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A sufficiently large parallel magnetic field will generate staggered supercurrent loops and a superfluid density
wave in two weakly linked superconducting (SC) ultrathin films, resulting in an inhomogeneous Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state. The SC order parameter of such an FFLO state is characterized by Bloch
wave functions, called the “Bloch SC state.” The staggered supercurrent loops form an array of Josephson
vortex-antivortex pairs, instead of the usual Josephson vortex lattice. Enclosing a unit cell of the array, the
London’s fluxoid is quantized as �′ = �0 = hc/2e, while the net orbital magnetization caused by the staggered
supercurrent is zero. Meanwhile, a small parallel magnetic field gives rise to an Fulde-Ferrell (FF) state that
has uniform superfluid density. The phase transition between the Bloch SC state and the FF state belongs to
the universality class of two-dimensional commensurate-incommensurate transitions. An analytical solution in
terms of Jacobian elliptic functions is found to be an excellent approximation to the Bloch SC order parameter.
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Inhomogeneous superconductivity that breaks translational
symmetry spontaneously has been attracting growing atten-
tion from diverse fields in physics, ranging from condensed
matter to high-energy physics [1]. Quintessential examples for
such inhomogeneous superconductors include the well-known
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [2,3] and its
generalized version, the pair density wave (PDW) state [4].
The FFLO or PDW state is a superconducting state with a
nonuniform superconducting (SC) order parameter. Such an
inhomogeneous SC state was proposed as a mother state of
other ordering states. For instance, the partial melting of the
PDW can give rise to a charge density wave (CDW) order,
a uniform charge-4e SC order, and a loop current order.
Moreover, the PDW is expected to host fantastic quasiparti-
cle excitations as well as topological defects, such as in-gap
Bogoliubov quasiparticles in an s-wave superconductor and a
half-flux (hc/4e) vortex bound with a CDW dislocation [4].

Meanwhile, extensive research activities in condensed
matter physics and material sciences have been devoted to su-
perconducting thin films and layered superconductors over the
past several decades [5–7]. Indeed, layered superconductors
can be viewed as intrinsic superconductors with weak links,
namely, adjacent superconducting layers couple each other via
Josephson junctions [8–12]. Among these research objects,
two-dimensional (2D) SC systems in the presence of an in-
plane magnetic field [13–15] is of particular interest, on which
the emergence of unconventional superconductivity due to
the applied magnetic field and spin-orbit coupling effect was
proposed [14–16]. It has been suggested that an inhomoge-
neous FFLO state can be induced by an in-plane magnetic
field in bilayer transition metal dichalcogenides (TMDs) [17],
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such as MoS2 [18,19] and NbSe2 [20]. Very recently, with
the help of a quasiparticle interference (QPI) technique, the
experimental observation of a segmented Fermi surface inside
the superconducting energy gap was reported in Bi2Te3 thin
films proximitized by the superconductor NbSe2 and under
an in-plane magnetic field, which indicates the existence of a
PDW or FFLO state [21].

In this Letter, we study a model for two weakly coupled
SC ultrathin films in an applied parallel magnetic field, which
allows us to explore various PDW states. The model is gauge
invariant and essentially equivalent to the Lawrence-Doniach
model [22,23] in the double-layer limit.

Model. We consider two layers of superconducting ultra-
thin films in the presence of an applied parallel magnetic field.
These two layers are weakly linked to each other such that the
Josephson tunneling current can flow in the direction perpen-
dicular to them. The thickness of each layer d is considerably
small compared to the penetration depth λ and coherence
length ξ of the superconductor, so that a diamagnetic current
loop cannot be induced by the applied in-plane magnetic field
within each layer.

