we will focus on Markovian open systems
described by a density matrix ρ, whose dynamics is governed
by a Lindblad master equation [51,52]

dρ

dt
= L(ρ) = −i[H, ρ] +

∑
i

(2LiρL†
i − {L†

i Li, ρ}). (3)

Here the Hamiltonian part H describes the coherent evolution
of the system, and the dissipators Li arise from coupling to an
environment. The generating superoperator L is often referred
to as the “Lindbladian.”

We define time-reversal and parity superoperators (T and
P , respectively) which specify how these symmetries trans-
form the state ρ(t ). These act as T [ρ] = T ρT −1 and P[ρ] =
PρP−1. The space of operators can be split into even and odd
superparity sectors B(H) = B(H)+ ⊕ B(H)−, where B(H)±
contains operators satisfying P (A) = ±A (where A is an ar-
bitrary operator). Specifically, B(H)+ contains operators of
the form |even〉〈even| or |odd〉〈odd|, and operators in B(H)−
are |even〉〈odd| or |odd〉〈even|, which are traceless. (We use
the convention P|even〉 = +|even〉, P|odd〉 = −|odd〉.) Since
coherent superpositions of states with opposite fermion parity
are not physical, the system density matrix must belong to
B(H)+ (note that this does not prohibit classical mixtures of
wave functions with opposite parity). Accordingly, physical
generators must satisfy [L,P] = 0. By analogy to Eq. (2),
the matrix representations of L and T then become block

diagonal:

L =
(
L+ 0
0 L−

)
, T =

(
U+ 0
0 U−

)
K. (4)

From Eq. (1) we have T 2 = P , and hence U±U∗
± = ±I.

Evidently the superoperator T 2 leaves operators in B(H)−
invariant only up to a (−1) phase. This contrasts with sys-
tems made up of bosonic or spin degrees of freedom, where
T 2 = ±1, and hence T 2 = I, even for half-integer spins.

Since ρ(t ) belongs to B(H)+, it is often stated that the
odd-superparity part of the Lindbladian L− is unphysical.
However, this is not true if we ask about the joint state of
two fermionic systems. If system S and some probe R evolve
independently under Lindbladians LS,R, then their joint state
ρSR(t ) evolves as ∂tρSR = (LS ⊗ idR + idS ⊗ LR)[ρSR]. When
the two are coupled, the overall superparity Ptot = PSPR must
still be even (PS and PR are superparities for S and R, re-
spectively), however the state ρSR(t ) may contain components
which are odd under PS and PR separately, e.g., if a fermion
is in a superposition between S and R. These components will
evolve under LS,− and LR,−. We will later identify specific
physical observables that can be used to infer properties of
L−. We now establish a degeneracy theorem analogous to
Kramers’ which applies to the spectrum of L−.

Kramers’ degeneracy for Lindbladians—Because open
quantum systems evolve irreversibly in time, TRS cannot be
expected to play the same role as in closed systems. Indeed, if
the Hamiltonian H is TRS invariant in the sense of Eq. (1),
then we have T −1LT = −L. This relation is incompatible
with a nontrivial dissipative part of Eq. (3), which is neg-
ative semi-definite [53]. One way in which an antiunitary
symmetry can be imposed on open systems without such an
inconsistency is to demand that the Hamiltonian be odd under
TRS, i.e., T HT −1 = −H , in which case T −1LT = L can be
satisfied [54]. Although such a symmetry is mathematically
well defined, it does not physically correspond to time reversal
in the closed system limit.

Instead, for systems in thermal equilibrium, time-reversal
symmetry of the system and environment degrees of freedom
naturally gives rise to a “microreversibility” property, other-
wise known as detailed balance. This condition relates the
rate of each possible physical process to the rate of its time-
reversed process. Mathematically, a Lindbladian that respects
detailed balance satisfies a superoperator equation [6,7,9]

L† = Q−1T −1LT Q, (5)

where Q acts as Q[A] = qA, and q = exp [−βH]/Z is the
density matrix in the Gibbs ensemble at inverse temperature
β with respect to the system Hamiltonian H (Z is the partition
function). We have defined

L†[ρ] = +i[H, ρ] +
∑

i

(2L†
i ρLi − {L†

i Li, ρ}), (6)

which is the usual adjoint of L with respect to the Hilbert-
Schmidt inner product 〈A, B〉 := Tr[A†B]/TrI.

