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Non-Hermitian topological systems with eigenvalues that are always real
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The effect of non-Hermiticity in band topology has sparked many discussions on non-Hermitian topological
physics. It has long been known that non-Hermitian Hamiltonians can exhibit real energy spectra under the
condition of parity-time (PT ) symmetry—commonly implemented with balanced loss and gain—but only when
non-Hermiticity is relatively weak. Sufficiently strong non-Hermiticity, on the other hand, will destroy the
reality of energy spectra, a situation known as spontaneous PT -symmetry breaking. Here, based on nonre-
ciprocal coupling, we show a systematic strategy to construct non-Hermitian topological systems exhibiting
bulk and boundary energy spectra that are always real, regardless of weak or strong non-Hermiticity. Such
nonreciprocal-coupling-based non-Hermiticity can directly drive a topological phase transition and determine
the band topology, as demonstrated in a few non-Hermitian systems from one dimensional to two dimensional.
Our work develops a theory that can guarantee the reality of energy spectra for non-Hermitian Hamiltonians, and
offers an avenue to explore non-Hermitian topological physics.

DOI: 10.1103/PhysRevB.105.L100102

Conservation of energy in quantum physics demands real
eigenenergies for a closed system that is described by a
Hermitian Hamiltonian. In the presence of energy exchange
with the surrounding environment, the energy conservation
is broken. In such a situation, a non-Hermitian Hamiltonian
will arise, leading to complex eigenvalues. However, the non-
Hermiticity is not a sufficient condition for the existence of
complex spectra, which means that it is possible to find a
non-Hermitian system with real eigenvalues.

Parity-time (PT ) symmetry, one of the major discoveries
in non-Hermitian quantum physics, claims that a class of non-
Hermitian Hamiltonians with PT symmetry can still have real
spectra [1,2]. This counterintuitive discovery fundamentally
overturned the past perception that only Hermitian operators
can have real eigenvalues. However, the PT -symmetry ap-
proach has a long-lasting limitation: it takes effect only when
the non-Hermiticity is relatively weak [2–6]; in other words,
sufficiently strong non-Hermiticity will destroy the reality of
energy spectra even when PT symmetry is still respected—
a situation known as spontaneous PT -symmetry breaking
[2,7–11]. Therefore, the PT symmetry cannot guarantee
the reality of energy spectra. A PT -symmetric Hamiltonian
belongs to a more general class of non-Hermitian Hamilto-
nians known as pseudo-Hermitian Hamiltonians [12,13], but
pseudo-Hermiticity does not guarantee the reality of energy
spectra either. For example, let us consider H = iσz, which is
pseudo-Hermitian since H† = ηHη−1, where η = σx, but H
has complex eigenvalues of ±i. To our knowledge, there is no
theory so far that can guarantee the reality of energy spectra
in non-Hermitian systems.

*Corresponding author: blzhang@ntu.edu.sg

Recently, there have been a lot of efforts in construct-
ing topological states in non-Hermitian systems [14–17].
This combination of topological physics and non-Hermitian
physics challenges the conventional understanding of topo-
logical phases [18–30], as they were previously defined and
classified based on their Hermitian Hamiltonians [31,32]. As a
result, there have been many developments for non-Hermitian
topological invariants to characterize non-Hermitian topology
[3,21–23,33,34]. Another challenge that is still under active
exploration is whether the non-Hermitian topological systems
can exhibit real energy spectra. Most studies along this line
have adopted the PT symmetry in order to maintain the real
spectra as much as possible [35–38]. However, all these sys-
tems will necessarily exhibit complex spectra in the presence
of sufficiently strong non-Hermiticity. Moreover, the nontriv-
ial topology in non-Hermitian topological systems is not nec-
essarily determined by Hermitian parameters [21,22,39–41],
but can also be induced directly by non-Hermiticity. For
example, recent studies have shown that by introducing delib-
erately designed loss and gain, a topological phase transition
can be induced to generate topological states in non-Hermitian
systems [4,11,42–44]. Nonreciprocal coupling is another form
of non-Hermiticity, but discussions on its directly induced
topological phase transition [e.g., to induce a one-dimensional
(1D) nontrivial Zak phase] have been relatively few.

