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We show that classical Heisenberg antiferromagnets on the breathing kagome lattice can be a platform to
realize a zero-field topological order of the scalar spin chirality which can be viewed as a miniature skyrmion
crystal (SkX) of discrete form with a small number of spins in its magnetic unit cell. In the model, a third nearest-
neighbor (NN) antiferromagnetic interaction along the bond direction J3 and the breathing bond alternation
characterized by the ratio of the NN interaction for large triangles to that for small ones, J ′

1/J1, are essential. It is
found by means of Monte Carlo simulations that a commensurate triple-Q state appearing for relatively strong
J3 at zero field is the noncoplanar state with the SkX structure in the breathing case of J ′

1/J1 �= 1, while in the
uniform case of J ′

1/J1 = 1, it is a collinear state favored by thermal fluctuations. The origin of this chiral order
and experimental implications of our result are also discussed.

DOI: 10.1103/PhysRevB.105.L100407

In magnetic materials, the scalar spin chirality S1 · (S2 ×
S3) defined by three localized spins Si often plays an impor-
tant role. In particular, when a total chirality summed over the
whole system is finite, the underlying noncoplanar spin state
can be topologically nontrivial in the sense that the spin struc-
ture itself and/or the band structure of coupled electrons are
characterized by nonzero integer topological numbers [1–4].
Such a chiral order is known to occur at zero field in two
dimensions with its origin being multispin interactions [5]
or a coupling to conduction electrons [2–4,6]. In this Letter,
we theoretically show that a breathing bond alternation of
the lattice serves as another mechanism leading to an exotic
zero-field chiral order which can be viewed as a miniature
version of a skyrmion-crystal (SkX) topological spin texture.

The SkX is a two-dimensional periodic array of
magnetic skyrmions, each of which is characterized
by an integer topological number corresponding to
the total solid angle subtended by all the spins,
nsk = 1

4π

∑
i, j,k �i jk [1]. Since the solid angle for three

spins �i jk is related with the chirality χi jk = Si · (S j × Sk )
via �i jk = 2 tan−1[ χi jk

|Si||S j ||Sk |+
∑

cyclic Si·S j |Sk | ] [7], the SkX can be

understood as a topological chiral order. The SkX is usually
realized in an applied magnetic field irrespective of whether
the Dzyaloshinskii-Moriya (DM) interaction is present [8–24]
or not [25–41]. Recently, it was pointed out that the SkX can
be stable even at zero field due to a coupling to conduction
electrons on the triangular lattice [30,31]. In view of such a
situation, we search for a two-dimensional zero-field chiral
order as a candidate for a zero-field SkX.

Since on the three-dimensional pyrochlore lattice having
kagome-lattice layers as a building block, a noncoplanar
topological spin texture called the hedgehog lattice [42–49]
is induced at zero field by the combined effect of a third

nearest-neighbor (NN) antiferromagnetic interaction along
the bond direction J3 and a breathing bond alternation of
the lattice [50], it is naively expected that in the associated
two-dimensional system, i.e., J3-rich antiferromagnets on the
breathing kagome lattice, a noncoplanar spin state may possi-
bly be realized at zero field. Inspired by this idea, we consider
the J1-J3 classical Heisenberg model on the breathing kagome
lattice consisting of an alternating array of corner-sharing
small and large triangles.

For the uniform kagome lattice only with the NN anti-
ferromagnetic interaction J1, it is well established that spins
do not order even at T = 0 due to a massive ground-state
degeneracy resulting from frustration. By introducing addi-
tional interactions, three kinds of 12-sublattice noncoplanar
states can be stabilized at zero field. Among the three, two are
cuboc states induced by further NN interactions, but they are
not the SkX, as the total chirality summed over the triangles
vanishes [51–53]. The remaining one is a uniform chiral order
induced by the coupling to conduction electrons (see Fig. 4
in Ref. [4]). Although this chiral order is topologically non-
trivial, it appears only for a special electron filling. The main
finding of this work is that a similar but different 12-sublattice
uniform chiral order taking a SkX structure is stabilized by
the breathing lattice structure at zero field in the presence of
relatively strong J3.

