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We theoretically study magnon-phonon hybrid excitations (magnon polarons) in two-dimensional antiferro-
magnets on a honeycomb lattice. With an in-plane Dzyaloshinskii-Moriya interaction (DMI) allowed from mirror
symmetry breaking from phonons, we find nontrivial Berry curvature around the anticrossing rings among the
magnon and both optical and acoustic phonon bands, which gives rise to finite Chern numbers. We show that the
Chern numbers of the magnon-polaron bands can be manipulated by changing the magnetic field direction or
strength. We evaluate the thermal Hall conductivity reflecting the nontrivial Berry curvatures of magnon polarons
and propose a valley Hall effect resulting from spin-induced chiral phonons as a possible experimental signature.
Our study complements prior work on magnon-phonon hybridized systems without optical phonons and suggests
possible applications in spin caloritronics with topological magnons and chiral phonons.
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Introduction. Antiferromagnetic materials have recently at-
tracted a great deal of attention within the community of
spintronics [1–3], because they are rather insensitive to the
perturbation of magnetic fields and have small stray fields
with fast THz magnetic dynamics compared to ferromag-
nets with frequencies in the GHz range. Research over the
past decade has focused on spin dynamics and spin transport
in antiferromagnets, which may originate from spin-transfer
torques [4,5], domain-wall motion [6], and the spin Seebeck
effect [7–9]. Magnons, as collective excitations emerging
from magnetic order, have low dissipation and permit a pure
spin transport without Joule heating, leading to a surge of
interest in utilizing magnons for spintronics. Many magnonic
analogs of electronic phenomena, such as the magnon thermal
Hall effect [10–12], the magnon Nernst effect [13–15], and
the magnonic Edelstein effect [16,17], have been theoretically
studied and experimentally observed.

Along with magnonics, there is also a potential application
in spintronics by combining magnetic orders with nontrivial
band topology [18]. Topologically protected states are usually
robust and only weakly affected by disorders. They can pro-
vide a high charge-to-spin conversion efficiency [19], exhibit
strong magnetoresistance [20,21], and possess a number of
exotic phenomena such as the quantum anomalous Hall effect
[22,23] and chiral Majorana fermions [24]. In addition to
fermionic topological excitations, there is also an emerging
field of investigating topological bosonic excitations, such
as topological magnons [25–28] and topological phonons
[29–31]. Moreover, some recent works have shown topolog-
ical properties in hybridized systems between magnons and
acoustic phonons with magnetoelastic coupling [32–34], the

Dzyaloshinskii-Moriya interaction (DMI) [35,36], and dipolar
coupling [37]. However, a study of the coupling between
magnons and optical phonons is still lacking.

In this Letter, we study hybrid magnon-phonon excitations
in a two-dimensional (2D) collinear antiferromagnetic insula-
tor (AFI) on the honeycomb lattice. The topological magnon
bands originate from an in-plane nearest-neighbor DMI per-
mitted by mirror symmetry breaking [38–40], which can be
generically achieved in 2D van der Waals heterostructures,
in the presence of magnon-phonon coupling. Since van der
Waals antiferromagnets naturally possess at least two sublat-
tices, it is possible to realize the coupling between magnons
and optical phonons. In such a coupled magnon-(optical)
phonon system, which has not been studied in the ferromag-
netic case [35], we find nonzero Chern numbers with finite
Berry curvatures and chiral phonons at high symmetry points
[41,42].

We also show that the Chern numbers of magnon-polaron
bands and the phonon chiralities can be manipulated by
an external magnetic field. For connection to experiments,
we evaluate the thermal Hall conductivity and propose a
spin-induced valley Hall effect [42] as a possible experimen-
tal observation. We emphasize that our results are generic
to many lattice structures and can be easily generalized to
three-dimensional systems, as discussed at the end of this
Letter. Our work suggests antiferromagnets with multiple
sublattices—in contrast to ferromagnets—serve as promising
platforms to realize tunable topological excitations hybridiz-
ing magnons with both acoustic and optical phonons, where
the topology of the bands can provide robust information
transport and may find possible applications in spintronics.
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FIG. 1. (a) Schematic illustration of a hybrid magnon-phonon
system. The ground state of the magnetization is Néel order along the
z axis (red and blue arrows, color denoting the A and B sublattices).
(b) DM vectors (green arrows) for the nearest bonds originated from
mirror symmetry Myz breaking.

