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Non-Abelian braiding of Weyl nodes via symmetry-constrained phase transitions
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Weyl semimetals are arguably the most paradigmatic form of a gapless topological phase. While the stability
of Weyl nodes, as quantified by their topological charge, has been extensively investigated, recent interest has
shifted to the manipulation of the location of these Weyl nodes for non-Abelian braiding. To accomplish this
braiding it is necessary to drive significant Weyl node motion using realistic experimental parameter changes.
We show that a family of phase transitions characterized by certain symmetry constraints impose that the Weyl
nodes have to reorganize by a large amount, shifting from one high-symmetry plane to another. Additionally,
for a subset of pairs of nodes with nontrivial Euler class topology, this reorganization can only occur through a
braiding process with adjacent nodes. As a result, the Weyl nodes are forced to move a large distance across the
Brillouin zone and to braid, all driven by small temperature changes, a process we illustrate with Cd2Re2O7.
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Introduction. The discovery of topological insulators [1,2]
has reinvigorated an interest in band theory over the past
decade. The initial ideas behind topological insulators have
been extended to include different crystalline symmetries,
resulting in a plethora of topological characterizations [3–23],
and also to topological semimetals and superconductors
[24–26]. Within these, Weyl semimetals represent an ultimate
consequence of translational symmetry, allowing for locally
stable band crossings that carry a topological charge. More
recently, there has also been an interest in braiding Weyl
nodes residing in different band gaps in systems exhibiting
reality conditions, as this process can result in configurations
in which nodes in the same gap have similar charges. The re-
sulting obstruction for the nodes to annihilate is characterized
by a new type of multigap invariant known as the Euler class
[23,27–37].

The practical use of Weyl nodes requires their manip-
ulation with external parameters, and there is a growing
body of literature in this direction [38]. Examples include
the use of stress and strain [39,40], coupling to electromag-
netism and light [41,42], and disorder [43–46]. However,
in these proposals the Weyl nodes only move by a small
fraction of the Brillouin zone dimension with experimen-
tally realistic parameter changes, making the manipulation of
Weyl nodes impractical. Here, we explore a route to moving
Weyl nodes that combines insights from materials science
via temperature-driven structural changes with more funda-
mental theoretical insights that find their origin in symmetry.
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Namely, we show that in a particular class of structural phase
transitions, Weyl nodes need to travel a long distance across
the Brillouin zone to follow the relevant symmetry changes,
and these large displacements are driven by small temperature
changes. We first exemplify this concept using Cd2Re2O7 as
a material example, and we then provide a more fundamental
perspective setting the stage for a general mechanism. This
allows us to predict this behavior for a whole class of com-
pounds and symmetries.

Structural phase transitions. Cd2Re2O7 is an intriguing
material as it is the only known superconductor in the py-
rochlore family [47,48]. Interest in its superconductivity has
led to extensive exploration of its phase diagram under differ-
ent conditions [49]. As summarized in Fig. 1(a), Cd2Re2O7

crystallizes in a structure of cubic symmetry (phase I, Fd 3̄m)
[50] at ambient temperature and pressure. The structure can
be described as two interwoven pyrochlore lattices assem-
bled from Re4 and Cd4 tetrahedra, respectively, where the
centers of O6 octahedra coincide with the centers of Re4

tetrahedra. With gradual cooling, two low-temperature phases
with higher conductance appear successively at Ts1 =∼ 200 K
[51,52] and Ts2 =∼ 120 K [53,54], both exhibiting tetragonal
symmetry but lacking a center of inversion (phase II, I 4̄m2
and phase III, I4122). Very recently, a magnetic torque exper-
iment has revealed that the transition between phases II and
III is mediated by an additional phase of point group D4h or
D2 [55]. Given that this additional phase was not detected
in previous experiments with the exact same setting but a
relatively large temperature step of 2.5 K [56], the new phase
should only exist in a narrow temperature range around Ts2 of
at most 2.5 K.