The spin Hamiltonian we consider is given by

H = J1

∑
〈i, j〉S

Si · S j + J ′
1

∑
〈i, j〉L

Si · S j + J3

∑
〈〈i, j〉〉

Si · S j, (1)

where 〈 〉S(L) denotes the summation over site pairs on small
(large) triangles. The ratio between the NN interactions on
the small and large triangles J1 and J ′

1, J ′
1/J1, measures the

strength of the breathing bond alternation. The third NN
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FIG. 1. Schematically drawn spin structures of the three triple-Q
states. (a) Collinear, (b) coplanar, and (c) noncoplanar SkX states,
where red, blue, and green arrows, respectively, represent spins on
the corners of 1, 2, and 3 of the small triangle shown in the inset. All
three are 12-sublattice states whose magnetic unit cell is indicated
by a gray-colored region. In (c), a cyan rectangle indicates a single
skyrmion whose enlarged view is shown in (d). In (d), the solid angle
spanned by three spins on each of 1–8 triangles is − π

2 , whereas those
for 9–12 triangles are zero.

interaction along the bond direction J3 is fixed to be positive
(antiferromagnetic), whereas J1 and J ′

1 may be positive or
negative. For the occurrence of the zero-field chiral order, the
signs of J1 and J ′

1 do not matter as long as antiferromagnetic
J3 is sufficiently strong.

We investigate the ordering properties of the Hamilto-
nian (1) by means of Monte Carlo (MC) simulations. In this
work, 2 × 105 MC sweeps are carried out and the first half
is discarded for thermalization, where our one MC sweep
consists of one heat-bath sweep and successive ten over-
relaxation sweeps. Observations are done at every MC sweep,
and the statistical average is taken over four independent
runs. The total number of spins N is related with a linear
system size L via N = 3L2. By measuring various physical
quantities, we identify low-temperature phases. For relatively
strong J3, a 12-sublattice triple-Q state, characterized by the
three commensurate ordering vectors of Q1 = π

2a (−1,− 1√
3

),

Q2 = π
2a (1,− 1√

3
), and Q3 = π

2a (0, 2√
3

) with side lengths of
each triangle a, appears, and it takes three different spin con-
figurations, collinear, coplanar, and noncoplanar structures,
depending on the value of J ′

1/J1. The noncoplanar state cor-
responds to a zero-field SkX state.

In the present two-dimensional Heisenberg-spin model, a
long-range magnetic order is not allowed at any finite temper-
ature, but the spin correlation develops over more than 500
lattice spacings even just below the transition. Below, we will
discuss the structures of the spins which are not long-range
ordered but correlated over a sufficiently long distance.

Figure 1 illustrates the three triple-Q states, where their
elementary unit is the small triangle whose three corners will

be called sublattice 1, 2, and 3 [see the inset of Fig. 1(a)].
A common feature of the three triple-Q states is that spins
residing on each sublattice, which are represented by the same
color arrows in Fig. 1, constitute ↑↓↑↓ chains running along
the bond directions, although in reality ↑ and ↓ spins are
slightly tilted in the noncollinear states (for details, see Sup-
plemental Material [54]). Suppose that the spin polarization
vector of the ↑↓↑↓ chain on sublattice μ is P̂μ. Then, the
difference in the three triple-Q states consists in the rela-
tive angles among P̂1, P̂2, and P̂3. In the collinear (coplanar)
state shown in Fig. 1(a) [Fig. 1(b)], P̂1, P̂2, and P̂3 are in
the same direction (plane). In the noncoplanar state shown in
Fig. 1(c), P̂1, P̂2, and P̂3 are orthogonal to one another, and
six spins form a single skyrmion [see the cyan rectangle in
Fig. 1(c)]; a center spin is pointing down, the outer spins are
pointing up, and in between, four spins form a vortex. Since
it involves only a fixed small number of spins on the discrete
lattice sites, it may be called a miniature skyrmion of discrete
form, being distinguished from the conventional skyrmion. As
one can see from Fig. 1(d), the miniature skyrmion is tiled up
with 12 triangles, among which only the inner eight [1–8 in
Fig. 1(d)] have a nonzero solid angle of −π

2 because each tri-
angle has three orthogonal spins. Thus, the total solid angle is
−π

2 × 8 = −4π , which is consistent with the definition of the
skyrmion with nsk = −1, where the minus sign enters as χi jk

is defined in the anticlockwise direction. Since this skyrmion
consists of six spins, the skyrmion number per 12-sublattice
magnetic unit cell is nsk = ±2. We note that on the uniform
kagome lattice, this noncoplanar state is not realized [57,58],
but is called a octahedral state in Refs. [57,58]. Bearing in
mind the above spin structures, we will turn to the result of
our MC simulations.