Model. We consider a system with collinear AFI Néel order
on a honeycomb lattice, where the magnetic moments are
perpendicular to the plane, i.e., SA,B = ±Sẑ for the A and
B sublattices, respectively [see Fig. 1(a)]. The Hamiltonian
describing both spin and lattice degrees of freedom can be
written as H = Hm + Hp + Hmp, where the magnetic part Hm

is given by

Hm = J1

∑
〈i j〉

Si · S j − J2

∑
〈〈i j〉〉

Si · S j

− Kz

2

∑
i

(
Sz

i

)2 − B
∑

i

Sz
i , (1)

where J1 (J2) > 0 is the (next-) nearest-neighbor antifer-
romagnetic (ferromagnetic) Heisenberg exchange coupling,
Kz > 0 is the easy-axis anisotropy, and B = gμBB is the ex-
ternal effective Zeeman magnetic field. The phonon part Hp

can be expressed as

Hp =
∑

i

p2
i

2Mi
+ k1

2

∑
〈i j〉

(
R̂0

i j · ui j
)2 + k2

2

∑
〈〈i j〉〉

(
R̂0

i j · ui j
)2

,

(2)

where ui j = u j − ui is the in-plane displacement of the lat-
tice, R̂0

i j is the unit vector along bond i j in equilibrium, and
k1 (k2) is the spring constant that corresponds to the elastic
energy between two (next-) nearest-neighbor ions. Here, we
ignore out-of-plane vibrations as they are higher-order terms
[43].

For the magnon-phonon coupling Hmp, we begin from an
in-plane nearest-neighbor DMI originating from mirror sym-
metry breaking. By Moriya’s rule [44,45], the direction of the
DM vectors is perpendicular to the bond, i.e., Di j ∝ ẑ × Ri j

[see Fig. 1(b)]. The DMI Hamiltonian is then

HD = Di j · (Si × S j ). (3)

This term is not included in Eq. (1) since it is well known that
DM vectors perpendicular to spin moments do not appear in
the linear spin-wave Hamiltonian [10,35,36] and we assume
it does not appreciably change (i.e., the change is numerically
small) the Néel ground state order as long as the exchange
coupling and anisotropy is large enough. However, both the

magnitude and direction of Di j depend on Ri j and thus it
couples lattice and spin degrees of freedom. To lowest order
of ui j and δsi = Si − 〈Si〉, Eq. (3) can be expanded in a partial
mean-field form as [43]

Hmp ≈ DS

a

∑
〈i j〉

ui j
[
I2 − R̂0

i jR̂
0
i j

]
(δsA,i + δsB, j )

= DS

a

∑
〈i j〉

(
R̂0

i j × ui j
) · [

R̂0
i j × (SA,i + SB, j )

]
, (4)

where D = |Di j | is the magnitude of the DMI, a =
|R0

i j | is the bond length, I2 is the 2 × 2 identity ma-

trix, R̂0
i jR̂

0
i j is the Kronecker product between two R̂0

i j’s,
and δsA(B),i = (Sx

A(B),i, Sy
A(B),i ) = SA(B),i − (+)Sẑ. The second

equation mimics a Rashba-type spin-orbital coupling [46,47]
or a Raman spin-phonon interaction [30,48–50], which has
been studied in topological aspects of spin or phonon systems.

It is clear from Eq. (4) that the DMI-induced magnon-
phonon coupling breaks the combined symmetry of time
reversal plus 180◦ rotation about an in-plane axis [51,52].
With magnetic fields, this symmetry breaking allows the ex-
istence of a thermal Hall effect [53], which is absent in a
magnon-only or phonon-only scenario. Moreover, in contrast
to the ferromagnetic case, Hmp + Hm also breaks inversion
symmetry [13] and gives rise to chiral phonons at high sym-
metry points [41,42], as will be shown below.