The noncentrosymmetric lattice, strong spin-orbit cou-
pling, and metallic properties of the two well-characterized
low-temperature phases of Cd2Re2O7 naturally satisfy the
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FIG. 1. (a) Energy landscape of Cd2Re2O7. The space groups of
the three phases observed in experiments are shown on the energy
surface. The solid arrows indicate the path of the phase transition
during cooling and the dashed arrow indicates the Goldstone mode
fluctuating between phases II and III. (b), (c) Distortions of neighbor-
ing Re4 tetrahedra and O6 octahedra in (b) phase II and (c) phase III.
The Re and O ions are represented by the green and red vertices,
respectively. The displacement of each O ion is indicated by the
arrow attached to the ion. The subtle differences between the edge
length of Re4 tetrahedra responding to O ion movement are distin-
guished by the colors. The shaded area shows the dihedral mirror
plane falling along the “indigo” and “purple” edge of Re4 tetrahedra
and the curved arrow shows the twofold axis through the connecting
Re ion. (d) Saddle points on the energy surface from phase II to III
as a function of the root sum squared distance of atoms, where the
energy of phase II has set to zero.

prerequisites for nonmagnetic Weyl semimetals, providing
an ideal platform to study the movement of Weyl nodes
constrained by crystallographic symmetry changes. This in-
spires us to consider a smooth path connecting phases II and
III. The crystal structures of phases II and III are obtained
through a first-principles phonon calculation performed rel-
ativistically (including spin-orbital coupling) with a revised
Perdew-Burke-Ernzerhof generalized gradient approximation
functional for solids (PBEsol) [57] on phase I reported in
the Inorganic Crystal Structure Database [58] (see calcula-
tion details in Supplemental Material (SM) [59] and also
Refs. [60–63] therein), and the intermediate structures are
obtained using the nudged elastic band (NEB) algorithm
[64] to optimize a number of linear interpolated structures
between phases II and III. The results show that all fully
optimized intermediate structures belong to the same space
group, constituting a smooth transition path of F222 symme-

try. Including the start and end of the path (namely, phases II
and III), any crystal structure on the path can be interpreted
as a consequence of structural distortions of phase I, which is
dominated by Cd and O ion displacements. Figures 1(b) and
1(c) visualize the distortions of O ions occurring in phases
II and III. It is worth noting that two neighboring O6 octa-
hedra have displacements with opposite directions, thus the
inversion symmetry of the system is broken. Interestingly,
although the distortion does not have a Jahn-Teller origin
but instead is very likely driven by strong spin-orbital cou-
pling [65], it exhibits extremely similar behavior compared to
the Jahn-Teller effect occurring among d-orbital coordination
complexes in which Eg electronic states are coupled to Eg

vibrational modes. In phase II, the distortion conserves the
symmetry of the horizontal square of the O6 octahedra and
gives half of the O6 octahedra an elongation along the vertical
direction whereas the other half a compression. In phase III,
the horizontal square is distorted to a rhombus, which breaks
the vertical mirror planes that fall along the “indigo” and
“purple” edges of Re4 tetrahedra shown in Fig. 1(b). It is
also worth noting that in phase II the two neighboring Re4

tetrahedra are noncongruent; however, when it comes to phase
III, they become congruent via losing the mirror plane in
phase II and adding a twofold axis through the connecting
Re ion, as shown in Fig. 1(c). Such a change in symmetry
results in the conversion of the point group of the system
from D2d to D4. We show later that this transition from a
fourfold rotoinversion symmetry (S4z = IC−1

4z in D2d ) to a
proper fourfold rotation symmetry (C4z in D4) drives a major
topological transformation of the band structure in reciprocal
space.

As a final remark, we emphasize that the path proposed
in this work is not just a fictitious computational construct.
Its existence is strongly supported by group theory analysis
[66] and by the latest magnetic torque experiment performed
with extremely small temperature steps [55]. The phenomeno-
logical order parameter characterizing the cubic-to-tetragonal
phase transitions of Cd2Re2O7 corresponds to a twofold de-
generate Eu representation of the cubic point group, so it
makes sense that the NEB calculation has found a series of
orthorhombic intermediate phases of space group F222 (the
maximal common subgroup of phases II and III) which are
induced by a mixture of the two components of the represen-
tation. The result from the NEB calculation shows that the
energy difference of intermediate phases on the path is anoma-
lously small [�E � 0.3 meV/atom; see Fig 1(d)], which is of
the order of �T = 0.4 K for a structure traversing the whole
path. This extremely flat path leads to a quasicontinuous U (1)
symmetry of the energy landscape of Cd2Re2O7. Breaking
this symmetry was predicted to yield a Goldstone mode man-
ifesting as a structural fluctuation between phase II and phase
III with vanishing frequency and excitation energy, and this
has been observed by polarized Raman scattering and x-ray
diffraction experiments [67,68]. In particular, we have found
an energy local minimum on the path which has the same
energy as phase II, and we propose it as a candidate structure
for the newly discovered intermediate phase in Ref. [55].