Figure 2(a) shows the temperature dependence of the spe-
cific heat C, the spin collinearity P = 3

2 〈 1
N2

∑
i, j (Si · S j )

2 −
1
3 〉, the total scalar chirality |χT| = 〈 1

2L2 |
∑

i, j,k∈�
,
� χi jk|〉,

and the skyrmion number per magnetic unit cell |nsk| =
1

4π
〈 1

N/12 | ∑′
�i jk|〉 for various values of J ′

1/J1 at J3/J1 = 1.2
with J1 > 0, where 〈O〉 denotes the thermal average of a
physical quantity O. In |nsk|,

∑′ denotes the summation over
all the triangles that tile up the whole system, and �i jk is
evaluated by using spin configurations averaged over 10 MC
sweeps to reduce the thermal noise.

In the uniform case of J ′
1/J1 = 1 [see greenish symbols

in Fig. 2(a)], the collinearity P develops below a transition
temperature indicated by a sharp peak in C, whereas in the
strongly breathing case of J ′

1/J1 = 0.4 [see bluish symbols
in Fig. 2(a)], P remains zero, but instead, the total chirality
χT develops. One can see from the spin snapshots shown
in the top and bottom panels of Fig. 2(c) that the low-
temperature phases for J ′

1/J1 = 1 and 0.4 are collinear and
noncoplanar states, respectively, and that in the latter, three
spins on different sublattices are orthogonal to one another.
In the noncoplanar state, the spin correlation develops at the
ordering vector of q = Q1, Q2, and Q3 [see Fig. 2(b)], and
the topological number is |nsk| = 2 [see the bottom panel of
Fig. 2(a)], evidencing that the noncoplanar state is definitely
the topological chiral order with a triple-Q SkX structure.
Here, nsk = −2 and +2 correspond to the SkX and anti-SkX
with opposite χT’s, respectively (see Fig. 3), and the ordered
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FIG. 2. MC results obtained for J3/J1 = 1.2 with J1 > 0.
(a) Temperature dependence of the specific heat C, the spin collinear-
ity P, the total scalar chirality |χT|, and the skyrmion number
per magnetic unit cell |nsk| (from top to bottom, respectively),
where greenish, reddish, and bluish colored symbols correspond to
J ′

1/J1 = 1, 0.8, and 0.4, respectively. (b) The spin structure factor
〈| 1

N

∑
i Si eiq·ri |2〉 obtained in the noncoplanar state at T/J1 = 0.08

for J ′
1/J1 = 0.4 and L = 72, where the wave number is measured in

units of 1/a and a hexagon indicates the border of the Brillouin zone.
(c) Spin snapshots mapped onto a unit sphere in the collinear state
at J ′

1/J1 = 1 (top), the coplanar state at J ′
1/J1 = 0.8 (middle), and

the noncoplanar SkX state at J ′
1/J1 = 0.4 (bottom) all of which are

obtained at T/J1 = 0.08. Red, green, and blue dots represent spins
on sublattices 1, 2, and 3 shown in the inset.

state is the alternative of the two, similarly to other DM-free
systems [25].

In the weakly breathing case of J ′
1/J1 = 0.8 [see the red-

dish symbols in Fig. 2(a)], P exhibits two-step sudden drops,
suggestive of successive first-order transitions. The higher-
temperature and lower-temperature phases correspond to the
collinear and noncoplanar states, respectively, and as one can
see from the middle panel of Fig. 2(c), the intermediate phase
is a coplanar state which turns out to be the one introduced in
Fig. 1(b) (for details, see Supplemental Material [54]).

