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Nonreciprocal Meissner response in parity-mixed superconductors
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Parity breaking gives rise to rich superconducting properties through the admixture of even- and odd-parity
Cooper pairs. New light has been shed on parity-breaking superconductors by recent observations of nonre-
ciprocal responses such as nonlinear optical responses and the superconducting diode effect. In this Letter,
we demonstrate that nonreciprocal responses are characterized by a unidirectional correction to the superfluid
density, which we call nonreciprocal superfluid density. This correction leads to the nonreciprocal Meissner
effect, namely, the asymmetric screening of magnetic fields due to the nonreciprocal magnetic penetration depth.
Performing a microscopic analysis of an exotic superconductor UTe2 and examining the temperature dependence
and renormalization effect, we show that the nonreciprocal Meissner effect is useful to probe parity-mixing
properties and gap structures in superconductors.
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Introduction. Nonlinear and nonreciprocal responses have
recently attracted interest in various fields of condensed mat-
ter physics. For instance, second harmonic generation and
photocurrent creation have been applied to a probe of the
symmetry breaking in matter and the topological nature of
electrons [1–3].

Recent studies explored the nonreciprocal responses in
superconductors. Nonreciprocal electric conductivity [4], a
rectified conductivity originating from the parity violation, is
strongly enhanced by the superconducting fluctuation [5,6]
and by the vortex dynamics [7,8]. Furthermore, recent efforts
have clarified the nonreciprocal superconducting phenom-
ena such as the nonreciprocal critical current [9–13] and
Josephson current [12,14,15]. The nonreciprocal critical cur-
rent realizes the superconducting diode effect, indicating that
the electrical resistivity is zero in a direction while finite in
the opposite direction. Nonreciprocal optical responses have
also been observed in superconducting systems whose par-
ity violation stems from the spontaneous order intertwined
with superconductivity [16–18] or an injected supercurrent
[19–21]. Building on the superconducting properties, nonre-
ciprocal phenomena imply richer functionalities.

There is a symmetry requirement of nonreciprocal re-
sponses which is unique to superconductors. In addition to
the space-inversion (P ) symmetry breaking, its combination
with the gauge symmetry has to be broken. In particu-
lar, odd-parity superconductivity is insufficient to cause a
nonreciprocal response because the above symmetry holds.
Superconductors must have no definite parity under the P
operation to host nonreciprocal responses, implying a parity-
mixed superconducting state. Conversely, the nonreciprocal
response may be an indicator of the parity mixing in super-
conductors as proposed in the prior study of nonreciprocal
conductivity in the fluctuation regime [5–7]. This potential
indicator of a parity-mixed superconducting state may al-

low us to identify the relation between the parity violation
and superconducting symmetries which has been inten-
sively investigated with noncentrosymmetric superconductors
such as CePt3Si [22].

Considering the high interest in the research community,
it is desirable to further explore the nonreciprocal properties
of superconductors. While previous theoretical studies have
focused on dc or low-frequency charge transport [5–7,10–12],
the nonreciprocal nature may appear in the other responses as
well. Recently, the authors have identified anomalous contri-
butions to nonlinear optical conductivity in superconductors,
which diverges in the low-frequency limit [23], as is the case
for linear optical conductivity [24]. This in turn implies an
inherent directionality in the Meissner response, i.e., the non-
reciprocal Meissner effect. Since the Meissner effect plays a
central role in superconductivity, clarifying the nonreciprocal
Meissner effect may contribute to a deeper understanding of
the parity-breaking superconducting states as well as nonre-
ciprocal responses.

This Letter consists of two parts. First, we show that the
anomalous nonlinear conductivity arising from parity mixing
leads to a unidirectional correction to the rigidity of the su-
perconducting state, which we call nonreciprocal superfluid
density. Various nonreciprocal responses of superconductors
are characterized by the nonreciprocal superfluid density.
Second, to demonstrate the exotic phenomena arising from
the nonreciprocal superfluid density, we elaborate the non-
reciprocal property of the Meissner effect (Fig. 1). With the
microscopic analysis implementing the model of a candidate
for the parity-mixed superconductor UTe2, we show that the
nonreciprocal Meissner effect is sensitive to the parity viola-
tion and hence applicable to the detection of the parity-mixed
superconducting state.