In this Letter we develop an approach to construct non-
Hermitian topological systems whose energy spectra are
always real, regardless of weak or strong non-Hermiticity.
Due to the always real energy spectra, the constructed non-
Hermitian systems will not exhibit winding topology in the
complex energy plane [14,20], as in the recently discovered
skin effect [18,19,21], but will have nontrivial topology de-
fined in momentum space. In particular, the nontrivial topol-
ogy can be either inherited from the Hermitian counterpart,
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or induced by non-Hermiticity directly. The approach is de-
veloped by the noncommutative matrix production between
a nonuniform diagonal matrix and a Hermitian Hamiltonian
matrix. The resultant non-Hermitian systems can be imple-
mented with nonreciprocal coupling. We demonstrate the
effectiveness of this approach in several concrete examples.
In a 1D non-Hermitian system we show that the band topol-
ogy characterized by Zak phase can be inherited from the
Hermitian Su-Schrieffer-Heeger (SSH) model, or induced by
the non-Hermiticity. Starting with a two-dimensional (2D)
C3-symmetric Hermitian system that is topologically trivial,
we show that the nonzero topological polarization and frac-
tional charges can emerge after introducing non-Hermitian
terms, leading to topological corner states. All these examples
exhibit real energy spectra for both bulk and boundary states,
even in the presence of strong non-Hermiticity.

Let us consider the following equation, which is commonly
studied in the regular Sturm-Liouville theory [45]:

H0�n = EnM�n, (1)

where H0 is a Hermitian matrix, M is a real diagonal ma-
trix with diagonal elements Mii > 0, and �n is the column
vector. One can obtain the eigenvalues of Eq. (1) by solving
|H0 − EnM| = 0 and En will be real (En ∈ R) according to
the regular Sturm-Liouville theory [45]. Here we consider
M = diag[ε1, ε2, ε3...εN ] with εi > 0, and its determinant is
nonzero (i.e., |M| �= 0) so that M−1 exists. Based on these
facts, we can construct a system with the Hamiltonian H as

H = M−1H0. (2)

Clearly this new system can have real eigenvalues En. How-
ever, the Hamiltonian H in Eq. (2) is generally non-Hermitian
(i.e., H �= H†). To understand this non-Hermiticity, after
performing the Hermitian operation on H , one can obtain
that H† = (M−1H0)† = H0M−1 and usually H† = H0M−1 �=
M−1H0 = H , as a result of the noncommutativity for the ma-
trix production, except for some special cases such as when H0

is diagonal or the components in M are uniformly identical,
namely M = cI, where I is the identity matrix and c is the
arbitrary constant.

Although H in Eq. (2) is non-Hermitian, it can have real
eigenvalues, which means that there is no point gap in the
band structure but only one special line gap that is perpen-
dicular to the real axis in complex energy plane. Based on
this special line gap, it is possible for the non-Hermitian
Hamiltonian of Eq. (2) to possess nontrivial topology [14,20].
Interestingly, the topology can be either inherited from a topo-
logically nontrivial H0, or induced by the M matrix with a
trivial H0.

1D non-Hermitian system from the SSH model. As the first
example, we discuss a 1D non-Hermitian system with cou-
pling settings shown in Fig. 1(a), similar to the conventional
SSH model [46]. The corresponding Hamiltonian is