A simple example of dissipators satisfying (5) is a pair
L1 = √

γ1V , L2 = √
γ2V †, where V is TRS invariant up to

a phase, T [V ] = eiθV [55], and acts as a lowering operator
[H,V ] = −ωV . The temperature is implicitly determined by
γ1/γ2 = eβω. In words, L1 lowers the system energy by ω at
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a given rate, and L2 does the opposite at a rate that differs
by a Boltzmann factor. This is the essence of the detailed
balance condition. More generally, Eq. (5) is naturally sat-
isfied when a time-reversal symmetric system is coupled to
a TRS-respecting environment at thermal equilibrium with
temperature β−1 [56].

We now state the main claim of this work: Suppose a
fermionic Lindbladian satisfies microreversibility via Eq. (5);
then the odd-superparity superoperator L− [see Eq. (4)] is
guaranteed to have a twofold degenerate spectrum. Our proof
proceeds as follows. The odd parity part of the Lindbladian
satisfies

L†
− = Q−1

− T −1
− L−T−Q−, (7)

where T 2
− = −I, T− = U−K . We drop the “−” index. Define

right and left eigenoperators

L(ri ) = 	iri, L†(li ) = 	∗
i li, (8)

with Tr[l†
i r j] = δi j . Substituting the expression for microre-

versibility into the left eigenoperator equation leads to

Q−1T −1LT Q(li ) = 	∗
i li ⇒ LT Q(li ) = 	iT Q(li). (9)

We find that ri and T Q(li ) are both right eigenoperators
of L with eigenvalue 	i. However, one can show that
Tr[l†

i T Q(li )] = 0 (see the Supplemental Material (SM) [56]).
Since Tr[l†

i ri] = 1, we find that ri and T Q(li ) are linearly
independent eigenoperators, and hence the complex Lindblad
spectrum in the odd superparity sector must be twofold degen-
erate.

In contrast to the Kramers’ theorem for closed systems, our
result explicitly relies on the presence of thermal equilibrium.
Intuition can be gained from microscopic considerations: Lin-
ear response about a thermal state can be formulated in terms
of the (Kramers’ degenerate) eigenstates of the system-bath
Hamiltonian. A system’s response in thermal equilibrium
should thus be sensitive to the TRS of the microscopic Hamil-
tonian. Our work captures this behavior from the perspective
of the system’s master equation.

Our analysis also suggests that a similar Kramers’ degen-
eracy is present in the spectrum of a thermal quantum channel
superoperator, which can describe the evolution of a system
coupled to a non-Markovian bath [56].

Example: random quadratic Hamiltonian—We confirm
the generalized Kramers’ theorem via an example. Consider
a system of spin-1/2 fermions with N twofold degenerate
single-particle orbitals. The most general particle-conserving
quadratic Hamiltonian is

H =
∑

i j;σ,σ ′
Hi j,σσ ′ f †

i,σ f j,σ ′ =
N∑

k=1

∑
τ=±

εkc†
k,τ

ck,τ , (10)

with i, j ∈ [1, . . . , N] and σ, σ ′ ∈ ±. We impose a TRS on
the Hamiltonian: [H, T ] = 0, such that the single-particle
spectrum is twofold degenerate, with T fi,σ T −1 = σ fi,−σ ,
T ck,τ T −1 = τck,−τ . Let us define the following dissipators:

L1,pq = √
γ1,pq

∑
τ=±

(c†
q,τ cp,τ + τc†

q,τ cp,−τ ), (11)

L2,pq = √
γ2,pq

∑
τ=±

(c†
p,τ cq,τ + τc†

p,−τ cq,τ ), (12)

FIG. 2. (a) Three doubly degenerate energy levels (N = 3) la-
beled by εi,±. TRS-respecting dissipators cause jumps between
energy levels at a rate consistent with detailed balance in thermal
equilibrium at temperature β−1. (b) Lindblad spectrum for the model
described in the main text (for states with 0, 1, or 2 occupied
fermions) at a temperature β� = 1, with N = 3, �d/� = 0.1, and
g/� = 1. The odd-superparity sector (blue and red dots) is twofold
degenerate, while the even sector (black dots) is not. (c) Real part
of the retarded Green’s function for same parameters as in (b). The
Kramers’ degeneracy ensures that Gi,σ = Gi,−σ in the expectation
value of the thermal steady state with one occupied fermionic mode:
black line and red dashed line correspond to Re[G1,+] and Re[G1,−],
respectively. In general, Green’s function pairs other than Gi,± are
nondegenerate: blue line corresponds to Re[G2,+]. (d) A system that
is coupled to two thermal baths g1/� = 1, g2/� = 0.4 at different
temperatures: β1� = 1, β2� = 10 [otherwise same parameters as in
(b)]. Microreversibility is broken, hence the Green’s functions for
i, + and i,− split.