Nonreciprocal property of the superfluid density. The
nonreciprocal electric conductivity of superconductors has
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FIG. 1. Nonreciprocal Meissner effect. The nonreciprocal super-
fluid density f (green arrow) (a) strengthens or (b) diminishes the
supercurrent JSC (orange arrows) shielding the external magnetic
field (blue arrow).

recently been formulated [23]. The leading nonreciprocal cor-
rection to the electric current is given by the second-order
component

J (2)
α (ω) =

∫
d�

2π
σα;βγ (ω,�)Eβ (�)Eγ (ω − �). (1)

In the low-frequency limit, we obtain the nonlinear optical
conductivity

σα;βγ (ω,�) = fαβγ

2�(ω − �)

− i

4
lim
A→0

(
1

�
∂Aβ

σ (A)
αγ + 1

ω − �
∂Aγ

σ
(A)
αβ

)
.

(2)

The diverging terms proportional to �−2 or �−1 are unique
to the superconducting state while they are forbidden in the
normal state [25]. Thus, we call the terms anomalous contribu-
tions. We suppressed O(�0) terms comprising nondivergent
nonlinear optical conductivity since it is negligible in the
low-frequency regime.

The anomalous nonreciprocal conductivity in Eq. (2) is de-
termined by the nonreciprocal superfluid density fαβγ (NRSF)
and the conductivity derivative ∂Aγ

σ
(A)
αβ . The NRSF is given by

fαβγ = lim
A→0

∂Aα
∂Aβ

∂Aγ
FA, (3)

where FA is the free energy obtained from the Hamiltonian
containing the vector potential A. Since the superfluid density
is given by ρs

αβ = limA→0 ∂Aα
∂Aβ

FA, the NRSF is regarded as
a unidirectional correction to ρs. When the superfluid density
is isotropic ρs

αβ = ρsδαβ , the NRSF is recast as the vector f
which has the same symmetry as the electric current and the
toroidal moment [26–28]. Thus, the NRSF is allowed in the
absence of both P and time-reversal (T ) symmetries.

In the second term of Eq. (2), σ
(A)
αβ denotes the regu-

lar part of the linear static conductivity calculated with the
Bogoliubov–de Gennes Hamiltonian including A. Its deriva-
tive ∂Aγ

σ
(A)
αβ , which we call a conductivity derivative, is

decomposed into symmetric and antisymmetric parts in terms
of the permutation of indices (α, β ) for σ

(A)
αβ . The sym-

metric part of σ
(A)
αβ corresponds to the Drude contribution,

while the antisymmetric part is the Berry curvature term.
Thus, we call the corresponding components in ∂Aγ

σ
(A)
αβ the

Drude and Berry curvature derivatives, which vanish in T and
PT symmetric parity-mixed superconductors, respectively.
From Eq. (2), we see that the nonreciprocal optical responses
such as photocurrent creation (ω = 0, � �= 0) and second

TABLE I. Classification of the nonreciprocal Meissner kernel
K (2) based on T and PT symmetries. The O(�n) contributions
allowed by the symmetry are summarized.

O(�n) T PT

n = 0 N/A NRSF
n = 1 Berry curvature deriv. Drude deriv.
(n � 2) (regularized nonlinear conductivity)

harmonic generation (ω = 2�) show a prominent divergent
behavior in the low-frequency regime, which is unique to
superconductors [23].