Assuming the separation between the two layers is a, we
set up the coordinate system as depicted in Fig. 1(a), on which
the external magnetic field is along the y direction, i.e., H =
H ŷ. The corresponding vector potential is given by A = Hzx̂
in the Landau gauge choice. Thus, the system is described by a
two-component gauge-invariant Ginzburg-Landau (GL) free-
energy functional [24] as follows,

f [ψ1(r), ψ2(r)] = fn +
∑
l=1,2

{
α|ψl (r)|2 + β

2
|ψl (r)|4

+ 1

2m∗

∣∣∣∣
(

h̄

i
∇ − e∗

c
Al (r)

)
ψl (r)

∣∣∣∣
2}

+ g
[
ψ1(r)∗ψ2(r)ei 2π

�0

∫ 1
2 A·ds + c.c.

]
. (1)
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FIG. 1. (a) A bilayer SC system in an applied parallel magnetic
field. The superfluid density wave can be probed by STM. Spatial
modulation of the superfluid density for states (b) A and (c) B in the
phase diagram (see Fig. 2).

Here, l = 1, 2 labels two layers, ψ1(r) and ψ2(r) are super-
conducting order parameters on them, and r = (x, y) is the
2D Cartesian coordinate. Since the thickness of each thin film
d � λ, ξ , it is reasonable to presume that the order parameters
are independent of z. Defining η1 = +1 and η2 = −1, the
vector potential on each layer reads Al (r) = ηl (Ha/2)x̂. The
last term in Eq. (1) describes the Josephson tunneling effect,
where g is the Josephson coupling energy. The orbital effect of
the external magnetic field is introduced by the Peierls phase

factor ei 2π
�0

∫ 1
2 A·ds, which ensures the gauge invariance of the

GL free energy. �0 = hc/e∗ = hc/2e is the flux quantum.
Note that our model is applicable to a superconductor-

insulator-superconductor (S-I-S) junction, as long as the
thickness of each superconducting layer d � λ, ξ . Such an
S-I-S junction can be realized by the growth of a supercon-
ducting layer on both surfaces of an insulating thin film to
form a sandwich structure. Other possible material realiza-
tions include but are not limited to superconducting TMDs.

The 2D model given in Eq. (1) can be further simplified.
First, we consider the local tunneling between the two layers
only, so that

∫ 1
2 A · ds = 0 in the Landau gauge. Second, the

Landau gauge choice gives rise to an explicitly y-independent
form of GL free energy. Moreover, possible minima of the

GL free-energy functional are always given by ∂yψl=1,2 = 0.
Thus, the original 2D model can be simplified by the substi-
tution ψl (r) → ψl (x), and the GL free-energy functional will
be reduced to the one-dimensional form as follows,

f [ψ1, ψ2] = fn +
∑
l=1,2

{
α|ψl |2 + β

2
|ψl |4

+ h̄2

2m∗

∣∣∣∣
(

∂

∂x
− iηl

k0

2

)
ψl

∣∣∣∣
2}

+ g(ψ∗
1 ψ2 + ψ∗

2 ψ1), (2)

where a magnetic field-dependent wave vector k0 =
2πHa/�0 is introduced, and the corresponding length scale
reads a0 = 2π/k0 = �0/Ha. The convenience of these nota-
tions will be seen later. Taking variations with respect to ψ∗

l
in Eq. (2), we obtain coupled GL equations,

αψl + β|ψl |2ψl − h̄2

2m∗

(
∂

∂x
− iηl

k0

2

)2

ψl + gψl̄ = 0, (3)

where l, l̄ = 1, 2, and l̄ represents the opposite layer to l .
Symmetry. First of all, let us discuss relevant symmetry

operations acting on coupled GL equations. The time reversal
T acts as H → − H, ψl (x) → ψl (x)∗, the spatial reflection
Pz acts as l → l̄ , so that the joint operation TPz acts as
ψl (x) → ψl̄ (x)∗. It is remarkable that Eqs. (3) keep invariant
under the operation TPz followed by the complex conjugate,
thereby allowing a TPz symmetric solution, ψl̄ (x)∗ = ψl (x).