H =
∑

n

t1a†
nbn + t1

ε
b†

nan + t2a†
n+1bn + t2

ε
b†

nan−1, (3)

where t1 = κ0τ , t2 = κ0(1 − τ ), τ ∈ (0, 1), and a†(a) and
b†(b) are the creation (annihilation) operators. It can
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FIG. 1. 1D non-Hermitian topological system with real spectra.
(a) System settings. t1 = κ0τ and t2 = κ0(1 − τ ), κ0 = 1, τ ∈ (0, 1),
ε ∈ R. (b) and (c) Band structures when τ = 0.6 and τ = 0.4. Here
ε = 0.9. The red number on each band denotes the Zak phase.
(d) The topological edge states will localize toward one end more
than the other when ε �= 1. The system has 80 sites (N = 80). The
ψn denotes the field on the nth site. The blue line with circle mark-
ers represents the field distribution. The red and green dotted lines
denote the field amplitudes at the left and right ends, respectively.

be regarded as the production of the inverse matrix of
M = diag[1, ε, 1, ε, . . . ] and the Hamiltonian of the con-
ventional SSH model H0 = ∑

n(t1b†
nan + t2b†

nan−1 + c.c.),
namely, H = M−1H0. The Hamiltonian of Eq. (3) in the mo-
mentum space can be expressed as

Hk = [t1 + t2 cos(ka)]

(
1 + ε

2ε
σx + i

ε − 1

2ε
σy

)

+ t2 sin(ka)

(
1 + ε

2ε
σy − i

ε − 1

2ε
σx

)
, (4)

where k is the Bloch wave vector, a is the lattice constant,
and σi are the Pauli matrices. This Hamiltonian satisfies the
chiral symmetry: Hk = −σzHkσz. We can easily obtain its

energy spectra: Ek = ± 1√
ε

√
t2
1 + t2

2 + 2t1t2 cos(k), as plotted
in Figs. 1(b) and 1(c). The spectra are always real even for
strong non-Hermiticity (i.e., ε � 1 or ε � 1). Note that some
other non-Hermitian systems based on nonreciprocal cou-
plings, e.g., the Hatano-Nelson model [47], can exhibit real
energy spectra under the open boundary condition, but these
real spectra are a result of boundary effect, being extremely
sensitive to boundary conditions [48–53]. In contrast, the real
spectra of our systems are insensitive to boundary conditions.
More detailed discussions can be found in the Supplemental
Material [54] (see, also, Refs. [55–64] therein).

The topology of our 1D non-Hermitian system can be
characterized by the Zak phase: cn = −i

∫ π/a
−π/a〈wn|∂k|un〉dk,

where Hk|uk,n〉 = Ek,n|uk,n〉 and H†
k |wk,n〉 = Ek,n|wk,n〉. The

Zak phases (c1, c2) for the two bands are: (c1, c2) = (0, 0)
for t1 > t2 and (c1, c2) = (−π, π ) for t1 < t2 [54,65]. The
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FIG. 2. Non-Hermiticity-induced 1D topological phase transi-
tion. (a) The unit cell when ε < 1. The direction and thickness of
the arrow represent the coupling direction and strength, respectively.
(b) The band structure of a non-Hermitian system (ε = 0.5) with
trivial band topology. The red number on each band labels the Zak
phase. The blue solid and gray dotted lines denote the band structures
with ε = 0.5 and ε = 1, respectively. (c) The unit cell when ε > 1.
(d) The band structure of a non-Hermitian system (ε = 1.5) with
nontrivial band topology. (e) The topological interface states exist in
the bulk gap of the junction system composed of two topologically
distinct lattices (ε = 0.5 and ε = 1.5). Each lattice has 120 sites. The
interface and bulk states are represented by the red and gray points,
respectively. (f) The field distribution of the topological interface
state at E = 1. The ψn denotes the field on the nth site. Here t0 = 1.

nonzero Zak phase for t1 < t2 indicate that there are two
degenerate topological edge states localized at the ends of
a finite system, as a manifestation of fractional charges at
the ends [66–70]. From Eq. (3) we can see that the mirror
symmetry is broken when ε �= 1. The topological states can be
affected by this non-Hermitian parameter. For a finite system
with N sites, the ratio between the amplitudes of the left and
right edge states is ε [54]: |ψ1|2

|ψN |2 = ε, where ψ1/N denote the
field on the left/right end site. As shown in Fig. 1(d), when
ε �= 1, the topological edge states can localize toward one end
more than the other [54].

