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Anomalous dynamics and equilibration in the classical Heisenberg chain
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The search for departures from standard hydrodynamics in many-body systems has yielded a number of
promising leads, especially in low dimensions. Here, we study one of the simplest classical interacting lattice
models, the nearest-neighbor Heisenberg chain, with temperature as the tuning parameter. Our numerics expose
strikingly different spin dynamics between the antiferromagnet, where it is largely diffusive, and the ferromagnet,
where we observe strong evidence either of spin superdiffusion or an extremely slow crossover to diffusion.
This difference also governs the equilibration after a quench, and, remarkably, is apparent even at very high
temperatures.
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Introduction. Hydrodynamics has long been a cornerstone
of our understanding of many-body systems, and has re-
cently become the focus of renewed inquiry. Hydrodynamic
phenomena of interest in low-dimensional quantum systems
include equilibration [1,2], anomalous diffusion and trans-
port [3–15], hydrodynamics and superdiffusion in long-range
interacting systems [16,17], fracton and dipole-moment con-
serving hydrodynamics [18–20], generalized hydrodynamics
in integrable quantum systems [21–33], and weak integrabil-
ity breaking [34,35]. In addition, recent experimental studies
are probing (emergent) hydrodynamics in interacting quantum
spin models [16,36–38]. Hydrodynamics in classical many-
body systems in low dimensions also poses many questions,
perhaps most notably the appearance of anomalous diffusion
and anomalous transport, often attributed to the Kardar-Parisi-
Zhang (KPZ) universality class [39–54].

The focus of this Letter is the classical Heisenberg spin
chain, for which the nature of hydrodynamics has provoked
extensive debate. Based on the lack of integrability, it has
been argued that ordinary diffusion holds for both spin and
energy [55–61]. However, there have also been proposals
of anomalous behavior [62–65], including an argument for
logarithmically enhanced diffusion [65]. Reference [61], in
contrast, has argued from a theory of non-Abelian hydrody-
namics that each component of the spin follows a separate,
ordinary diffusion equation.
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In this Letter, we present a systematic numerical study of
the dynamical correlations and equilibration dynamics over
a wide range of temperatures, T < |J| to T = ∞. We find
ordinary diffusion of both spin and energy at T = ∞ and
ordinary diffusion of energy at all (nonzero) temperatures in
both the ferromagnetic (FM) and antiferromagnetic (AFM)
chains [66]. Most strikingly, we find a qualitative difference
between ferromagnetic and antiferromagnetic models at fi-
nite temperatures. This manifests as a temperature-dependent
finite-time dynamical exponent in the spin correlations of the
ferromagnetic chain, which departs from the diffusive expo-
nent α = 1/2, whereas the antiferromagnetic chain displays
behavior compatible with spin diffusion at all temperatures
studied. This deviation is apparent even at high temperatures,
where the correlation length is still of the order of a single
lattice spacing—far from the low-temperature regime where
the distinction between quadratic ferro- and linear antiferro-
magnetic spin-wave spectra may play a role. We have thus
identified a, hitherto perhaps unappreciated, fundamental dif-
ference between the dynamics of the FM and AFM models.

The observed behavior of the ferromagnet could be inter-
preted as anomalous diffusion with a temperature-dependent
exponent, or alternatively as a crossover at remarkably large
timescales, rendering diffusion in practice unobservable ex-
perimentally for a wide range of temperatures. Intriguingly,
at low temperatures where we obtain the best fit to a single
power law, we observe the KPZ exponent almost perfectly
across three decades in time. In addition, the spacetime pro-
files of correlation functions closely follow the KPZ scaling
form. This establishes intermediate-time KPZ scaling at low
temperatures in the FM Heisenberg model, even if ultimately
followed by a crossover to normal diffusion at very long times.

As a related phenomenon, we study equilibration dy-
namics after quenches from an XY to a Heisenberg chain.
Equilibration is shown to proceed via a power-law approach
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to the equilibrium value, with an exponent determined by
that observed in the corresponding unequal-time equilibrium
correlation function, again displaying anomalous finite-time
exponents in the case of the FM.

