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The Su-Schrieffer-Heeger . (SSH) chain is a one-dimensional lattice that comprises two dimerized sublattices.
Recently, Zhu, Prodan, and Ahn (ZPA) [Phys. Rev. B 99, 041117(R) (2019)] proposed that one-dimensional flat
bands can occur at the topological domain walls of a two-dimensional array of SSH chains. Here, we suggest
a two-dimensional topological insulator that is protected by inversion and time-reversal symmetries without
spin-orbit coupling. It is shown that two-dimensional SSH chains realize the proposed topological insulator.
Utilizing the first Stiefel-Whitney numbers, a weak type of Z2 topological indices are developed, which identify
the proposed topological insulator, dubbed a two-dimensional Stiefel-Whitney insulator (2DSWI). The ZPA
model is employed to study the topological phase diagrams and topological phase transitions. It is found that
the phase transition occurs via the formation of massless Dirac points that wind the entire Brillouin zone. We
argue that this unconventional topological phase transition is a characteristic feature of a 2DSWI, manifesting
as one-dimensional domain wall states. Using first-principles calculations, we find the suggested 2DSWI should
be realized in 11 known materials, such as Zn2(PS3)3. This insight from our work could help efforts to realize
topological flat bands in solid-state systems.
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Introduction. Recently, there has been a surge of interest
in the correlated electrons in flat bands [1–4]. In particu-
lar, twisted bilayer graphene [5–10], in which an interlayer
twist angle tunes the bandwidth to zero, has spurred a great
deal of community interest, exhibiting strong correlations
of electrons and nontrivial band topology [11–14]. The ad-
vent of magic angle twisted bilayer graphene has renewed
interest in the realization of flat bands in diverse systems
[15–17]. Notable examples include the recent study by Zhu,
Prodan, and Ahn (ZPA) [18]. Utilizing a two-dimensional
(2D) array of Su-Schrieffer-Heeger (SSH) chains [19–21],
ZPA have shown that one-dimensional (1D) flat bands can
arise, being stabilized via the formation of topological domain
walls (DWs). Encouragingly, the proposed 1D flat bands have
been experimentally confirmed in a mechanical metamaterial
[22], whereas their condensed-matter realization is yet to be
discovered.

Regarding efforts to search for topological materials, re-
cently, remarkable developments have been made, based
on topological quantum chemistry and symmetry indicators
[23–32]. Due to these high-throughput approaches, mass
topological materials have been catalogued [33–36], starting
with the seminal work by Fu and Kane [37]. The Fu-
Kane formula expresses Z2 topological indices using parity
eigenvalues, enabling the discovery of archetypal topological
materials, such as Bi1−xSbx [38,39] and Bi2Se3 [40,41]. Later
on, the strong Z2 index has been extended to the Z4 index
ν0, including a wider class of topological phases with and
without spin-orbit coupling (SOC) [28,42–46]. For example,
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without SOC, ν0 = 2 characterizes a Z2 monopole nodal-line
semimetal in three dimensions [47,48], whereas it charac-
terizes higher-order topological insulators in two dimensions
[49,50]. Interestingly, an insulator with ν0 = 0 can con-
tain nontrivial band topology, similar to inversion-symmetric
topological insulators [51,52]. However, this opportunity to
encounter a different topological phase has remained widely
unaddressed to date.

In this Letter we propose and characterize another topo-
logical class of insulators with ν0 = 0 under inversion P
and time-reversal T symmetries without SOC, dubbed a 2D
Stiefel-Whitney insulator (2DSWI). Utilizing the first Stiefel-
Whitney (SW) numbers, we develop two weak Z2 indices
(ν1ν2), which complement the strong Z2 index ν0 = 0 and
identify the 2DSWIs. Employing the ZPA model, we show
that the 2DSWI is realized in 2D coupled SSH chains un-
der various centrosymmetric deformations. The topological
phase diagrams are found to facilitate four distinct 2DSWI
phases, indexed by (ν0; ν1ν2) = (0; 00), (0; 01), (0; 10), and
(0; 11), respectively. In between distinct 2DSWIs, a topo-
logical semimetal with ν0 = 1 appears, featuring a pair of
gapless Dirac points (DPs). We show that the DPs mediate
a topological phase transition by winding the Brillouin zone
(BZ), and their trajectories manifest as 1D DW states between
distinct 2DSWIs.