Recalling the minimal coupling between the electrons and
electromagnetic field, the vector potential twists the phase
of the superfluid and plays the same role as the supercur-
rent. Thus, when the electromagnetic perturbation is weak,
the NRSF determines the nonreciprocal component of the
supercurrent induced by a given phase twist. This is con-
firmed by the argument of the adiabatic process [23]. In the
Josephson junction, the phase twist is similarly accumulated
through the junction bridging the superconducting leads, and
the NRSF also participates in the nonreciprocal Josephson
current [12,14].

According to the Ginzburg-Landau analysis, both the
NRSF and the nonreciprocal critical current are attributed to
the cubic gradient component of the quadratic term as well
as the linear gradient component of the quartic term [11,29].
Therefore, the NRSF provides a systematic understanding of
various nonreciprocal responses in superconductors, includ-
ing the optical response, Josephson effect, and critical current.
This is similar to the case of conventional superfluid density,
which determines the anomalous linear optical conductivity,
Meissner effect, and zero-resistance phenomenon [24,30].

Nonreciprocal Meissner effect. We now transform the con-
ductivity into the susceptibility

Jα (ω) = K (1)
αβ Aβ (ω) +

∫
d�

2π
K (2)

α;βγ (ω,�)Aβ (�)Aγ (ω − �).

(4)
The anomalous nonreciprocal conductivity contributes to the
response function K (2) as

2K (2)
α;βγ (ω,�) = −2�(ω − �)σα;βγ (ω,�), (5)

= − fαβγ + i

2
lim
A→0

[
(ω − �) ∂Aβ

σ (A)
αγ + �∂Aγ

σ
(A)
αβ

]
. (6)

The anomalous conductivity determines the low-frequency
behaviors of the nonlinear coupling between the vector poten-
tial and electric current. This indicates that the NRSF causes
the nonreciprocal property of the Meissner response, that is,
the nonreciprocal Meissner effect. Note that the nonreciprocal
Meissner effect is unique to the parity-breaking superconduc-
tors and distinguished from the nonlinear Meissner response
[31,32], which is reciprocal in terms of magnetic fields. Al-
though the conductivity derivative may participate in the ac
nonreciprocal Meissner response, we hereafter focus on the
static response determined by the NRSF. Classification of the
nonreciprocal Meissner kernel K (2) based on the T and PT
symmetries is summarized in Table I.
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We phenomenologically introduce a nonlinear correction
to the London theory by

Jα (r) = −ρs
αβAβ (r) − fαβγ Aβ (r)Aγ (r), (7)

where the first and second terms are normal and nonreciprocal
supercurrents, respectively. Here, we consider a supercon-
ductor occupying the spatial region z � 0 and the NRSF
vector f ‖ x̂ (Fig. 1). When the magnetic field is applied
to the y direction and the nonreciprocal effect is assumed
to be small, the field-dependent magnetic penetration depth
is estimated as λ(B) = λL(1 + λLB f /3ρs ) with the London
penetration depth λ−1

L = √
μ0ρs. Thus, it shows the unidi-

rectional magnetic-field dependence. Intuitively, the magnetic
flux is retracted from or drawn into the superconductor when
the supercurrent shielding the magnetic flux is parallel or
antiparallel to the NRSF vector f . Thus, a careful magnetic
penetration depth measurement can evaluate the NRSF [33].

The P and T symmetries have to be broken in supercon-
ductors that host the NRSF. To our best knowledge, three
setups are available: (i) systems in which P and T symmetries
are broken by other spontaneous orders or by the crystal
structure and external fields, (ii) superconductors under su-
percurrent flow, and (iii) exotic superconductors whose order
parameter spontaneously breaks the symmetries. Case (i) is
realized in various situations, such as noncentrosymmetric
superconductors under external magnetic fields [3] and the
superconductors undergoing magnetically parity-breaking or-
der [34,35]. Interestingly, case (ii) was recently supported
by an experiment where the superconducting NbN thin film
was probed under an electric current by second harmonic
generation [20]. Case (iii) is further classified into two classes.
First, the multiple transitions of even-parity and odd-parity
superconductivity make both P and T parities ill defined
[36]. Second, these symmetries are broken by chiral super-
conductivity and a noncentrosymmetric crystal structure [37].
Later we will investigate the former class in (iii) by referring
to the recent proposal for a heavy fermion superconductor
UTe2 [38].