We begin with some exact solutions to Eqs. (3). It is easy
to see that the coupled GL equations (3) have a trivial but
exact solution, which is a Fulde-Ferrell (FF) state [2] indeed.
Meanwhile, Eqs. (3) will become decoupled at g = 0, and give
rise to another exact solution, called the decoupled SC state.
Below we shall examine these two solutions:

(i) FF state. This state is given by a pair of constant order
parameters on two SC layers, which takes the form

ψl (x) =
√

ρFF
s eiϕl , (4)

where ρFF
s = −β−1(α + εH − |g|), and εH = h̄2k2

0/8m∗ is an
energy associated with the magnetic field H . Such a ground
state carries diamagnetic supercurrent flow, and by definition,
it is an FF state [25]. The phase difference �ϕ ≡ ϕ1 − ϕ2 is
determined as follows: (1) �ϕ = π for g > 0 and (2) �ϕ = 0
for g < 0. The free-energy density reads FFF = −β−1(α +
εH − |g|)2. The non-negative constraint to the superfluid den-
sity ρFF

s requires an upper bound for the external magnetic
field H ,

H∗
c = �0

πaξ

(
1 + 2m∗ξ

h̄2 |g|
)1/2

, (5)

where the superconductor coherence length ξ is determined
by the relation |α| = h̄2(2m∗ξ 2)−1. A nonzero FF state solu-
tion is not allowed when H exceeds H∗

c .
(ii) Decoupled SC state. When g = 0, Eqs. (3) have a

plane-wave solution as follows,

ψl (x) = √
ρs0 eiηl

k0
2 x, (6)
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where ρs0 = −α/β. The free-energy density for this decou-
pled SC state is FD = −α2/β. The inequality FD < FFF

always holds as long as g = 0 and H < H∗
c . Therefore, the

decoupled SC state is energetically favored over the FF state
in the absence of the Josephson tunneling.

In the presence of the Josephson tunneling, say, g �= 0,
the situation will be complicated and more interesting. In
this case, the nontrivial exact solution to the nonlinear GL
equations (3) is not available in general. However, we can
raise the following issue: Does a SC state exist that is more
energetically favored than the decoupled SC state and the FF
state? To address this issue, we shall examine the well-known
Bloch wave function that is a natural generalization of the
plane wave and has been exploited to solve the nonlinear
Schrödinger equation in the context of cold atoms [26].

Bloch SC state. In order to pursue a lower-energy SC state,
we consider a more generic solution which takes the Bloch
form as follows,

ψl (x) = eiηl
k0
2 xψ̃l (x), (7)

where ψ̃l (x + a0) = ψ̃l (x) is a periodic function and a0 =
2π/k0 as defined before. Following Ref. [26], we shall min-
imize the GL free-energy functional (2) by expanding ψ̃l in
terms of plane waves,

ψ̃l (x) = √
n

∞∑
ν=−∞

alνeiνk0x. (8)

where ν is an integer, and n = a−1
0

∫ a0

0 dx|ψ̃l (x)|2 is the aver-
age superfluid density on each layer. The coefficients alν are
subject to the normalization relation

∑∞
ν=−∞ |alν |2 = 1. Such

a Bloch SC state will become the decoupled SC state when
alν = δν0. Evaluating the GL free energy and minimizing it
with respect to alν and n result in self-consistent equations as
follows [27],

0 =
(

h̄2k2
0

2m∗ ν2 + α

)
alν + gal̄,ν+ηl

+ nβ
∑
ν1,ν2

a∗
lν1

alν2 al,ν+ν1−ν2 ,

(9a)

n = −
∑

l=1,2

[ ∑
ν

( h̄2k2
0

2m∗ ν2 + α
)|alν |2 + g

∑
ν a∗

lνal̄,ν+ηl

]
β

∑
l=1,2

∑
ν1,ν2,ν3

a∗
lν1

a∗
lν2

alν3 al,ν1+ν2−ν3

.