Band topology. As magnons and phonons are both bosons,
one can treat them equivalently as magnon-polaron exci-
tations and rewrite H = Hm + Hp + Hmp to a generalized
Bogoliubov–de Gennes (BdG) form as [43]

Hk =
⎡
⎣

1
2 H̃m(k) H̃mp(k) 0
H̃†

mp(k) 1
2 D(k) 0

0 0 I4
2M

⎤
⎦, (5)

with representation Xk = (ak, bk, a†
−k, b†

−k, uk, p−k )T , where
ak (bk) is the A (B) sublattice magnon annihilation opera-
tor in a Holstein-Primakoff representation [54], S+

A (S+
B ) =√

2Sa (b†), uk (p−k ) is a four-vector for two-dimensional dis-
placements (momenta) of A and B sublattices, H̃m(k) [H̃mp(k)]
corresponds to Eq. (1) [Eq. (4)], and D(k) is the dynamical
matrix corresponding to Eq. (2). Under this representation, the
bosonic commutator is written as

[Xk, X†
k] = g =

⎡
⎢⎣
I2

−I2

iI4

−iI4

⎤
⎥⎦, (6)

and the eigenstates satisfy [55,56]

gHk|ψnk〉 = σnnEnk|ψnk〉, 〈ψnk|g|ψn′k〉 = σnn′ , (7)

where σ = σz
⊗

I6×6 stands for particle-hole space. With
particle-hole symmetry, Enk = En+6,−k and thus we only plot
the first six eigenvalues in Fig. 2 and others are redun-
dant. Here, Sz = 〈ψR

nk|(−a†
kak + b†

kbk + uA
k × pA

−k + uB
k ×

pB
−k )|ψR

nk〉 mediates both magnon spins and phonon polariza-
tions [41].

In Fig. 2, there are gapped rings around � or K (K′)
formed by anticrossing points among magnon and phonon
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(a) (b)

(c) (d)

FIG. 2. Topological magnon-polaron bands. Energy is in meV.
We set parameters as S = 3/2, J1 = 2.0 meV, J2 = 0.0 meV, Kz =
1.0 meV, mB/mA = 1, h̄

√
k1/mA = 7.0 meV, h̄

√
k2/mA = 0.5 meV,

D = 0.2 meV. The blue (red) dashed lines are phonon (magnon)
dispersions without DMI. The solid lines are magnon-polaron bands
with DMI, where the color shows the z-component angular mo-
mentum, indicating whether the hybridization is more “magnonic”
(as blue for Sz = −1 or red for Sz = +1) or “phononic” (as green
for Sz = 0). (a), (b) Full band dispersions along the high symmetry
path. (c), (d) Bands around anticrossing points. Band numbering
is shown in (d). The insets show the gap opens at K and allows
phonons with different chiralities (red or blue). Details are shown
in Fig. 4. (a) B = 0.3 meV, (b) B = 0.6 meV, (c) B = 0.3 meV, and
(d) B = 0.6 meV.

bands due to the DMI coupling, which gives rise to nontrivial
topological properties in this magnon-polaron system. In such
a generalized BdG system, the Berry curvature is given by
the Bloch wave function |unk〉 = e−ik·r|ψnk〉 as [12,43] �nk =
i〈∇kunk|g × |∇kunk〉, and the Chern numbers can be obtained
by integrating Berry curvature �z

nk along the Brillouin zone
as [57] Cn = 1

2π

∫
BZ d2k �z

nk, from which we calculate the
band Chern numbers [since the top (also bottom) two bands
are degenerate at the � point, we add up the Berry curvature
of the two bands to obtain a well-defined Chern number] by
the Fukui method [43,58] and find that the magnetic field can
change the Chern numbers by integers.