Mechanism of Weyl node movement. Since the path con-
necting phases II and III preserves the symmetry of space
group F222, the key symmetry elements constraining the
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FIG. 2. (a) Weyl nodes in the Brillouin zone of phase II. The
chirality of the Weyl nodes is distinguished by the red and blue colors
of the balls/dots. The three C2T -invariant planes are highlighted.
The Brillouin zone polyhedron is shown in the lower left corner
for reference. (b), (c) The movement of the red and the blue Weyl
nodes as the phase transition smoothly progresses from phase II to
phase III. The thick arrows indicate the movement of the Weyl nodes
of interest, and the dashed arrows indicate the movement of their
symmetry-related partners. The bars below show the distances that
the Weyl nodes travel on the C2T -invariant planes, where |Ḡ| denotes
the cubic root of the volume of the Brillouin zone. See text for more
details.

phase transition are three twofold rotation axes along the kx,
ky, and kz directions, respectively: C2x, C2y, and C2z. Time-
reversal symmetry T is also preserved along the transition
path as no magnetic ordering has been observed in exper-
iments [69] or in our first-principles calculations. Hence,
there are three mutually perpendicular C2T -invariant planes
dividing the Brillouin zone polyhedron into eight equivalent
regions, on which state |ψk〉 can be mapped to itself by a
combination of symmetry operators C2iT (i = x or y or z).
Figure 2(a) shows the distribution of the Weyl nodes of
phase II formed by the two partially occupied bands closest
to the Fermi energy EF, whose main contributions are Re t2g

orbitals. There are a total of 20 pairs of Weyl nodes in the
whole Brillouin zone located within the energy window of
EF ± 100 meV. Considering the symmetry of the system,
there are four independent octets and two independent quar-
tets of Weyl nodes. All of them are pinned exactly on the

C2T -invariant planes, which is in line with the previous the-
oretical prediction that C2T symmetry is able to stabilize
Weyl nodes [6,23,70]. Additionally, due to the presence of
two dihedral mirror planes (kx = ky and kx = −ky planes)
the Weyl nodes flip chirality when mapped from one vertical
C2T -invariant plane to another, thus forming quartets of Weyl
nodes at fixed kz with alternating chirality. C2zT symmetry
then maps each quartet of Weyl nodes at kz to a quartet at
−kz with no change of chirality, thus giving rise to each
independent octet of Weyl nodes in Fig. 2(a) where the S4

symmetry maps each Weyl node at a fixed kz to a Weyl node
of opposite chirality at −kz. In contrast, the symmetries of
phase III require that each quartet of Weyl nodes at a fixed
kz has a unique chirality as imposed by C4z symmetry, and
similarly for the quartet mapped to −kz by C2zT , thus giving
rise to octets of Weyl nodes of the same chirality. While the
transition from one phase to another requires the splitting of
the octets into D2-symmetric quartets of the same chirality
(each contained in one of the two vertical C2T planes), the
intrinsic incompatibility between the D2d -symmetric octets of
alternating chirality and the D4-symmetric octets of the same
chirality enforces a qualitative rearrangement of the Weyl
nodes through the Brillouin zone across the structural phase
transition. It is worth noting that unlike the situation in real
space where each atom can move along three independent
degrees of freedom, Weyl nodes pinned on the C2T -invariant
planes in reciprocal space only have two degrees of freedom,
as a single Weyl node on a given C2T -invariant plane cannot
get out of that plane unless it recombines with another Weyl
node. Therefore, the Weyl nodes are forced to move a large
distance across the Brillouin zone as the structural phase tran-
sition occurs, despite the very small temperature change and
associated small atomic displacements in real space.

