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We study the formation of local magnetic moments in the strongly correlated Hubbard model within dynamical
mean-field theory and associate peculiarities of the temperature dependence of local charge χc and spin χs sus-
ceptibilities with different stages of local moment formation. The local maximum of the temperature dependence
of the charge susceptibility χc is associated with the beginning of local magnetic moment formation, while the
minimum of the susceptibility χc and double occupation, as well as the low-temperature boundary of the plateau
of the effective local magnetic moment μ2

eff = T χs temperature dependence are connected with the full formation
of local moments. We also obtain the interaction dependence of the Kondo temperature TK , which is compared to
the fingerprint criterion of Chalupa et al. [Phys. Rev. Lett. 126, 056403 (2021)]. Near the Mott transition the two
criteria coincide, while further away from the Mott transition the fingerprint criterion somewhat overestimates
the Kondo temperature. The relation of the observed features to the behavior of eigenvectors/eigenvalues of
fermionic frequency-resolved charge susceptibility and divergences of irreducible vertices is discussed.
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The localization of electrons in solids by correlation (in-
teraction) effects yields the formation of local magnetic
moments, which are crucial for explaining the observable
magnetic properties of some of the existing materials and
predicting new magnetic materials. Typical examples of
the importance of local magnetic moments include some
aspects of the physical properties of high-temperature su-
perconductors in the underdoped regime [1,2], modern
explanations of the ferromagnetism of transition metals (see,
e.g., Refs. [3–7]), as well as the magnetic properties of
iron pnictide superconductors [8,9]. Local magnetic moments
in the above-mentioned substances appear due to electronic
correlations in proximity to the (orbital-selective) interaction-
induced Mott metal-insulator transition (MIT) (see, e.g., the
discussion in Refs. [10–12]), and/or due to the Hund’s ex-
change interaction [3,8,9,13,14].

Although the concept of MIT was introduced by Mott in
1949 [15], quantitative studies of the Mott transition became
possible with the discovery of the dynamical mean-field the-
ory (DMFT) [16]. Originally, the MIT was described mainly
on the basis of single-particle properties, e.g., spectral func-
tions, densities of states, etc. The three-peak structure of the
density of states near MIT reflects the coexistence of local-
ized electrons (corresponding to the states in the Hubbard
subbands) with itinerant degrees of freedom, described by
the quasiparticle peak (see, e.g., Refs. [12,16]). The develop-
ments of the nonlocal diagrammatic extensions of DMFT [17]
yielded new insight on the nonperturbative aspects of MIT
via studying the divergences of the two-particle irreducible
vertices [18–24]. These divergences were interpreted as pre-
cursors of local moment formation [22,25]. The formation of

local magnetic moments was also recently discussed within
the nonlocal extensions of DMFT in Ref. [26].

In the presence of conduction (itinerant) electrons (i.e., on
the metallic side of MIT) the local moments are screened be-
low a certain characteristic (Kondo) temperature. In contrast
to the standard Kondo effect, in strongly correlated sub-
stances the role of magnetic impurities is played by naturally
occurring local magnetic moments and the same electrons
participate in the formation of local moments and their screen-
ing. This reflects the dual role of d electrons, which was
first discussed for transition metals by Vonsovskii [27] and
more recently emphasized for pnictides [28–31]. Although
the presence of a characteristic (Kondo) temperature TK near
MIT, below which almost formed local moments are screened
by itinerant electrons, was emphasized in the early stages of
DMFT studies [32] and its relation to the frequency depen-
dence of the electronic self-energy and spectral functions was
discussed [32–34], the properties of Kondo screening near
MIT were not intensively studied. Being generally larger than
the Fermi liquid coherence temperature [35], TK determines at
the same time the spin dynamics at a given lattice site, which
makes this temperature physically important.