In Fig. 2(a), the Chern numbers for the middle three an-
ticrossed bands from low to high are (−2,+4,−2), while
they change to (−2,+1,+1) in Fig. 2(b) by a phase transition
when B > Bc (≈0.41 meV with the parameters in Fig. 2 [43]).
Since in this parameter region the coupling barely affects
acoustic modes and the longitudinal optical (LO) mode, the
band topology can be effectively mapped into an SU(3) al-
gebra [34,59]. Here, instead of an analytic calculation (which

FIG. 3. Berry curvatures of the middle three anticrossed bands
in Fig. 2. Band numbers are ordered from bottom to top. When the
magnetic field increases, there is one gapped ring around � between
bands 3 and 4 that splits into two rings around K and K′ leading to a
topological phase transition. (a) B = 0.3 meV and (b) B = 0.6 meV

is generally not accessible), we achieve an understanding of
the band topology more intuitively by looking at the Berry
curvatures.

As shown in Fig. 3, nontrivial Berry curvatures are induced
around the anticrossing regions, and thus the change of Chern
numbers can be intuitively understood as a pair of gapped
rings around K and K′ combining into or split by one anti-
crossing ring around �. Notice that there are opposite Berry
curvatures at K and K′ in band 3 from the gap by spin-induced
inversion symmetry breaking, but it does not contribute to the
Chern number due to a cancellation between these two valleys
[42]. However, as shown in Figs. 4(a)–4(d), a large phonon
angular momentum Sz

P = 〈uA
k × pA

−k + uB
k × pB

−k〉 occurs at K
for bands 2 and 3 giving rise to chiral phonons. The polariza-
tion of these phonons can be flipped by reversing the magnetic
field and they can contribute to a valley Hall effect [42].

Similar to the physics of gapped 2D Dirac systems [60],
the physics of an anticrossing magnon-phonon pair can be
effectively described by

Heff = E±
mk + E±

pk

2
I2 + d±±

k · σ + Vk, (8)

where E+(−)
mk is the upper (lower) magnon energy without the

DMI, E+(−)
pk is the transverse optical (longitudinal acoustic)

phonon energy without the DMI, σ = (σx, σy, σz ) are the Pauli
matrices, d±±

k opens a gap between E±
mk and E±

pk arising
from the DMI and can be regarded as an analog of the gap-
ing term in the Kane-Mele model [61,62], and Vk includes
terms that do not conserve particle numbers and perturbations
that do not participate in opening the gap between the two
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(a) (b)

(c) (d)

FIG. 4. Phonon polarization contribution Sz
P = 〈uA

k × pA
−k +

uB
k × pB

−k〉 to Sz in Fig. 2. The green (yellow) line is for band 2 (band
3). The chiralities of phonons occur around K. (a) B = 0.3 meV,
(b) B = 0.6 meV, (c) B = −0.3 meV, and (d) B = −0.6 meV.

bands [33,34]. A skyrmion (antiskyrmion) topological charge
Q (−Q) can then be defined with d±±

k as Q = 1
4π

∫
d2k d̂k ·

(∂kx d̂k × ∂ky d̂k ) for the upper (lower) band. In general, the
analytical expression for d±±

k is not available, but since d±±
z =

(E±
mk − E±

pk )/2, the skyrmion numbers will change with the
moving of anticrossing rings [33]. As the band Chern number
reflects the winding number of d̂k wrapping the unit sphere
in the Brillouin zone, a skyrmion arising from d with charge
Q determines the lower (upper) band with a Chern number Q
(−Q) [63]. In addition to changing the field strength, reversing
the external field will also change the Chern numbers by
flipping the sign, thus we find the topology of our system is
highly tunable.

Thermal and valley Hall effects. In order to connect our re-
sults with possible experimental observations, we evaluate the
thermal Hall effect rising from the nontrivial Berry curvature
of magnon-polaron bands. With a longitudinal temperature
gradient ∇yT , an anomalous transverse motion of magnon-
polaron excitations can be induced by the fictitious field �z

nk
associated with a transverse thermal conductivity κxy as [12]

κxy = −k2
BT

h̄V

∑
n,k

[
c2[g(Enk )] − π2

3

]
�z

nk, (9)

where c2(x) = (1 + x) ln2(1 + 1/x) − ln2 x − 2 Li2(−x),
Li2(x) is the polylogarithm function, and g(x) =
[exp(x/kBT ) − 1]−1 is the Bose-Einstein distribution.