Here, we address the nature of the phase transition. For
the noncoplanar state, the chiral symmetry associated with
the sign of χT is broken. In this chiral phase at T �= 0, spins
are not long-ranged ordered and the chirality distribution is
uniform (see Supplemental Material [54]), so that the trans-
lational symmetry of the underlying lattice is not broken. In
this sense, strictly speaking, the “crystal” of SkX is well-

-1

-0.5

 0

 0.5

 1

S

-1

-0.5

 0

 0.5

 1

χ

J’ /J  = 0.4, 11 T/J  = 0.081J  /J  = 1.2, 13

(a) (b)
J   > 0, 1

FIG. 3. MC snapshots of the noncoplanar chiral states taken at
T/J1 = 0.08 for J ′

1/J1 = 0.4 and J3/J1 = 1.2 with J1 > 0. (a) SkX
structure with negative total chirality χT and (b) anti-SkX structure
with positive χT. An arrow and its color represent the SxSy and
Sz components of a spin, respectively, and the color of a triangle
represents the local scalar chirality χi jk defined on each triangle. A
unit cell of the skyrmion is indicated by a dotted rectangle.

defined only at T = 0 where spins are long-range ordered.
It should also be noted that a Z2-vortex transition [59–61]
may be additionally possible as spins are noncollinear in the
low-temperature phase. In the transitions into the collinear
and coplanar states, a local magnetization mloc and a local
vector chirality κloc defined on each triangle play important
roles, respectively, where the manners of their spatial distri-
butions, especially their quadratic correlations between the
neighboring triangles, break the lattice translational symmetry
(for details, see Supplemental Material [54]).

Now that the emergence of the chiral order having the
zero-field SkX structure is confirmed, we will next discuss its
mechanism based on the mean-field approximation [62]. We
first introduce the Fourier transform Si = ∑

q Sα
q exp(iq · ri )

with the site index i = (α, ri ) and sublattice indices α = 1,
2, and 3 [see the inset of Fig. 1(a)], and pick up the ordering
vectors of our interest Q1, Q2, and Q3. Then, the mean field
〈Sα

q〉 can be expressed as

〈
Sα

q

〉 =
3∑

μ=1

([
U α

Qμ

]∗
�Qμ

δq,Qμ
+ U α

Qμ
�∗

Qμ
δq,−Qμ

)
, (2)

where U α
Qμ

represents the αth component of UQμ
which are

given by

UQ1 = (1, iε, iε)/
√

1 + 2ε2,

UQ2 = (iε, 1, iε)/
√

1 + 2ε2,

UQ3 = (iε, iε, 1)/
√

1 + 2ε2, (3)

with dimensionless coefficient

ε = J1 − J ′
1

−λQμ
+ J1 + J ′

1

,

λQμ
= J1 + J ′

1 − 4J3 − √
(J1 + J ′

1 + 4J3)2 + 8(J1 − J ′
1)2

2
.

(4)

Note that ε is zero only for J ′
1/J1 = 1, and gradually increases

with decreasing J ′
1/J1.
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In the uniform case of J ′
1/J1 = 1 and thereby ε = 0, all

the UQμ
’s are orthogonal to one another, so that �Q1 , �Q2 ,

and �Q3 correspond to the polarization vectors P̂1, P̂2, and
P̂3, respectively. In other words, to make spins exist at each
sublattice, the ordered state should be a triple-Q state involv-
ing all the �Qμ

’s, and thus, single-Q and double-Q states are
not realized in the present system. Then, the Ginzburg-Landau
(GL) free energy FGL is given by FGL/(N/3) = f2 + f4 + δ f4

with

f2 = [
3T + λQμ

] 3∑
μ=1

∣∣�Qμ

∣∣2
,

f4 = 9T

20
A1

3∑
μ=1

(∣∣�Qμ
· �Qμ

∣∣2 + 2
[
�Qμ

· �∗
Qμ

]2)
,

δ f4 = 9T

20
A2

∑
μ<ν

(∣∣�Qμ

∣∣2∣∣�Qν

∣∣2 +
∑

εs=±1

∣∣�Qμ
· �εsQν

∣∣2

)
,

(5)

and the coefficients A1 = 2(1+2ε4 )
(1+2ε2 )2 and A2 = 8ε2(2+ε2 )

(1+2ε2 )2 . Note
that δ f4 is active only in the breathing case of J ′

1/J1 �= 1, i.e.,
ε �= 0.

The most stable spin configuration is obtained by mini-
mizing FGL under the constraint S

2 = 2
∑3

μ=1 |�Qμ
|2. Noting

that in the uniform case, �Qμ
corresponds to the polarization

vector P̂μ, we assume �Qμ
= S√

6
eiθμ P̂μ also in the breathing

case. Then, one notices that the relative angles among P̂1, P̂2,
and P̂3 are determined only by the δ f4 term which is calculated
as

δ f4 = T S
4

40
A2

[
3

2
+ (P̂1 · P̂2)2 + (P̂1 · P̂3)2 + (P̂2 · P̂3)2

]
.