The Kondo temperature of local magnetic moments in
strongly correlated systems can be extracted from a compari-
son of the local spin susceptibility to that for the Kondo model
[36,37]. This approach was applied to extract the Kondo
temperature of Hund’s metals [5,7,38–42], as well as for the
description of Kondo screening in the Anderson impurity
model [22,25] and the Hubbard model in the vicinity of MIT
[32,39]. Therefore, it provides a unified view on the Kondo
screening in strongly correlated substances.
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We note that while the single-impurity Kondo model can be
considered as an effective low-energy model for the Anderson
impurity model, its applicability for describing screening in
lattice models, such as the Hubbard model, is not a priori
clear. On the other hand, due to the reduction of the lattice
problem to the impurity problem by DMFT, one can hope that
at least within this theory the Kondo model is an appropriate
effective low-energy model for lattice problems too.

Recently, the two-particle criterion for the Kondo temper-
ature in terms of frequency-dependent charge susceptibility
was formulated for the Anderson impurity model in Ref. [25].
It was suggested that this criterion also applies to the Hub-
bard model in the vicinity of MIT. The generalization of this
criterion for multiorbital systems and fillings away from half
filling is however not obvious. A somewhat different criterion
of local moment formation was also proposed in Ref. [26].

In the present Letter we consider the formation of local
magnetic moments in a single-band strongly correlated sys-
tem and their screening properties on the verge of MIT. We
study local charge susceptibilities and spin susceptibilities
within DMFT to provide a unified view of local magnetic
moment formation in the model considered.

In particular, we address the following topics: (i) the inter-
action dependence of the temperatures of the beginning and
the full formation of local magnetic moments, as well as their
screening (Kondo) temperature, and (ii) the connection of
Kondo screening to peculiarities of static charge susceptibility
and double occupancy.

Model and method. We consider a half-filled Hubbard
model on the square lattice (the obtained results are however
expected to be qualitatively applicable for an arbitrary density
of states)

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

ni↑ni↓, (1)

and use the half bandwidth D = 4t = 1 as the unit of energy.
Due to the assumption of locality of the self-energy,

the DMFT [16] is a convenient tool to study the forma-
tion and screening of local magnetic moments, which can
be directly traced at the impurity site. To trace the forma-
tion of local moments we calculate in the self-consistent
solution of DMFT the local spin susceptibility χs(iωn) =∫ β

0 〈Sz(τ )Sz(0)〉 exp(iωnτ )dτ , where Sz(τ ) is the impurity spin
projection at the imaginary time τ , β = 1/T (Boltzmann’s
constant is put to unity), and ωn = 2nπT are the bosonic
Matsubara frequencies. We also consider local static charge
susceptibility (local charge compressibility) dn/dμ = χc(T ),
where the change of the chemical potential dμ acts only at the
impurity site,

χc(T ) =
∫ β

0
(〈n(τ )n(0)〉 − 〈n(0)〉2)dτ =

∑
νν ′

χνν ′
c , (2)

n(τ ) = ∑
σ c†

iσ (τ )ciσ (τ ), and Matsubara fermionic frequency
ν, ν ′-resolved susceptibilities χνν ′

c are expressed via two- and
single-particle impurity Green’s functions (see Supplemental
Material [43]).

For computations, we mainly use the continuous-time
quantum Monte Carlo (CT-QMC) impurity solver, imple-
mented in the IQIST software package [46,47]. At strong

FIG. 1. Temperature dependence of the square of the effective
local moment μ2

eff = T χs(0) at various values of the Coulomb inter-
action U . The Kondo temperature TK is obtained from the fit to the
universal dependence for the Kondo model (KM) [36,37] (black line)
at low temperatures. The open black circles denote the characteristic
boundaries of the plateau of μ2

eff , which is defined by the values of
temperature at which μ2

eff reaches 0.975 of its maximal value.

coupling (U � 2.3) near MIT we use numerical renormal-
ization group (NRG) approach [48] within TRIQS-NRG
Ljubljana interface package [49].