for γ1,pq = g[nβ (εp − εq) + 1], γ2,pq = gnβ (εp − εq),
nβ (ω) = (eβω − 1)−1 (the Bose function), and εp > εq.
Physically, such terms can appear due to coupling to a
bosonic bath (since the dissipators are quadratic in fermions).
L1 represents a process that lowers the energy of the
system; L2 raises the energy. The Ls satisfy: [H, L1,pq] =
(εq − εp)L1,pq, L2,pq ∼ L†

1,pq, γ1,pq/γ2,pq = eβ(εp−εq ), and
[L1/2,pq, T ] = 0, thus respecting microreversibility [see
Fig. 2(a)]. We include these dissipators between each
pair of energy levels in the system, and also consider
uniform dephasing in the energy basis: Ld,i,± = √

�d c†
i,±ci,±

(preserves microreversibility). For a fixed number of fermions
in the system, the thermal state is the unique steady state.

Figure 2(b) plots the Lindblad spectrum associated with a
random TRS-respecting Hamiltonian (|Hi j | ∈ [0,�]; � sets
the energy scale) coupled to a thermal bath for states with up
to two occupied fermionic modes. The spectrum of the odd
superparity sector (blue and red dots) is indeed twofold de-
generate, while the spectrum of the even sector (black dots) is
not. Note that Kramers’ theorem does not imply a degeneracy
of the steady state.

How can an open system violate microreversibility (and
hence break its degeneracy)? One obvious way involves
a system-environment coupling that directly violates TRS.
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However, a more subtle way to break degeneracy involves
coupling the system to a nonequilibrium environment. Con-
sider a system that is connected to two thermal baths, each
at a different temperature. Even if all system-environment
couplings respect TRS, the system will host a nonequilibrium
(nonthermal) steady state, and hence microreversibility will be
violated. We have numerically verified that the degeneracy of
L− for the spin-1/2 system is broken when coupled to baths
at different temperatures. (We note that such nonequilibrium
splitting requires quartic terms (quadratic dissipators) in the
master equation, see the SM [56].)

Physical observables—As argued above, L− only governs
dynamics in scenarios where fermions can move between the
system (S) and some external “probe” (R). Therefore, rather
than looking at expectation values of the system density ma-
trix Tr[OSρS (t )] (which are determined by L+), we suggest
that the Kramers’-like degeneracy of L− can be detected in
the retarded Green’s function of the steady state ρSS:

GR
i,σ (t ) = −i�(t )Tr[{ fi,σ (t ), f †

i,σ }ρSS]. (13)

Here �(t ) is the Heaviside step function, and we work in the
Heisenberg picture where operators evolve as A(t ) = eL

†t [A]
(although this expression should be slightly modified for open
systems coupled to fermionic baths; see the Supplemental
Material [56]).

The Green’s function (13) can be measured in solid state
systems using, e.g., photoemission or tunneling spectroscopy,
which indeed involve fermions moving in/out of the system
[20]. Probing single-particle Green’s functions in ultracold
atoms is more challenging, but protocols involving stimulated
Raman spectroscopy have been developed [21]. More con-
cretely, GR

i,σ (t ) is sensitive to the Kramers’ degeneracy of L−
because fi,σ ∈ B(H)− is superparity odd, and so the time evo-
lution of (13) is governed by L−. The generalized Kramers’
theorem ensures the relation GR

i,σ (t ) = GR
i,−σ (t ) [56], which

we confirm numerically in Fig. 2(c). However, when the
system is coupled to two baths at different temperatures, mi-
croreversibility is broken and the Green’s functions differ for
opposite spins [Fig. 2(d)]. We note that the Fourier transform
of the temporal Green’s function is directly probed in solid-
state electron-tunneling experiments (see below, and the SM
[56]).

It is rather natural that microreversibility has implications
for response functions such as (13); indeed, the very def-
inition of microreversibility is sometimes framed in terms
of fluctuation-dissipation relations for steady-state correlators
[6,18]. The above demonstrates that the correlation functions
of superparity-odd operators have a particular structure asso-
ciated with the Kramers’ degeneracy of L−.