(6)

It is clear from Eq. (6) that in the breathing case of ε �= 0
and thereby A2 > 0, P̂1, P̂2, and P̂3 become orthogonal to one
another to lower the free energy δ f4, resulting in a noncopla-
nar SkX state. In the uniform case of ε = 0 where the relative
angles cannot be fixed because δ f4 = 0, thermal fluctuations
favor the collinear state [57]. Also, the coplanar state is not
stabilized at the level of the present GL expansion, so that
higher-order terms or thermal fluctuations may be relevant to
its stability.

Since the above mean-field result is valid irrespective of the
signs of J1 and J ′

1, the noncoplanar state should appear even
in ferromagnetic J1 and/or J ′

1 as long as J1 �= J ′
1 and thereby

ε �= 0. As shown in Fig. 4, this is actually the case: At the
lowest temperature of our MC simulations, the noncoplanar
SkX state is stable in a wide range of the parameter space
except J ′

1/J1 = 1 at which the collinear state is realized. We
have also checked that this chiral order is relatively robust
against a magnetic field and a single-ion anisotropy as well
as additional further NN interactions.

For the present zero-field SkX, the sublattice degrees of
freedom are fundamentally important because they make it
possible to superpose three collinear chains, i.e., sinusoidal
modulations, orthogonally, which is in contrast to the con-

FIG. 4. Parameter dependence of the low-temperature spin struc-
ture at T/|J1| = 0.01. For large J3, the chiral order with the
noncoplanar SkX structure is realized irrespective of the sign of J1

and J ′
1.

ventional in-field SkX where three helical modulations are
superposed. Although in this work the breathing bond alter-
nation is introduced to select the noncoplanar configuration
from numerous energetically degenerate superposition pat-
terns, it might be substituted, on the uniform kagome lattice,
by other driving forces such as a positive biquadratic spin
interaction [6,30,31].

It is also useful to compare the present two-dimensional
breathing kagome system to the associated three-dimensional
breathing pyrochlore system. Although in both cases the
breathing bond alternation commonly yields noncoplanar
topological spin textures, there is a significant difference in the
properties of the ordered states. In the breathing pyrochlore
system, the hedgehog lattice, an alternating array of mag-
netic monopoles and antimonopoles of opposite topological
charges, can be realized, but the total chirality summed over
the whole system is completely canceled out at zero field [50].
In contrast, in the present breathing kagome system, the
miniature discrete skyrmions of the same topological charges
are condensed, and as a result, the total chirality is nonzero
even at zero field, which suggests an interesting aspect of this
two-dimensional magnet that in a metallic system, the Hall
effect of chirality origin, the so-called topological Hall effect,
may be observed even in the absence of an applied magnetic
field.

Finally, we will address experimental implications of our
results. Although several breathing kagome magnets includ-
ing Gd3Ru4Al12 [40] which hosts the in-field SkX have been
reported so far [63–70], a magnetic order with commensurate
Q1, Q2, and Q3 has not been observed. Nevertheless, in a
metallic system, when the ordering vector is governed by the
Ruderman-Kittel-Kasuya-Yosida interaction, one may have a
chance to realize the commensurate order by tuning the Fermi
level or the conduction electron density. If such a candidate
material can be synthesized, the topological Hall effect may
be observed at zero field as a distinctive signature of the zero-
field chiral order with the triple-Q miniature SkX structure.

On the uniform kagome lattice, the 12-sublattice coplanar
state shown in Fig. 1(b) has been reported in the magnetic
insulator BaCu3V2O8(OD)2 [71] whose system parameters
are consistent with our theory except the breathing lattice
structure. If nominal lattice distortions, which might exist in
this compound, yield nonequivalent J1 and J ′

1, the mechanism
presented here could be applied to this class of magnets,
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pointing to the possibility of the chiral order in its family
compounds.

To conclude, we have theoretically demonstrated that the
zero-field chiral order emerges in the form of commensurate
triple-Q SkX in breathing kagome antiferromagnets, where
the third NN antiferromagnetic interaction along the bond
direction J3 and the breathing bond alternation are essential.
We believe that our study will promote the exploration of

different classes of magnetic materials hosting topological
spin textures.
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