Z2 topological indices. We consider a 2D Bloch Hamil-
tonian H(k) that is invariant under PT and T 2 = 1. Since
[PT ,H(k)] = 0, 1D families of real Hamiltonians on a
closed loop C in the BZ, H(k)|k∈C , can be characterized
by the Z2-quantized first SW number νC = 1

π
P

∮
C A(k) ·

dk [53], where P is the path-ordering operator, A(k) =
i〈u(k)|∇k|u(k)〉 is the Berry connection, and u(k) is the cell-

2469-9950/2022/105(12)/L121101(6) L121101-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1680-7007
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L121101&domain=pdf&date_stamp=2022-03-04
https://doi.org/10.1103/PhysRevB.99.041117
https://doi.org/10.1103/PhysRevB.105.L121101


SUNAM JEON AND YOUNGKUK KIM PHYSICAL REVIEW B 105, L121101 (2022)

(a)

(10) (11) (11)(10)

(b)

(01) (01)(00) (00)

FIG. 1. Diagrams depicting possible 2DSWIs indexed by (ν1ν2)
(a) 2D bulk BZ and 1D edge BZ. �i are TRIM. (b) TRIM with ξi =
+1 (−1) are denoted by open (solid) circles at �i. The thick (red)
line indicates possible edge states on the (ν1ν2) edge.

periodic part of the occupied Bloch function at k ∈ BZ. The
number refers to a topological invariant that characterizes the
twist of real Bloch states in momentum space [53]. The Zak
phase [54] that is Z2 quantized by the reality condition corre-
sponds to the first SW number. The SW number is defined for
any given k1 and k2 lines as ν1(k1) = 1

π
P

∫ π

−π
A1(k1, k2)dk2

and ν2(k2) = 1
π

P
∫ π

−π
A2(k1, k2)dk1, where Ai (i = 1, 2) is the

ki component of A(k). In the presence of a direct band gap,
one-parameter families of real Hamiltonians on a ki line (i =
1, 2) are adiabatically connected to those on a k′

i line for
any k′

i �= k′
i , resulting in the equivalent SW numbers νi(ki ) ≡

νi(k′
i ). Therefore, the Z2 indices ν1 and ν2 can unambiguously

characterize a PT -symmetric insulating phase.
Inversion-symmetry indicators. The parity eigenvalues

ξn(�i ) = ±1 of the occupied Bloch states at the four time-
reversal invariant momenta (TRIM) �i=(n1,n2 ) = 1

2 (n1b1 +
n2b2), where ni = 0, 1 and bi are primitive lattice vectors [see
Fig. 1(a)]. They provide a symmetry indicator that diagnoses
the 2DSWIs. The SW numbers ν1 and ν2 on the k1 = 0 (π )
and k2 = 0 (π ) loops satisfy

(−1)ν1 = ξaξd (ξbξc), (−1)ν2 = ξaξb(ξdξc), (1)

where

ξa =
∏

n

ξn(�a). (2)

(ν1ν2) are well defined if ξaξd = ξbξc and ξaξb = ξdξc, guar-
anteed by the strong Z2 index ν0 = 0 because

(−1)ν0 = ξaξbξcξd = 1. (3)

Note that the strong index ν0 = 0 is also a necessary con-
dition for an insulating phase since the strong index ν0 = 1
dictates the presence of massless DPs in momentum space
[55]. Figure 1(b) shows possible configurations of parity
eigenvalues compatible with ν0 = 0. We identify the 2DSWI
as a PT -symmetric topological insulator in vanishing SOC,
characterized by ν0 = 0 and (ν1ν2) �= (00).

2DSWI as a stack of SSH chains. Similar to the weak
topological insulators in three dimensions [37,56], which can
be viewed as a stack of 2D quantum spin Hall insulators, the
2DSWI with (ν1ν2) �= (00) can be viewed as a stack of 1D
SSH chains along Gν = ν1b1 + ν2b2. In stark contrast to the
3D weak topological insulators, however, by stacking the SSH
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FIG. 2. Zhu-Prodan-Ahn model of the 2D coupled SSH chains.
(a) A primitive unit cell of the 2D coupled SSH chains, indicated
by a gray parallelogram. The staggered distortion, parametrized by
d = (dx, dy ), is applied to the A and B sublattices. (b) Unit cell under
a strain e �= 0. Examples of the 2D coupled SSH chains: (c) Square
lattice with e = 0 and d = 0. (d) Honeycomb lattice with e = 1/3
and d = (1/3, 0). The interchain and intrachain dimerizations are
delineated by red and blue colored lines, respectively. A gray par-
allelogram indicates a primitive unit cell.