(9b)

Note that Eqs. (9) can be derived from Eqs. (3) as well.
Before proceeding, we would like to make general remarks

on the solutions to nonlinear equations (9): (1) It is more
convenient to solve {nβ, a1ν, a2ν} instead of {n, a1ν, a2ν}, such
that the parameter β will be irrelevant to the solutions. (2)
Without loss of generality, we can set |α| as the energy unit,
then the solution {nβ, a1ν, a2ν} will be determined by two
independent parameters g/|α| and H . (3) For any solution,
apart from an overall phase factor, the phase of alν = |alν |eiφlν

can be taken to be 0 or π [28]. (4) To solve Eqs. (9) numeri-
cally, the truncation of the series {a1ν} and {a2ν} has to been
introduced, namely, a1ν = a2ν = 0 for |ν| > νmax, where νmax

is a positive integer. (5) The aforementioned TPz symmetry,
ψl̄ (x)∗ = ψl (x), is respected by all the numerically found
solutions.

FIG. 2. Phase diagram. The Bloch SC state restores the decou-
pled SC state along the line of g = 0. The green dashed line in Fig. 2
indicates the upper bound H∗

c given in Eq. (5). The green dotted
zone allows an FF state solution to exist, while it has higher free
energy than the Bloch SC state. A commensurate-incommensurate
(CI) transition occurs at the phase boundary between the Bloch
SC state and the FF state. Two red stars mark Bloch SC states
(A) and (B) at |g|/|α| = 1.0 and A: (H/HML

c2⊥)(a/ξ ) = 1.8 and B:
(H/HML

c2⊥)(a/ξ ) = 4.0, respectively.

Phase diagram. As discussed above, for a given set of
independent parameters (g/|α|, H ), Eqs. (9) can be solved
numerically and the corresponding free-energy density FBloch

can be computed subsequently. By comparing FBloch with
the free-energy density of the decoupled SC state and the
FF state, say, FD and FFF, we are able to obtain a phase
diagram consisting of a decoupled SC state, FF state, and
Bloch SC state, as shown in Fig. 2. Notice that if {nβ, a1ν, a2ν}
is a solution to Eqs. (9) for a given pair of (g/|α|, H ),
then {nβ, eiπνa1ν, eiπνa2ν} will be a physically equivalent so-
lution for (−g/|α|, H ), so that the phase diagram can be
parametrized by (|g|/|α|, H ). Furthermore, H can be re-
placed by a dimensionless ratio (H/HML

c2⊥)(a/ξ ). Here, HML
c2⊥ =

�0(2πξ 2)−1 is the perpendicular upper critical field of a
monolayer SC thin film.

As seen in Fig. 2, a larger Josephson coupling energy |g|
and smaller applied parallel field H favor the FF state, while
Bloch SC states will gain more free energy at smaller |g| and
larger H . As |g| decreases and/or H increases, the energy cost
in the kinetic term in Eq. (2) will be canceled by the phase
factor eiηl k0x/2 in Eq. (7), resulting in (∂x|ψ̃l |)2 → 0 and a
more and more spatially uniform distribution of the superfluid
density |ψl (x)|2 [see Figs. 1(b) and 1(c)]. Along the line of
g = 0, the Bloch SC state restores to the decoupled SC state
given in Eq. (6) by taking a constant ψ̃l = √

ρs0 in Eq. (7). The
green dashed line in Fig. 2 indicates the H∗

c given by Eq. (5),
below which an FF state solution exists but has a higher free
energy than the Bloch SC state in the green dotted zone, until
H decreases further and enters the FF phase marked by the
green zone.
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It is noted that although the Bloch solution exists math-
ematically throughout the whole phase diagram, an actual
parallel critical field Hc‖ will be determined physically by
the parallel critical field for a monolayer thin film HML

c‖ =
2
√

3HML
c2⊥(ξ/d ) [29] and/or the Pauli paramagnetic limit

HP [30,31], where d is the thickness of the thin film. The
Bloch SC state will vanish when H > Hc‖.