Degenerate zero-bias peak from microreversibility—
Kramers’ degeneracy plays an important role in determining
the stability of symmetry-protected topological edge modes
of Hamiltonians [3,57], e.g., the presence of spinful TRS
ensures that a pair of Majorana zero modes in 1D cannot
gap. For closed systems, degenerate Majorana modes are de-
tectable via degenerate spin-resolved tunneling spectroscopy
at the edge of the superconductor [19]. Here we show that the
spin-resolved tunneling spectra remain unspilt if the super-
conductor is coupled to a thermal bath with TRS-respecting

FIG. 3. Steady-state, spin-resolved spectral function at the
boundary of the Majorana chain (14) coupled to two baths found
via exact diagonalization. (a) Zero-bias peak due to the Majo-
rana modes. The width of the peaks is set by the temperature.
(b) Splitting between spin-up and spin-down spectral functions
due to breaking of microreversibility via a nonequilibrium envi-
ronment. Parameters: N = 3, u1/v1 = 0.25, u2/v1 = 0.25, v2/v1 =
0.5, βv1 = 3.3, g/v1 = 0.05, gneq/v1 = 2.

terms, while a splitting can arise if microreversibility is vio-
lated.

Consider the following spin-1/2 Kitaev chain:

H = −i
j=N∑

j=1,σ=±
[u1a j,σ b j,σ + u2a j,σ b j,−σ ]

− i
j=N−1∑

j=1,σ=±
[v1b j,σ a j+1,σ + v2b j,σ a j+1,−σ ], (14)

where a j,σ , b j,σ are Majoranas corresponding to site j
with spin σ . This model can be diagonalized as H =∑N

j=1

∑
τ=± ε jd

†
j,τ d j,τ , where T dj,τ T −1 = τd j,−τ . We in-

clude the same thermal dissipators as before [see Eq. (11)]
between each pair of energy levels p, q in the system at inverse
temperature β. While such dissipators are manifestly nonlo-
cal, they can arise from local system-bath coupling [53]. The
weak-coupling Markovian approximation is commonly used
in studying topological matter connected to a thermal bath
[58,59]. To break microreversibility, we consider a nonequi-
librium bath that removes pairs of fermions on each site:
Lj = √

gneqψ j,+ψ j,−, where we define the complex fermion
ψ j,σ = a j,σ + ib j,σ . These dissipators obey [Lj, T ] = 0 but do
not evolve the system toward a thermal state.

The spectral degeneracy (or its splitting) can be experimen-
tally detected using spin-resolved tunneling spectroscopy [20]
(see Fig. 1). For a zero-temperature probe, the current-voltage
characteristic of the tunnel junction is ∂Iσ /∂μ ∝ A1,σ (−μ),
where Ai,σ (ω) = −Im[GR

i,σ (ω)] is the spectral function, Iσ is
spin-σ current, and μ is the chemical potential (see the SM
[56]). Figure 3 plots the spin-up spectral function for the probe
attached to the boundary, and the relative difference between
the spin-up and spin-down spectral functions for the chain
coupled to two baths. The zero-bias peak in the topological
phase corresponds to the boundary-localized Majoranas. The
splitting that emerges between the spin-up and spin-down
spectral functions is due to the nonequilibrium setup. This
splitting vanishes if the nonequilibrium bath is turned off and
micoreversibility is restored (not shown). While isolating a
Majorana chain from its larger environment is a difficult task,
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our result suggests that signatures of the TRS-protected Majo-
rana modes should still be observable in experiment provided
that the environment is thermal.

Conclusions and outlook—We have proved a generaliza-
tion of Kramers’ theorem for open quantum systems, and
shown that it has implications for symmetry-protected topo-
logical phases.

Future work should further investigate the role that de-
tailed balance plays in protecting topological signatures and
phases of open quantum systems. For example, it is known
that non-Hermitian generalizations of time-reversal symmetry
can prevent the non-Hermitian skin effect [39], i.e., extreme
spectral sensitivity to boundary conditions [43,60]. Can mi-
croreversibility guarantee the absence of the skin effect in
Lindbladians?

Imposing TRS on a Hamiltonian allows us to identify
topologically distinct ground states which cannot smoothly
evolve into one another without closing the energy gap [22].
It is currently unclear whether microreversibility has similar

implications for the topological properties of the steady-state
density matrix [37].

Finally, we note that microreversibility may also have in-
teresting implications for the random-matrix theory of open
systems [61–64], e.g., the non-Hermitian random matrix gen-
eralization of class AII might constrain the spectral statistics
of the odd-superparity sector of microreversible Lindbladians
[65].
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