The trajectories of the Weyl nodes shown in Figs. 2(b) and
2(c) demonstrate the above scenario. In the initial configura-
tion the Weyl nodes on the two vertical C2iT -invariant planes
(i = x, y) are mirror images of each other. When the system
gradually approaches phase III with C4z symmetry, the four
“red” Weyl nodes with |kz| > 0 on the C2xT -invariant plane
first move vertically on the plane and then meet their C2y-
symmetric partners at the ky axis. After that, they transfer to
the C2zT -invariant plane and move toward their corresponding
C2z-symmetric partners until meeting at the kx axis. Finally
they leave the C2zT -invariant plane and stop somewhere on
the C2yT -invariant plane [as indicated by the red arrows in
Fig. 2(b)], forming a D4-symmetric octet of red chirality to-
gether with another four Weyl nodes on the C2xT -invariant
plane [indicated by the red arrows in Fig. 2(c)] which are
initially located on the C2zT -invariant plane and slightly sepa-
rated by the ky axis. It is worth noting that in order to migrate
from one vertical C2T -invariant plane to another, every Weyl
node indicated in Fig. 2(b) travels a quarter of the horizontal
C2T -invariant plane and moves up to 0.47 Å−1 in total, which
is 49% of the cubic root of the volume of the Brillouin zone.
Figure 2(c) shows another example of significant motion of
Weyl nodes. The four Weyl nodes with “blue” chirality that
are initially located on the horizontal C2zT -invariant plane first
meet at the kx axis, then each of them shifts over an arc on
the C2yT -invariant plane and merges with its C2z-symmetric
partner at the intersection of the C2xT - and C2yT -invariant
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FIG. 3. k-dependent local density of states (LDOS) for phases
(a) II and (b) III on the [001] surface, where gold (olive) color
represents high (low) LDOS. The diagonal dashed lines highlight the
projections of C2xT - and C2yT -invariant planes on the [001] surface.
The red and blue dots show the projected positions of bulk Weyl
nodes on the [001] surface.

planes, which is the C4z axis, with a total distance of 30% the
cubic root of the volume of the Brillouin zone.

Due to the bulk-boundary correspondence, the movement
of bulk Weyl nodes can also be traced in terms of the surface
Fermi arcs. Figures 3(a) and 3(b) show the surface states of
phases II and III on the [001] surface. We note that phase
II exhibits an ideal Weyl semimetal feature: two thick and
straight Fermi arcs connecting the projection of the C2xT -
and C2yT -invariant planes, which should be easily detected by
surface angle-resolved photoemission spectroscopy (ARPES).
To reach the fourfold rotational symmetry in phase III, the
Fermi arcs in phase II must be broken, therefore the Fermi
arcs in phase III are more local and not as obvious as in phase
II (see the video of the surface state evolution in the SM [71]).

C2-indicated locking of Weyl nodes and unlocking through
braiding. Crucially, we find that the long-distance movement
of a subset of Weyl nodes in Cd2Re2O7 is able to induce a
novel topological phase transition between two distinct Euler
classes [28,34,72]. This finding also reveals the insights that
the locking of the Weyl nodes on the C2T -invariant planes
in Cd2Re2O7 is essentially a consequence of nontrivial Euler
class topology, and as a result, a non-Abelian braiding process
must take place before Weyl node pairs transfer from one C2T
plane to another.

To understand better the above insights, we now call
the Weyl nodes considered so far the principal nodes, and
the node within the next energy gap below (or above), the
lower (higher) adjacent nodes. Taking as an example the
C2x-symmetric pair of principal nodes located within the hor-
izontal C2zT -invariant plane at kx > 0 whose trajectories have
been indicated by the blue arrows in Fig. 2(c), let us first
consider what would happen without braiding. In phase II,
the bands forming the principal nodes on the �X line have
opposite C2x eigenvalues (see the band structure in the SM
[73]). In the absence of braiding, the merging of the two
principal nodes on the �X line would induce a band inversion
along the C2x axis between two bands of opposite C2x eigen-
values, forming two unavoided band crossings on the �X line
that are protected by C2x symmetry (see also Ref. [74]). As
a consequence, the two principal nodes would scatter on the
�X line, thus remaining on the C2zT -invariant plane after their