Non-Hermiticity-induced topological phase transition in
1D system. After demonstrating the topology inherited from
the Hermitian topological system H0 in Eq. (3), we now show
that the topology can also be induced by the non-Hermitian
parameter ε that is applied to an originally trivial 1D H0. As
shown in Figs. 2(a) and 2(c), the Hamiltonian is

H = t0
∑

n

1

ε
b†

nan + εa†
nbn + 1

ε
b†

ncn + εc†
nbn

+ ε(a†
n+1cn + c†

nan+1), (5)

which is constructed by a trivial Hermitian system
H0 = t0

∑
n b†

nan + c†
nbn + a†

n+1cn + c.c. and M =
diag[ε−1, ε, ε−1, ε−1, ε, ε−1, . . . ], namely, H = M−1H0.
The Hamiltonian of Eq. (5) in the momentum space can be
written as

Hk = t0

⎛
⎝ 0 ε εe−ika

1
ε

0 1
ε

εeika ε 0

⎞
⎠, (6)

where k is the wave vector, and a is the lattice constant.
Obviously when ε = 1, the Hk represents a gapless Her-
mitian system. However, after setting ε �= 1, the spectra of
Hk of Eq. (6) can open a gap as presented in Figs. 2(b)
and 2(d).

Importantly, when ε < 1 (ε > 1), the system becomes triv-
ial (topological). Compared with the system with ε < 1 in
Fig. 2(b), the system with ε > 1, as shown in Fig. 2(d),
can lead to the nonzero Zak phases for the first and third
bands. After combining the trivial and topological systems
into a chain, topological interface states emerge in the bulk
gaps, as shown in Figs. 2(e) and 2(f). This shows that the
non-Hermitian parameter ε not only makes the H of Eq. (2)
become non-Hermitian, but is also able to drive a topological
phase transition.

Non-Hermiticity-induced higher-order topological states.
We then proceed to demonstrate the non-Hermiticity-induced
higher-order topological states in a 2D lattice with C3 sym-
metry. The unit cell of the system is shown in Figs. 3(a)
and 3(c). When ε = 1, the system corresponds to a triv-
ial C3-symmetric Hermitian system. The condition of ε �=
1 cannot only make the system non-Hermitian, but also
open a gap at the valley point K , as illustrated in
Figs. 3(b) and 3(d) [54]. Notably, the systems with ε <

1 and ε > 1 correspond to trivial and topological ones,
respectively.

The higher-order topological properties of the C3-
symmetric non-Hermitian systems can be described by the
topological index and symmetry indicator [69,71,72]. The
topological index is given by χ = ([K (3)

1 ], [K (3)
2 ]), where

[K (3)
1 ] = �K (3)

1 − �
(3)
1 , [K (3)

2 ] = �K (3)
2 − �

(3)
2 are the sym-

metry indicators. The ��(n)
p is the number of bands below

the band gap with the eigenvalue of C3 operator ei2π (p−1)/n

(p = 1, 2, . . . , n) at the high-symmetry point � = , K . We
find that χ = (−1, 1) when ε > 1 and χ = (0, 0) when ε < 1.
Remarkably, the topological bulk polarization P and frac-
tional corner charge Q can be determined by the topological
index [69]: P = ( 2

3 [K (3)
1 ] + 4

3 [K (3)
2 ])(a1 + a2) mod 1, where

a1,2 are primitive unit lattice vectors, Q = 1
3 [K (3)

2 ] mod 1.
When ε < 1, P = 0 and Q = 0. When ε > 1, P = 2

3 (a1 + a2)
and Q = 1/3. Due to the nonzero P and Q when ε > 1, we
can see that there are corner states in the bulk gap for a finite
system, as shown in Figs. 3(e) and 3(f).