Phase transition. The phase transition between the Bloch
SC phase and the FF phase, which can be viewed as the
melting of the superfluid density wave, turns out to be of
the universality class of the commensurate-incommensurate
(CI) transition, and is a second-order transition [32,33]. The
effective model for such a transition can be written in terms of
the relative phase φ(r) between the two layers [27],

Heff = ρs

∫
d2r

{
h̄2

2m∗ |∇φ(r)|2 + 2gcos [φ(r) − k0x]

}
.

(10)
This is exactly the Pokrovsky-Talapov (PT) model in the
context of incommensurate crystals [34], which was adopted
to study double-layer quantum Hall systems [35,36]. In our
case, the FF state corresponds to the commensurate state in
the PT model, while the Bloch SC state corresponds to the
incommensurate state that breaks the translational symmetry.

Spatial modulation of superfluid density. As mentioned, the
TPz symmetry, ψ1(x) = ψ2(x)∗, is respected by all the found
solutions. Consequently, the two layers have the same local
superfluid density |ψl (x)|2. For a Bloch SC state, as illustrated
in Figs. 1(b) and 1(c), the superfluid density is modulated
spatially by the applied magnetic field and manifests a PDW in
each layer. Since the local superfluid density is associated with
a local superconducting gap, this type of PDW can be probed
by a scanning tunneling microscope (STM) [see Fig. 1(a)]. It
is found that the spatial modulation will be enhanced when a
Bloch SC state approaches the phase boundary (see the two
states A and B in Fig. 2).

Supercurrent and Josephson tunneling effect. Now we
proceed to study the intralayer supercurrent and interlayer
Josephson tunneling current. The supercurrent density on each
layer reads Jsl = e∗ h̄

2m∗i (ψ
∗
l ∇ψl − ψl∇ψ∗

l ) − e∗2

m∗c ψ
∗
l ψlAl [29],

which is in the direction perpendicular to the applied magnetic
field H and can be written as Jsl = Jsl (x)x̂. On the other
hand, the Josephson tunneling effect is characterized by the

tunneling current density JT(x) = − e∗a
h̄ g Im(ψ1ψ

∗
2 ei 2π

�0

∫ 2
1 A·ds).

For the Bloch SC state given by Eqs. (7) and (8), straight-
forward algebra leads to

Jsl = n
e∗2Ha

2m∗c

∑
νν ′

2νalνalν ′ cos[(ν − ν ′)k0x], (11a)

and

JT = −n
e∗a

h̄
g
∑
νν ′

a1νa2ν ′ sin[(ν − ν ′ + 1)k0x]. (11b)

Here, the fact that alν are real numbers has been used. Note
that both Jsl and JT are periodic, namely, Jsl (x + a0) = Jsl (x)
and JT(x + a0) = JT(x). Moreover, owing to the TPz symme-
try, ψl̄ (x)∗ = ψl (x), we have Jsl̄ (x) = −Jsl (x), i.e., the local
supercurrent flows in opposite directions on the two layers.

(a)

(b)

FIG. 3. The pattern of supercurrent and tunneling current (blue
arrows), and the phase difference between the two layers. (a) Bloch
SC state A in Fig. 2. (b) Bloch SC state B in Fig. 2. Red and
yellow arrows indicate Josephson vortices and antivortices. Along
each green dashed loop, a London’s fluxoid can be defined, which is
quantized as �′ = �0.

As examples, two typical Bloch solutions have been
found numerically at |g|/|α| = 1.0 and (H/HML

c2⊥)(a/ξ ) =
1.8 and 4.0, respectively, which correspond to two points
marked by red stars (A and B) in the phase diagram in Fig. 2.
The supercurrent density and the tunneling current density are
plotted in Fig. 3. These staggered currents form Josephson
vortices and antivortices, as indicated by the red and yellow
arrows in Fig. 3. It is remarkable that this array of Josephson
vortex-antivortex pairs is different from the Josephson vortex
lattice in the literature [37–39], although both are induced by
a parallel magnetic field. The orbital magnetization generated
by these currents is staggered, and the net orbital magnetiza-
tion will vanish. This can be revealed by the London’s fluxoid.