merging. Such a scattering of Weyl node pairs confined on a
C2T -invariant plane is recognized recently to be associated
with a nontrivial C2T -Euler class topology [28]. To strictly
confirm this, we have numerically computed the Euler class
on a patch of the C2zT -invariant plane that contains the
two principal nodes under consideration while avoiding all
other nodes (see calculation details in the SM [73], and also
Refs. [28,75–78] therein), from which we obtain the Euler
class χC2zT = 1. The nonvanishing χC2zT also indicates an
equal C2zT -non-Abelian frame charge of the two principal
nodes [28,32,34,70,72], which should lead to a topological
obstruction to transferring them to the vertical C2yT -invariant
plane. However, we have seen in Fig. 2(c) that the movement
of two principal nodes successfully overcomes this topologi-
cal obstruction, which is impossible to take place if the princi-
pal nodes do not braid with the adjacent nodes below or above.
Indeed, as shown in Figs. 4(a)–4(f) with successive snapshots
of the band structure during the phase transition, we find that a
band inversion within the lower adjacent gap occurs along the
�X line, leading to the exchange of the C2x eigenvalue of the
lower band and giving rise to two lower adjacent nodes along
the C2x axis. We then observe that the two principal nodes
merge on the �X line, which now involves two bands of equal
C2x eigenvalue. As a result, the band inversion in the principal
gap along the �X line now induces avoided band crossings,
allowing the transfer of the two principal nodes from the
horizontal C2zT -invariant plane to the vertical C2yT -invariant
plane. On top of that, the appearance of the avoided band
crossing also implies that the C2zT - and C2xT -Euler classes
on patches that avoid the adjacent nodes are now both zero. In
summary, we find that the C2zT -Euler class in phase II readily
follows from the opposite nature of the C2x eigenvalues of the
bands forming the principal nodes. In this regard, the unlock-
ing of the Weyl nodes from the C2zT -invariant plane is indi-
cated by the exchange of the C2x-eigenvalue of the lower band,
which is induced by the braiding through an adjacent band
inversion. It is remarkable that the whole process can be ex-
perimentally probed by bulk temperature-dependent ARPES.

Generalizations. We emphasize that the physical manifes-
tations addressed in this work are controlled by symmetry,
and not by the details of the specific material involved. Other
materials have also been shown to undergo a structural phase
transition mediated by a Goldstone mode, such as the hexag-
onal manganites [79–81]. A common feature of these systems
is the breaking of the U (1) symmetry of their energy land-
scape (as an effect of the discrete point group symmetry of
the crystal) with discrete minima separated by small potential
barriers. While in our case this facilitates an unconventional
phase transition between two isomorphic but distinct crys-
tal structures, in the case of the hexagonal manganites, the
high-temperature phase P63/mmc (D6h) gives rise to two non-
isomorphic low-temperature phases P63cm (C6v) and P3̄c1
(D3d ), both of which exhibit a sixfold degenerate ground state.
Focusing on the noncentrosymmetric phase (P63cm) which is
the only one permitting Weyl nodes from a symmetry perspec-
tive, each discrete minimum corresponds to a distinct polar
lattice distortion (combining three Mn trimerizations and two
ferroelectric polarizations) [79,80,82,83]. This suggests that
our framework would also apply in the case of a transition
between two distinct polar phases. These questions, as well
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FIG. 4. (a)–(f) Snapshots of the band structure along the �X line during the structural phase transition. The “+” sign and “−” sign mark
the C2x eigenvalues of the bands with the same color as the symbol.

as studies into other symmetry groups and materials, provide
intriguing future research directions.

Conclusions and discussion. In conclusion, we have shown
that the structural phase transition in the materials science
sense can result in relatively large movements of Weyl nodes
due to symmetry changes across the transition. The tran-
sition also involves multiple interesting braiding processes
of Weyl nodes which then leads to a change in Euler in-
variant and thus a phase transition in the topological sense.
In addition, the transition offers an interesting route to
significantly move Weyl nodes and their associated Fermi
arcs using only moderate temperature changes. Although
the principles behind the mechanism are generic, we have
also discussed a specific material example in the form of
Cd2Re2O7. We note a recent high-throughput screening for
Weyl semimetals with fourfold rotoinversion symmetry [84],
and based on our findings it is worthwhile to explore whether
these candidates may have any phase transition from S4 to
C4, which would suggest similar physics to that reported
here.
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group classification of topological band-insulators, Nat. Phys.
9, 98 (2013).

[5] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and
R.-J. Slager, Topological Classification of Crystalline Insulators

through Band Structure Combinatorics, Phys. Rev. X 7, 041069
(2017).

[6] A. Bouhon and A. M. Black-Schaffer, Global band topology
of simple and double Dirac-point semimetals, Phys. Rev. B 95,
241101(R) (2017).

[7] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space groups,
Nat. Commun. 8, 50 (2017).

[8] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

L081117-5

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevB.95.241101
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/nature23268


CHEN, BOUHON, SLAGER, AND MONSERRAT PHYSICAL REVIEW B 105, L081117 (2022)

[9] R.-J. Slager, The translational side of topological band insula-
tors, J. Phys. Chem. Solids 128, 24 (2019).

[10] J. Höller and A. Alexandradinata, Topological Bloch oscilla-
tions, Phys. Rev. B 98, 024310 (2018).
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