Model. We consider the periodic-boundary classical
Heisenberg chain, with Hamiltonian

H = −J
L∑

i=1

Si · Si+1, S1 = SL+1, (1)

for unit length classical spins Si ∈ S2. Here, J = 1 for the FM
chain, and J = −1 for the AFM chain. The dynamics is given
by the classical Landau-Lifshitz equation of motion,

Ṡi = {Si,H} = JSi × (Si−1 + Si+1), (2)

which we solve numerically [66].
In equilibrium, we probe the spin-spin correlations

CS ( j, t ) = 〈S j (t ) · S0(0)〉, (3)

and the energy correlations

CE ( j, t ) = 〈Ej (t )E0(0)〉 − E2, (4)

where Ej = −JS j · S j+1 is the bond energy, and E = 〈E〉 is
the internal energy density. We use internal energy and tem-
perature interchangeably, via E (T ) = T − coth(1/T ) [66,67].
Also, the (equal-time) spin correlation length is

ξ (E ) = −1/ log(−E ), (5)

which, as a function of E , is the same for the Heisenberg (1)
and XY chains (11) [66].

Both of these correlation functions are symmetric under
parity and time reversal. To evaluate these correlations for a
given E , we first construct an ensemble of 20 000 initial states
drawn from the canonical ensemble of H at the temperature
T (E ) [66,68]. Each state is evolved in time [cf. (2)] with
snapshots stored at intervals of �t = 10J−1. The correlation
function at a fixed time difference t is calculated by averaging
over 1000 consecutive snapshots for every initial state.

Hydrodynamics and scaling functions. The hydrodynamic
theory posits an asymptotic scaling form for the correlations
of the conserved densities,

C(x, t ) ∼ t−αF (t−αx), (6)

with a scaling exponent α and universal function F .
The exponent is, in principle, independent of the precise

form of F , and may be extracted by fitting the autocorrelation
function, A(t ) = C(0, t ), to a power law,

A(t ) ∼ t−α. (7)

Ordinary diffusion corresponds to an exponent of α = 1/2,
and a Gaussian scaling function,

C(x, t ) = χ

(πDt )1/2
exp

[
−

(
x

(Dt )1/2

)2]
, (8)

where χ = ∫
dx C(x, t ) = ∑

j C( j, t ), and D is the diffusion
constant. This scaling function may be obtained directly by
solving the ordinary diffusion equation.

The most well-known anomalous scaling is the KPZ uni-
versality class, with an exponent α = 2/3. There is no analytic
form for the scaling function, but it is tabulated in Ref. [69].

FIG. 1. Anomalous hydrodynamics in the FM: Power-law scal-
ing of the autocorrelator AS (t ), and extracted exponents and
crossover scales for the FM (blue, +) and AFM (orange, ×). (a) and
(c) show AS (t ) for E = −0.3 and E = −0.7, respectively. The dot-
ted lines show the power-law fit (7), and the dashed lines show
the finite-time corrected fit (9). (b) shows the estimated anomalous
exponents, while (d) shows the diffusion crossover times estimated
from (9)—the inset zooms in on the points E = −0.4 to E = 0.

Even if the asymptotic behavior is diffusive, one might
have finite-time corrections. The lowest-order correction to a
diffusive autocorrelation function from non-Abelian hydrody-
namics [61] is of the form

A(t ) ∼ (Dt )−1/2 + �t−1. (9)

From finite-time data, it may be difficult to distinguish this
behavior from anomalous exponents [1].

Equilibrium correlations. We begin by examining the scal-
ing exponent via the autocorrelation functions. We show
AS (t ) in Figs. 1(a) and 1(c) for the FM and AFM at E = −0.3
and E = −0.7, for times t = 200 to t = 105.

The AFM displays ordinary spin diffusion, with the diffu-
sive power law observable after a comparatively short time
t ≈ 103. The FM does not exhibit diffusion, at any finite
temperature, over the timescales of our simulations.