We discuss the magnitude of the nonreciprocal Meissner
response by the ratio

ηNR = λLBc2 f

ρs
, (8)

where Bc2 is the upper critical magnetic field. First, our
analysis based on the Ginzburg-Landau theory shows ηNR ∝
|T − Tc|1/2 [29], and thus the nonreciprocal response may be
negligible in the vicinity of the transition temperature T � Tc.
Next, we estimate the renormalization effect on the ratio ηNR.
Interestingly, the correlation-induced renormalization effect
denoted by the inverse mass-renormalization factor z posi-
tively influences the nonreciprocal property of the Meissner
response. Since ρs, f ∝ z, λL ∝ z−1/2, and Bc2 ∝ z−2, the
ratio is strongly enhanced by the correlation effect as much as
ηNR ∝ z−5/2 [39]. Thus, strongly correlated electron systems
are potential candidates offering a pronounced nonreciprocal
property of the Meissner response. While we will work on a
heavy fermion system UTe2 in the following, another strongly
correlated electron systems such as cuprate superconductors
and twisted bilayer graphene are also of interest. The cuprates
are usually centrosymmetric in the bulk, whereas the parity

violation can be evoked by spontaneous ordering [case (i)] and
by a supercurrent injection [case (ii)]. As for the former case,
loop-current order has been proposed for the pseudogap phase
in cuprate superconductors [16,17,40–44]. The NRSF may be
a long-sought probe for examining such intertwining order in
cuprates.

Microscopic calculations of the UTe2 model. UTe2 has
recently attracted a lot of attention as a candidate material
for spin-triplet superconductivity [45,46]. It is argued that
the ferromagnetic fluctuation plays a key role in the spin-
triplet superconductivity as in ferromagnetic superconductors
[45–49], whereas antiferromagnetic fluctuation has also
been observed recently [50–54]. Since the antiferromagnetic
fluctuation usually stabilizes even-parity spin-singlet super-
conductivity, multiple magnetic fluctuations are expected to
lead to multiple pairing instabilities [38]. Interestingly, UTe2

shows multiple superconducting transitions [55]. Thus, a co-
existing even- and odd-parity pairing state has been proposed
for the low-temperature phase [38].

Based on a microscopic model, we investigate the NRSF
in the putative parity-mixed phase of UTe2. The model tight-
binding Hamiltonian for the normal state reads

HN
k = (ε0 − μ) + V ρx + V ′ρy + g · σρz, (9)

which is described by Pauli matrices representing spin (σμ)
and sublattice (ρμ) degrees of freedom. The details are given
in the Supplemental Material [29]. The model Hamiltonian
reproduces the heavy band mainly consisting of U 5 f or-
bitals near the Fermi level, which was obtained in the Density
functional theory with a Hubbard-U like correction (DFT+U )
calculations [56,57]. We introduce a pair potential for parity-
mixed superconductivity

�̂k = (ψk + dk · σ)iσyρ0, (10)

where we consider intrasublattice Cooper pairing. According
to theoretical calculations implementing the Eliashberg theory
and the DFT+U calculation, even-parity pairing is charac-
terized by the Ag irreducible representation (ψk = �e cos kx),
while the odd-parity pairing is either of the Au or B3u type
denoted by dk = �o sin kyŷ or �o sin kyẑ, respectively [38]. It
is energetically favorable for the relative phase between the
pair potentials to be ±π/2, when the spin-orbit coupling due
to noncentrosymmetric crystal structures is absent or weak.
This choice leads to s + ip-wave superconductivity preserving
the PT symmetry [28,36]. This case contrasts with the fact
that the spin-orbit coupling in a noncentrosymmetric super-
conductor leads to the zero phase difference indicating a T
symmetric state such as s + p-wave superconductivity [22].
Since UTe2 crystallizes in a centrosymmetric structure, we
take the PT symmetric mean field �(0)

e = r�(0)
e+o, �(0)

o =
i(1 − r)�(0)

e+o with the parity-mixing ratio r. Here, we denote
the pair potentials at zero temperature by those with the su-
perscript “(0).”