chains in two dimensions, every 1D line in the BZ has the first
SW number. This results in a boundary mode, for example, at
any edge momentum k̄i when projected along the k j direction
with νi = 1, where i, j = 1, 2 and i �= j. In general, the band
topology of a 2DSWI manifests as 1D topological states at the
(ν1ν2) edge, as illustrated in Fig. 1(b).

Zhu-Prodan-Ahn model. Using the ZPA model, we suggest
a material realization of a 2DSWI in 2D coupled SSH chains.
As shown in Fig. 2, a family of 2D coupled SSH chains are
constructed by an alternating array of two SSH chains. The
ZPA model considers inter- and intrachain dimerizations,
parametrized by d and e. Here, d = (dx, dy) and e describe
an in-plane staggered distortion and a strain of the unit cell,
respectively [see Figs. 2(a) and 2(b)]. This family of 2D cou-
pled SSH chains includes various 2D lattices, such as a square
lattice with d = 0 and e = 0 [Fig. 2(c)] and a graphenelike
honeycomb lattice with e = 1/3, d = (1/3, 0) [Fig. 2(d)].

A Hamiltonian, describing the hopping of electrons in the
2D coupled SSH chains, is given by

H(k) = h∗(k)σ+ + h(k)σ−, (4)

where σ± = σx ± iσy are the Pauli matrices associated with
the sublattices and h(k) = −t1 − t2eik2 − t3e−ik1 − t4e−i(k1+k2 ).
The hopping parameters t j ( j = 1, 2, 3, 4) are given by t1 =
1 − e + 2dx, t2 = 1 + e + 2dy, t3 = 1 − e − 2dx, and t4 =
1 + e − 2dy, so that they describe the deformations. Diago-
nalizing Eq. (4), one finds the following band dispersion:

E (k)2 = 4
(
1 + e2 + 2d2

x + 2d2
y

) + 2
[
(1 − e)2 − 4d2

x

]
cos k1

+ 4[(1 − e2) + 4dxdy] cos k2

+ 4[(1 − e2) − 4dxdy] cos(k1 + k2)

+ 2
[
(1 + e)2 − 4d2

y

]
cos(k1 + 2k2), (5)

where k1 = k · a1 and k2 = k · a2 are dimensionless lattice
momenta. In good agreement with the ZPA results [18], the
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FIG. 3. Topological phase diagrams with Z2 indices (ν0; ν1ν2) in
d space. (a) e = 0.25. (b) e = −0.25. The colored (white) regions
have a strong index ν0 = 0 (ν0 = 1). (c) Trajectories of the two DPs
(D1 and D2) in momentum space along the path 1©, 2©, and 3© in (a).
(d) Trajectories along the path 4©, 5©, and 6© in (b).

energy bands are calculated as fully gapped at (e, dx, dy) =
(1/3, 0, 1/3) and (e, dx, dy) = (−1/3, 1/3, 0).

Topological phase diagrams. Topological phase diagrams
in d space are calculated using the inversion-symmetry in-
dicators (ν0; ν1ν2). The inversion operator, given by P = σx,
readily evaluates the strong index ν0 as

(−1)ν0 = sgn
[
e sin

(
θd − π

4

)
sin

(
θd + π

4

)]
. (6)

where θd = tan−1(dx/dy). An insulating phase, facilitating the
2DSWIs, is allowed when ν0 = 0 or, equivalently, e sin(θd −
π
4 ) sin(θd + π

4 ) > 0. A close inspection reveals that the bands
are fully gapped when ν0 = 0. Using the symmetry indicators,
we obtain the weak indices (ν1ν2) as

(−1)ν1 = −sgn[e] (7)

and

(−1)ν2 = sgn
[
sin

(
θd + π

4

)]
. (8)

Figure 3 depicts the resultant phase diagrams. The phase
boundaries always occur at |dy| = |dx|, irrespective of |d|
and e. The sign of e determines the metallic and insulating
regions, depending on which there exist two kinds of topolog-
ical phase diagrams. For e > 0, a metallic (insulating) phase
occurs in |θd | < π/4 and |θd − π | < π/4 (|θd − π/2| < π/4
and |θd + π/2| < π/4) [Fig. 3(a)]. For e < 0, the metallic and
insulating phases switch regions [Fig. 3(b)]. The four insu-
lating regions host distinct 2DSWIs with (ν0; ν1ν2) = (0; 10),
(0; 11) [(0; 01), and (0; 00)] for e > 0 (e < 0), respectively.