The autocorrelations of the FM are, for these timescales,
well approximated by a power law (7), with superdiffusive
exponents [Fig. 1(b)]. One may also fit a crossover of the form
(9). Adopting this point of view, we may extract a crossover
time t×(E ) after which we would predict the system to show
diffusion, via the effective exponent

αeff (t ) = −d log[A(t )]

d log(t )
, (10)

with the crossover defined, arbitrarily, by αeff (t×) = 0.505
(i.e., the time after which αeff is sufficiently close to 1/2).
The estimated crossover times obtained for the FM are orders
of magnitude larger than the AFM, reaching t× ≈ 107J−1 at
low-to-intermediate temperatures [Fig. 1(d)].

In Fig. 2 we show the scaling collapses at these tempera-
tures. The AFM is clearly consistent with a diffusive collapse
(8); the FM is not. Since the autocorrelation function is well
fit by an anomalous power law (7), we use these exponents
to perform the scaling collapse in the FM. This collapses the
correlations rather well, though there is some noise in the tails.

Moreover, despite the noise, one may observe that the tails
of the correlations decay faster than a Gaussian. This suggests
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FIG. 2. Scaling collapses of the spin correlations CS (x, t ). Colors
correspond to different fixed times from t = 2000 up to t = 105

[t = 8 × 104 in (d)]. (a) and (b) show the diffusive collapse in the
AFM at E = −0.3 and E = −0.7, respectively; (c) and (d) show
anomalous collapses at E = −0.3 and E = −0.7 in the FM, with
exponents α = 0.532 and α = 0.648, respectively. Dotted lines show
a Gaussian scaling function as a guide to the eye.

that an enhancement of the diffusion constant alone [whether
of the form (7), or a crossover (9)] is not the correct picture.

KPZ scaling. We thus examine the possibility that we are
observing a crossover from KPZ scaling. Indeed, the numeri-
cal evidence at low temperature is remarkably strong, shown
in Fig. 3. The correlations up to t = 104 collapse onto the
KPZ function for E = −0.8 and E = −0.9. Beyond this time
the noise in the tails is too great to reliably distinguish the
form of the spatial decay, but the scaling exponent measured
by the autocorrelation function is consistent with α = 2/3 up
to the final time t = 105. Moreover, at E = −0.8, there are
apparently no finite-time corrections to the power-law decay
A(t ) ∼ t−2/3, for three decades in time.

Equilibration dynamics. In addition to our equilibrium
simulations examining unequal-time correlations, we perform
equilibration simulations probing the relaxation to thermal

FIG. 3. Anomalous scaling in the FM. (a) shows the the au-
tocorrelator AS (t ), vertically offset for clarity, for, in descending
order, E = −0.9 to E = 0 in steps of 0.1. The power-law fits have
the exponents of Fig. 1(b), except the black lines at E = −0.8 and
E = −0.9, which are fit with the KPZ exponent αKPZ = 2/3. (b) and
(c) show the scaling collapse using the extracted exponent comparing
to the KPZ scaling function (dashed) and a Gaussian (dotted) at
E = −0.8 and E = −0.9, respectively.

equilibrium after a quench. This allows us to test whether
the anomalous behavior, and the distinction between FM and
AFM, are also observable in out-of-equilibrium dynamics.

We initially prepare the system in a thermal state of the XY
chain,

HXY = −J
L∑

i=1

Si · Si+1 = −J
L∑

i=1

cos(φi − φi+1), (11)

for unit length classical rotors Si ∈ S1. At time t = 0, we
quench the system, and evolve under the dynamics (2) of the
Heisenberg chain. We examine the relaxation of the following
observables:

Eμ(t ) = −J〈Sμ
i (t )Sμ

i+1(t )〉, (12)

which measures the energy attributed to the μth spin compo-
nents, and

Qμ(t ) = 〈
Sμ

i (t )2
〉
, (13)

which measures the total magnitude of the μth spin compo-
nents. These are natural measures of the anisotropy, which
characterizes the relaxation from the initial state, satisfying
Sz

i = 0 ∀i, to a (quasi)thermal state of the isotropic Heisenberg
chain. The equilibration of the energy fluctuations is measured
using the heat capacity,

C(t ) = 〈varEi(t )〉
T 2

, (14)

where we take the spatial variance before the ensemble aver-
age to obtain a time-dependent quantity. As in the equilibrium
simulations, we average over an ensemble of 20 000 states,
initially drawn from the canonical ensemble of HXY.