Following the symmetry analysis, we obtain the NRSF
fxyz for the Ag + iAu state and fxxx, fxyy, fxzz for the Ag + iB3u

state. Here, we investigate the temperature and parity-mixing
ratio dependence of the NRSF fxxx in the Ag + iB3u state in
detail, while we obtain a similar result for the Ag + iAu state
[29]. The temperature dependence of the pairing potential is
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FIG. 2. Temperature dependence of the NRSF fxxx for the Ag +
iB3u superconducting state. (a) Plot with several ratios of even- to
odd-parity pair potentials, r = 0.25, 0.5, and 0.75. (b) Decomposi-
tion of the total NRSF into the Fermi-sea and Fermi-surface terms in
the case of r = 0.5. The dashed line guides the transition temperature
T (e)

c = T (o)
c = 0.5�

(0)
e+o/1.76. The inset shows the low-temperature

regime with the horizontal axis T × 106.

assumed to follow the phenomenological formula

�e,o(T ) = �(0)
e,o tanh

⎛
⎝1.74

√ ∣∣�(0)
e,o

∣∣
1.76T

− 1

⎞
⎠. (11)

Figure 2 shows the NRSF calculated with several parity-
mixing ratios r = 0.25, 0.5, 0.75. We do not have any NRSF
in the pure spin-singlet or spin-triplet state (r = 1, 0) where
the P and U (1) × P symmetry respectively forbid the NRSF.
In Fig. 2, it is clearly shown that the NRSF arises in the parity-
mixed superconducting state. Each plot shows the maximum
value at an intermediate temperature. This is because the
NRSF is almost determined by the Fermi-surface contribution
[Fig. 2(b)] given by

−1

2

∑
a

(
Jx

aa

)3 ∂2 f (ε)

∂ε2

∣∣∣∣
ε=εa

, (12)

where Jaa is the paramagnetic current density of the Bogoli-
ubov quasiparticle labeled by the quantum number a. On the
other hand, the Fermi-surface term gets suppressed at low
temperature, and then the Fermi-sea term mainly contributes
to the NRSF [inset of Fig. 2(b)]. Decomposition of the NRSF
into the Fermi-surface and Fermi-sea terms is formulated
in the Supplemental Material [29]. Since the Fermi-surface
contribution is much larger than the Fermi-sea contribution,
the NRSF shows a nonmonotonic temperature dependence.
The sizable Fermi-surface contribution is attributed to the
almost nodal superconducting gap. To support this argument,
we show that the Fermi-surface term is negligible in a super-
conducting state with a nearly isotropic gap [29]. Therefore,
a significant NRSF and its nonmonotonic temperature depen-
dence are characteristic behaviors of nodal superconductors,
and they are useful in identifying the nodal texture in the
superconducting gap.

The present study clarified that the Fermi-surface effect is
much more significant than the Fermi-sea effect. The behav-
ior is in contrast to the normal superfluid density, which is
usually determined by the Fermi-sea effect and detrimentally
influenced by the Fermi-surface effect. Since the quasiparticle
excitations moderately occur in the intermediate temperature
regime, the NRSF fαβγ as well as the ratio ηNR in Eq. (8) are
enhanced there.