Topological phase transitions. The DPs that occur when
ν0 = 1 are stable, existing in the finite regions of d space,
e sin(θd − π

4 ) sin(θd + π
4 ) < 0. The trajectories of the DPs as

a function of the staggered dimerization angle θd capture the
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FIG. 4. Atomic structure and electronic energy spectrum of the
topological DW in 2D coupled SSH chains. (a) The atomic configu-
ration of the DW geometry that maps θd ∈ [0, 2π ] to y under the cell
periodicity along x with d = e = 1/3. The intensity represents the
amplitude of the energy eigenstates with E = 0. θd is the staggered
dimerization angle. (b) Energy spectrum of the DW geometry. The
intensity represents the localization strength at the DW.

topological phase transition of the 2DSWIs, driven by the
dimerization. Figures 3(c) and 3(d) show the trajectories of the
DPs from θd = −π/4 to π/4 for e = 0.25 and from θd = π/4
to 3π/4 for e = −0.25, respectively. When e > 0, the DPs
traverse the BZ from �b to �c, winding the 2D BZ twice
(once) along the k1 (k2) direction [Fig. 3(c)]. On the other
hand, when e < 0, the DPs travel from �a to �d , winding the
BZ once only along the k2 direction [Fig. 3(d)]. The BZ wind-
ing by DPs characterizes the 2DSWIs. The one-parameter
families of real Hamiltonians on any ki line (i = 1, 2) de-
fine a 1D topological insulator indexed by νi. The weak Z2

indices (ν1ν2) can change by changing all the topological
insulators at any ki ∈ [−π, π ]. This necessitates the existence
of the Dirac nodal line that winds the BZ during the phase
transition.

1D flat-band DW states. We argue that the ZPA 1D bound-
ary modes are a physical manifestation of the DPs that wind
the BZ. ZPA have shown that the DWs of the 2D SSH chain
host one-dimensional flat bands [18], which we reproduce in
Fig. 4. In view of the topological phase transition, the DW
geometry [Fig. 4(a)], in which the dimerization parameter
d smoothly varies from 0 to 2π along y, seamlessly visits
the four electronic phases of the phase diagram [Fig. 3(a)].
Therefore, the topological phase transition should be captured
in between the insulating domains via the occurrence of two
DPs that wind the edge BZ k1 ∈ [−π, π ] twice. Figure 4(b)
shows the electronic energy spectrum calculated from the DW
structure. In good agreement with the previous results [18,22],
our calculations reproduce the flat bands at E = 0 in otherwise
all gapped bulk states. We find that there exist two midgap
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FIG. 5. 2DSWI phase in Zn2(PS3)3. (a) Atomic structure. A unit
cell is indicated by a solid box. (b) 2D bulk and 1D edge Brillouin
zones. Highly symmetric k points are indicated by solid circles. Par-
ity eigenvalues are presented at the corresponding TRIM, resulting in
a nontrivial 2DSWI with the topological indices (ν0; ν1ν2) = (0; 11).
(c) DFT energy bands without spin-orbit coupling. (d) Edge energy
spectrum calculated along the projected BZ in (b). The higher the
intensity, the stronger the concentration at the edges. Nearly flat edge
states occur as a consequence of the 2DSWI state in the bulk.

states per DW [see Fig. 4(b)], which cover the whole kx edge
BZ twice. Associated with the topological phase transition of
ν1, these DW states can be considered as the projection of DP
trajectories from θd = −π/4 to π/4 along k2. Since the DW
states wind the k1 twice, the resulting change of ν1 should
be zero, which is in line with the adjacent 2DSWI phases
(ν0; ν1ν2) = (0; 11) and (0; 10). This supports the idea that
the 1D DW states are a physical manifestation of the DPs that
wind the BZ. We note that the degeneracy of the zero modes
is stabilized by the crystalline symmetry of the DW geometry
as discussed by ZPA [18].