We expect that the equilibration dynamics will be similarly
hydrodynamic, since establishing the new global equilibrium
requires the transport of conserved densities over long dis-
tances [1]. The relaxation of an observable O is therefore
expected to follow a power law

δO(t ) := |O(t ) − Oeq| = λt−α, (15)

where Oeq is the thermal value of the observable in the
Heisenberg chain.

These simulations exhibit complementary aspects of the
same broad phenomenology observed in equilibrium. Figure 4
shows the equilibration dynamics at E = −0.5. The extracted
(anomalous) equilibration exponents have qualitatively simi-
lar dependence on energy as those extracted from equilibrium
correlation functions [66]. The energy fluctuations, as mea-
sured by the heat capacity, always equilibrate diffusively. In
the AFM, Eμ and Qμ also show diffusive equilibration. In the
FM, however, the equilibration of Eμ and Qμ is anomalous. It
should be noted that, although Eμ has dimensions of energy, it
is, as Qμ, a measure of the magnetic anisotropy, and therefore
equilibrates anomalously in the FM, rather than tracking the
diffusive behavior of the energy fluctuations.

Thus, as in equilibrium, we observe a striking difference
between the FM and AFM, with only the former displaying
anomalous exponents.

While our simulations do not allow us to rule out a poten-
tial crossover to diffusive equilibration at even longer times,
the observables can reasonably be described to have (fully)
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FIG. 4. Equilibration dynamics of Oz(t ) − Oz
eq (blue) and

O||(t ) − O||
eq (orange), where O|| = (Ox + Oy )/2 is the average of

the in-plane components. (a)–(c) show the equilibration of Q, E ,
and C at E = −0.5 in the FM; (d) shows the equilibration of E
at E = −0.5 in the AFM. Q and E appear to equilibrate with an
anomalous exponent of α ≈ 0.6 in the FM, though the data are
equally well described by a combination of power laws. The energy
fluctuations (heat capacity) and the AFM equilibrate diffusively.

equilibrated with these anomalous exponents, in particular
when considering a realistic experimental situation in which
resolution and timescales might be limited.

Discussion and conclusions. We have conducted a detailed
numerical study of the equilibrium and out-of-equilibrium
dynamics of the classical Heisenberg chain, with large system
sizes, simulation times, and range of temperatures. We find
that, although ordinary diffusion is expected at infinite time,
the FM exhibits a long-lived regime that is well described
by an effective superdiffusive, temperature-dependent scaling
exponent, with remarkably clean KPZ-like behavior at low
temperature. The AFM, by contrast, swiftly evinces ordinary

diffusion at all temperatures. The existence of such large in-
termediate scales is obviously relevant to experiments probing
anomalous diffusion—anomalous behavior might be the only
accessible experimental regime even when the longer-term
behavior is diffusive.

A possible explanation of the intermediate-time regime
and the stark difference between FM and AFM cases could
be the presence of integrable ferromagnetic models, such as
the continuum Landau-Lifshitz model [70–73] and the lat-
tice FM model with log(1 + Si · Si+1) interactions [54,73–
77]. The Heisenberg FM studied in the present Letter could
arguably be considered to be increasingly similar to either
of these integrable models at lower temperatures. This would
be consistent with our finding that the low-temperature FM
behavior is closer to KPZ. Recent work [12–15] suggests the
perturbative stability of KPZ scaling in systems which are
close to integrability and preserve the rotational symmetry.

Nevertheless, it is remarkable that we observe an anoma-
lous regime even at near-infinite temperatures, where the
correlation length (5) is short, e.g., already less than a sin-
gle lattice spacing at E = −0.3. Intuitively, this regime does
not seem to be close to either the continuum model or the
integrable log-interaction model. This points to the need for
a better understanding of how proximity to integrable points
might play a role in the physics of the Heisenberg FM, espe-
cially at high temperatures.
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