Non-Hermitian effects on topological edge states in a 2D
honeycomb lattice. Here we discuss the non-Hermitian topo-
logical valley system in 2D honeycomb lattice, which has the
unit cell in Fig. 4(a). The effective non-Hermitian Hamilto-
nian at the valley point K (k → k0 + δk, k0 is the wave vector
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FIG. 3. Non-Hermiticity-induced higher-order topological states
in 2D C3-symmetric lattice. (a) The unit cell when ε < 1, which
contains nine sites. (b) The band structure of the non-Hermitian
system with ε = 1/3. The blue solid and gray dotted lines denote the
band structures with ε = 1/3 and ε = 1, respectively. (c) The unit
cell when ε > 1. (d) The band structure of the non-Hermitian system
with ε = 3. (e) The eigenvalues for a finite triangular system in (f)
with ε = 3. The red, blue, and gray points denote the corner, edge,
and bulk states, respectively. (f) The field distribution of topological
corner states at E = −2.58. The size of red points indicates the field
amplitude on the sites. Here t0 = 1.

of K) is [54]

Hk = vF δkx

(
1 + ε

2ε
σx + i

ε − 1

2ε
σy

)

+ vF δky

(
1 + ε

2ε
σy − i

ε − 1

2ε
σx

)
+ mσz, (7)

where ε �= 1, ma = −mb = m, and vF = − 3
2 t1a, a is the lat-

tice constant. Setting m �= 0 can open a gap at the valley point
K/K ′, as shown in Fig. 4(b). The topological properties of this
non-Hermitian valley system can be described by the valley
Chern number of the lower band: Cv = − sgn[m]

2 [54,73]. After
combining two lattices with different valley Chern numbers
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FIG. 4. Non-Hermitian topological valley system. (a) The unit
cell of the 2D honeycomb lattice. The t1 and t2 are the coupling
strengths, t2 = t1

ε
, ε �= 1. (b) The band structure of the non-Hermitian

system with ε = 2.0. Here t1 = −1.0, ma = −mb = m. The band
structures with m = 0.2 and m = 0 are represented by the blue solid
and gray dashed lines, respectively. (c) The dispersion of the topolog-
ical edge states on the zigzag interface between two non-Hermitian
systems with m = 0.25 and m = −0.25.

(m > 0 and m < 0) along the zigzag boundary, there are topo-
logical edge states existing in the bulk gap [74], as shown in
Fig. 4(c). These edge states have the dispersion relation [54]:
E = ± vF√

ε
k, where k is the wave vector of an edge state. This

dispersion shows that the ε can affect the propagation velocity
of edge states |vedge| = |∂kE | = |vF |√

ε
. When ε < 1 (ε > 1), the

propagation velocity of edge states can become faster (slower)
than in the Hermitian case: |vedge| > |vF | (|vedge| < |vF |).

Experimental proposals. The non-Hermitian systems
shown above can be achieved by electric circuits [75–79].
The electric diode, which makes the electric current flow
directionally, can be used to readily establish nonreciprocal
coupling [80]. As an example, we demonstrate the circuit
realization of a 1D non-Hermitian topological system in
Ref. [54]. There are many approaches for classical wave
systems to achieve nonreciprocal coupling. For example,
the nonreciprocal coupling in optical wave systems can
be achieved by exploiting dynamically modulated media
[81], metamaterials [82], or S-bending waveguides [83].
For acoustic or elastic wave systems, one can achieve
nonreciprocal coupling by using piezophononic media [84],
metamaterials [85], or an additional electric setup [17].

To summarize, we propose a systematic strategy to con-
struct real-eigenvalued non-Hermitian topological systems.
Compared with previous non-Hermitian systems whose real
spectra exist only when non-Hermiticity is relatively weak,
our systems exhibit energy spectra that are always real,
regardless of weak or strong non-Hermiticity. Furthermore,
the nonreciprocal-coupling-based non-Hermiticity is able to
affect many properties of topological states. For example, it
is able to determine the topology by inducing a topological
phase transition. Our work offers an avenue to explore
non-Hermitian topological physics [86–90], and would
be useful in novel photonic and acoustic devices with
nonreciprocal coupling.
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