It is interesting to note that the trajectories of the DPs and
thus the 1D DW states can be viewed as a 1D projection of
a Dirac nodal line that lives in the higher three dimensions.
A 3D BZ can be constructed by adding an additional dimen-
sion from the polar coordinate θd ∈ [−π, π ) to the 2D BZ.
Viewed from the three dimensions (k1, k2, θd ), one can con-
sider one-parameter families of the Hamiltonian H(k1, k2, θd )
in class AI [57], since they satisfy [H(k1, k2, θd ),PT ] = 0
and (PT )−1θdPT = θd . Therefore, the strong index (ν0 =
1) is well defined, dictating the presence of a Dirac nodal
line that threads the 2D BZ at θd = 0 (θd = π/2) for e > 0
(e < 0). This idea may help access the higher-dimensional
band topology realized in a globally smooth spatially varying
geometry of lower-dimensional materials.

Material realizations. Finally, we use first-principles cal-
culations based on density functional theory (DFT) to predict
the materials that realize the first 2DSWI phase. Using the
suggested indices indicated by parity eigenvalues, 11 known
materials are identified as a 2DSWI [58]. As a representa-
tive example, here we demonstrate the 2DSWI in Zn2(PS3)3.
Figure 5(a) shows the monoclinic atomic structure of

Zn2(PS3)3 in space group C2/m (No. 12), which includes,
most importantly, inversion symmetry. Zn2(PS3)3 has a well-
defined band gap throughout the entire BZ as shown in
Fig. 5. Evaluating the parity eigenvalues, we find the weak
indices (ν1ν2) = (11) for the delineated atomic structure. The
nontrivial indices dictate the presence of edge states along
the k1 + k2 direction, confirmed by our DFT calculations in
Fig. 5(c). Our DFT 2DSWI belongs to an important class
of materials, realized in realistic materials with an intriguing
physical manifestation as nearly flat edge states. Further-
more, our first-principles calculations show that the parity
eigenvalues that we suggest in the present study serve as a
symmetry indicator to discern a 2DSWI, potentially leading to
further discoveries of material realizations and experimental
observations.

To explore the electronic properties of these materials, we
employed first-principles calculations based on density func-
tional theory as implemented in the QUANTUM ESPRESSO pack-
age [59,60]. We used optimized norm-conserving Vanderbilt
pseudopotentials [61] and the Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA) [62] to describe
the exchange correlation. The atomic structures were adapted
from 2DMETPEDIA [63]. The lattice constants of Zn2(PS3)3

are a1 = 10.7 Å, a2 = 10.6 Å, and a3 = 24.6 Å. In obtain-
ing the self-consistent charge density, we used a 6 × 6 × 1
Monkhorst-Pack k-point grid [64] and plane-wave basis with
an energy cutoff of 60 Ry. To obtain the parity eigenvalue,
QEIRREPS [65] is used to find the irreducible representations.
The projected surface states were obtained from the surface
Green’s function of a semi-infinite system by using WANNIER

TOOLS [66]. We constructed maximally localized Wannier
functions with the initial projection of the bands to the d, s
orbitals of Zn, s, p orbitals of Sb, and s, p orbitals of S using
WANNIER90 [67–70].

Conclusion. In summary, we have demonstrated that the
combination of inversion and time-reversal symmetries al-
lows for the Z2 classification of topological insulators under
vanishing spin-orbit interactions. The proposed topological
insulators are characterized by a strong Z2 index ν0 = 0 and
weak Z2 indices (ν1ν2) �= (00), indicated by parity eigenval-
ues at four TRIM. Diagnosing with the topological indices,
we have shed light on the centrosymmetric 2D coupled SSH
chains based on the ZPA model as a material realization of
the proposed topological insulators, dubbed two-dimensional
Stiefel-Whitney insulators (2DSWIs). The 2DSWI features
1D topological boundary modes as a physical manifesta-
tion of their characteristic topological phase transitions. The
proposed inversion-symmetry indicators can help identify
2DSWIs in solid-state materials. Hopefully, our results stim-
ulate further experimental and theoretical studies and lead to
the discovery of a solid-state platform that realizes topological
flat bands.
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