In Fig. 5, we evaluate κxy with parameters [64–66] for
MnPS3 as mA = mB = M = 55 u, S = 5/2, J1 = 1.54 meV,
J2 = 0.14 meV, g = −2.0, and set Kz = 0.1 meV, D =
0.5 meV, h̄

√
k1/M = 11 meV, and h̄

√
k2/M = 2.2 meV. At

the low field, the two magnon bands couple with the trans-
verse optical (TO) phonon giving a Chern number distribution
(0,+2,−4,+2) from bottom to top, while they couple with
the TO and longitudinal acoustic (LA) phonon, respectively,
at high field giving a Chern distribution (−2,+2,−2,+2).
These results are also consistent with our analysis on band
topology by looking at the moving of gapped rings. The
change of κxy with magnetic field results from the topological
transition with different Chern numbers, while the sign change

(a)

(b) (c)

FIG. 5. (a) Thermal Hall response using parameters from
MnPS3. (b), (c) Band structures and Chern numbers for different
external fields. See main text for details. (a) Thermal Hall re-
sponse. B is in unit of meV, (b) B = 0.3 meV with Chern number
(0, 0, −2, +4, −2, 0), and (c) B = 1.2 meV with Chern number
(0, +2, −2, +2, −2, 0).

with temperature reflects the competition among bands of dif-
ferent Chern numbers which come to dominate the transverse
thermal transport.

In addition, as the spatial inversion symmetry is broken by
the spin degree of freedom, the gap opens at the K and K′
valley, and thus gives rise to chiral phonons with different po-
larizations at these high symmetry points [see Figs. 2(c), 2(d),
5(b), and 5(c)]. By introducing a longitudinal strain gradient
across the system, we expect the opposite motion of chiral
phonons at different valleys since v ∝ −Estrain × � in the
transverse direction which creates a temperature difference
between the two edges [42]. The sign of the valley Hall signal
is also controllable by flipping the external magnetic field. As
these two Hall effects originate from the nontrivial topology
of the system, we expect to observe a thermal Hall signal only
weakly affected by the bulk disorder.

Discussion. In this Letter, we study the topology of
magnon-polaron bands in a 2D honeycomb Néel order antifer-
romagnet with an in-plane DMI induced by magnon-phonon
coupling. Without the DMI, the magnon or phonon bands
are trivial, while nontrivial Berry curvature occurs around the
anticrossing rings opened by the magnon-phonon coupling.
In contrast to previous studies on ferromagnetic magnons
or on magnons coupled with only acoustic phonons, in our
case, antiferromagnetic magnons can couple with both op-
tical and acoustic phonons, giving rise to two remarkable
results—highly tunable integer Chern numbers with an exter-
nal magnetic field and the existence of chiral phonons. We
also investigated a field-tunable thermal Hall effect induced
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from the finite Berry curvatures and proposed valley Hall
effects by spin-induced chiral phonons, both of which will
generate significant experimental interests in the community.

Even though we study the model on a honeycomb lat-
tice, the coupling can be expressed with a displacement field
u ≈ ui j/a and a staggered spin field n ≈ (SA − SB)/2S as
DS2

a3 (∇ × u) · (∇ × n) from Eq. (4), which does not depend on
lattice details [43]. This is similar to Rashba spin-orbital cou-
pling and the Raman spin-phonon interaction, revealing the
underlying topological nature of this hybridized system. We
believe this universal form is the key to the topology and gives
a crucial insight that will be of interest to a broad community
of researchers studying the consequences of magnon-phonon
interactions. This 2D model can also be generalized to a 3D
system with mirror symmetry breaking in the bulk [67,68] and
it can couple the magnons with out-of-plane phonon modes
as well which could further enrich the physics of topology.

In principle, our method can be used in any bosonic system
such as plasmonics [69,70] and photonics [71], and may find
similar and interesting applications there. Our work opens
another avenue in the study of hybridized magnon-phonon
excitations by treating the optical and acoustic phonons on
equal footing, and it may be useful to design tunable transport
devices in the field of spintronics and draws a connection to
chiral phonons with spin caloritronics.
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