To estimate the ratio ηNR of our model, we first take
ρs

xx ∼ 1019 A V−1 m−1 s−1 [29], | fxxx| ∼ 1022 A2 V−2 s−2, and
Bc2 ∼ 1 T. The superfluid density leads to the penetration
depth λL ∼ 0.3 μm. Then, we obtain ηNR ∼ 3 × 10−4. The
ratio may increase due to the renormalization effect by elec-
tron correlations. The adopted model Hamiltonian is based
on the DFT+U calculation and does not sufficiently take
into account the electron correlation effect of UTe2. We con-
sider the renormalization factor z = 0.1, which enhances the
London penetration depth as much as the observed values
λL ∼ 1 μm [49,58,59]. The adopted renormalization factor is
moderate compared to those for prototypical heavy fermion
superconductors [60–62]. Then, the ratio ηNR increases by
∼300 times larger than the above estimation. The enhanced
ratio ηNR ∼ 10−1 may be within the experimental sensitivity.

Discussion and summary. This work reveals that the NRSF
plays an essential role in various nonreciprocal responses of
superconductors such as optical responses, supercurrent flow,
and Meissner effect. Thus, the NRSF is a potential indicator of
nonreciprocal responses and is helpful to probe the parity mix-
ing in a superconducting state, which causes parity breaking
required for the nonreciprocal superconducting phenomena. It
is noteworthy that the NRSF can be estimated through various
experimental techniques implemented in nonlinear optics and
magnetic penetration depth measurements. We also note that
the NRSF is well defined in the whole temperature region and
complementary to the fluctuation-assisted normal nonlinear
conductivity, which captures a nonreciprocal response in the
vicinity of the transition temperature [5–7]. Furthermore, we
clarified that the electron correlation and quasiparticle excita-
tions play essential roles on the NRSF, although these aspects
have not been noticed in prior studies of superconducting
nonreciprocal responses.

We have mainly discussed the NRSF and resulting nonre-
ciprocal Meissner response in an exotic superconductor UTe2,
where multiple spin fluctuations may lead to spontaneously
parity-mixed superconductivity. Although vast experimental
works have been devoted, the phase diagram and super-
conducting symmetry remain unidentified [55,63–67]. The
nonreciprocal Meissner response is sensitive to the parity vio-
lation and pronounced in the presence of a strong correlation,
and therefore it is useful to determine the superconducting
symmetry of UTe2. Notably, s + ip-wave superconductivity,
which breaks both P and T symmetries, can be detected by
the nonreciprocal Meissner response, while it is inaccessible
by magneto-optical probes such as the polar Kerr rotation
measurement [37,64,68,69] due to the PT symmetry.

Our formulation can apply to the NRSF in a broad
class of superconductors with broken P and T symmetries.
For instance, noncentrosymmetric superconductors under an
external magnetic field and some classes of magnetic su-
perconductors satisfy the symmetry condition. As artificially
engineered noncentrosymmetric superconductors have real-
ized sizable nonreciprocal transport phenomena in recent
experimental works [9,14], it is also expected that the non-
reciprocal properties of optical phenomena and the Meissner
response due to the NRSF will be observed.

The dynamical nonreciprocal response is also of interest,
while we mainly focused on the static nonreciprocal Meissner
response in this study. The low-frequency behavior of the

L100504-4



NONRECIPROCAL MEISSNER RESPONSE IN … PHYSICAL REVIEW B 105, L100504 (2022)

nonreciprocal Meissner kernel K (2) is closely related to the
space-time symmetry as shown in Table I; K (2) has a static
component in the PT symmetric parity-mixed superconduc-
tor, whereas it contains a � linear term as a leading order
term in the T symmetric superconductor. Thus, a careful ac
experiment on the magnetic penetration depth may distinguish
the symmetry of parity-mixed superconductors.

To summarize, we proposed that the NRSF provides
a systematic understanding of nonreciprocal responses in
superconductors. Accordingly, we clarified the nonrecipro-
cal magnetic penetration phenomenon, which we call the
nonreciprocal Meissner effect. According to the calcula-
tion for UTe2, the nonreciprocal Meissner effect mainly

arises from the Fermi-surface effect and is sensitive to the
superconducting gap structure and electron correlation ef-
fect. Therefore, the phenomenon is expected to be a key
to identify the symmetry of exotic superconductors such
as UTe2.
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