Fluxoid quantization. Considering a loop enclosing a pe-
riod of a0 (see the green dashed loops in Fig. 3), the London’s
fluxoid is defined as �′ = � + m∗c

e∗2

∮ Js
ρs

· ds, where � = ∮
A ·

ds = Haa0 = �0 is the ordinary flux. For a Bloch SC state,
we have JT(x + a0) = JT(x), and the second part in the flux-
oid reads m∗c

e∗2

∮ Js
ρs

· ds = �0
2π

∮ ∇ϕ · ds − ∮
A · ds. Therefore,

�′ = �0 is exact the flux quantum, and the net orbital magne-
tization is counted by the flux m∗c

e∗2

∮ Js
ρs

· ds = 0 and vanishes.

In contrast, an FF state has uniform supercurrents JFF
sl =

−ηl (e∗2Ha/2m∗c)ρFF
s , which flow in opposite directions on

the two layers and are perpendicular to the applied magnetic
field. Meanwhile, the Josephson tunneling current vanishes,
i.e., JFF

T ∝ −g sin(�ϕ) = 0, because the phase difference be-
tween the two layers is �ϕ = 0 or π . Thus, for an FF state,
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m∗c
e∗2

∮ Js
ρs

· ds = −�0 and �′ = 0, suggesting perfect diamag-
netism.

Approximate analytical solutions. It is remarkable that the
Bloch SC state can be well approximated by the Jacobian
elliptic functions cn and sn. When g = 0, Eqs. (3) reduce to
two decoupled nonlinear Schrödinger equations, and each of
them possesses exact periodic instanton solutions in the form
of Jacobian elliptic functions [40,41]. While exact solutions
are not available at a finite Josephson coupling g, we would
like to propose approximate solutions as follows,

ψl (x) = [μ cn(ux; r) + iηlνsn(ux; r)]eiϕl , (12)

where ϕ1 = ϕ2 = 0 for g > 0 and ϕ1 = −ϕ2 = −π/2 for
g < 0. Here, r ∈ (0, 1) is the modulus of the elliptic integral
K (r) [42], u is determined by the period through 4K (r) =
2ua0, and μ and ν are two constants and can be treated as
variational parameters, which can be obtained by substituting
Eq. (12) into Eq. (2) and minimizing the free energy with
respect to μ, ν, and r. As examples, the optimization for the
two states A and B in Fig. 2 gives rise to r = 0.6023(90) and
r = 0.0559(55) for A and B, respectively.

By comparing the optimized solution given in Eq. (12)
with that solved from Eqs. (9), we found that these
two agree with each other with amazingly high precision.
In a wide range of parameters (g/|α|, H ), the differ-
ence between the corresponding free energies is less than
0.01% [27].

Summary and discussions. In summary, we have found that
two weakly linked SC ultrathin films in an applied parallel
magnetic field H‖ can harbor various FFLO or PDW states,
including the usual FF state and the proposed Bloch SC state.
The latter is indeed a superfluid density wave state, and the
spatial modulation of superfluid density can be verified by
future STM experiments. The Bloch SC state is also character-
ized by its supercurrent pattern, which forms staggered loops.
Thereby an array of Josephson vortex-antivortex pairs comes
into being, instead of the usual Josephson vortex array. The
phase transition between the FF state and the Bloch SC state
is of second order, and can be described by the PT model [34].

Finally, the Bloch SC state is robust against an extra per-
pendicular magnetic field H⊥. The problem of finding the
upper critical magnetic field HBL

c2⊥ in such a bilayer SC system
can be mapped to the Rabi model in quantum optics [43],
which can be solved numerically [44,45]. It turns out that
there exists a finite HBL

c2⊥, which is larger than the mono-
layer value HML

c2⊥ as long as the Josephson coupling g is
nonzero [27].
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