Results. We consider first the static local spin susceptibil-
ity χs(0) (see Fig. 1). To compare the obtained results with
the Kondo model [36,37] and unambiguously determine the
Kondo temperature, we plot the square of the effective local
moment μ2

eff = T χs(0) vs T/TK , where TK is determined by
the fit of low-temperature data to the results of the Kondo
model (cf. Refs. [22,25]). With increasing U the maximum of
the temperature dependence of μ2

eff forms a plateau at 5TK �
T � 50TK , whose height approaches μ2

eff = 1/4, reflecting
the formation of local magnetic moments. As the temperature
is lowered, the effective local moment μeff decreases due
to screening by itinerant electrons. At T � TK the obtained
μ2

eff approaches the universal temperature dependence for the
Kondo model, which shows the complete screening of local
moments in this temperature regime and the correctness of
the definition of the Kondo temperature TK .

In Fig. 2 we show the frequency dependence of local dy-
namic spin susceptibility χs(ω) on the real frequency axis
(obtained by using Pade approximants [50]). The frequency
dependence of the real part of susceptibility has a form of
the peak, whose width reflects an inverse lifetime of local
moments h̄/tloc [4,51,52]. At U = 2 in the temperature inter-
val on the plateau of μ2

eff (T ∼ 10TK ), the lifetime tloc ∼ h̄/T
shows well-formed local moments. With a further decrease of
temperature (screening regime) the peak is strongly broadened
(T tloc decreases) due to screening effects. At low temperatures
we find almost universal frequency dependence with tloc ∼
h̄/TK (cf. Ref. [34]).

To study the behavior of charge degrees of freedom in
the local moment and screening regimes, in Fig. 3 we show
the temperature dependence of local charge compressibility
χc(T ). With decreasing temperature the local compressibil-
ity first increases due to an increase of the coherence of
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FIG. 2. Real frequency dependence of the real part of local spin
susceptibility χs(ω) at the value of the Coulomb interaction U = 2.
The inset shows the frequency dependence in units of TK at various
U and T = 0.01.

quasiparticles. At lower temperatures, the decrease of local
compressibility is observed, which is associated with local
moment formation (cf. Refs. [20,25]). Therefore, the posi-
tion of the maximum of χc(T ) dependence, which occurs
at Tc,max ∼ (10–50)TK , is used in the following as a charac-
teristic temperature of entering the preformed local moment
(PLM) regime. With further reducing temperature, at Tc,min ∼
(5–10)TK we observe a characteristic minimum of local com-
pressibility, which we associate with the full formation of
local moments, i.e., maximal portion of electrons participat-
ing in the local moment formation. A further increase of
local compressibility reflects the screening of local moments
(which is denoted in the following as the SCR regime), oc-
curring as a consequence of virtual transitions from the local
moment to itinerant states.

As we discuss in the Supplemental Material [43], the in-
crease of the local compressibility below Tc,min is provided by
the lowest (negative) eigenvalues of susceptibility χνν ′

c (cor-
responding to even in frequency eigenfunctions), which are
related to the irreducible vertex divergences. We also compare

FIG. 3. Temperature dependence of local static charge suscepti-
bility χc at various values of the Coulomb interaction U . The open
black circles indicate local minima and maxima of χc.

FIG. 4. Phase diagram showing the dependence on the Coulomb
interaction U of the Kondo temperature TK (black line with circles),
the temperatures Tc,max and Tc,min of the maxima and minima of
local charge compressibility χc(T ) (blue dashed line with crosses
and purple dashed line with triangles, respectively), and minima of
double occupation (green dashed line with squares). The shaded area
corresponds to the “plateau” of μ2

eff (T ) from Fig. 1, bounded by
the temperatures Tc,max. The red dashed line with asterisks shows
the Kondo temperature according to the “fingerprint” criterion of
Ref. [25]. PLM denotes the preformed local moment regime, SCR
the regime of local moment screening, and FL stands for the Fermi
liquid state. The critical interaction Uc2 of the MIT taken from
Ref. [54] is indicated by the blue line, and irreducible vertex diver-
gences [19] are shown by yellow and orange lines. The inset zooms
the region near the MIT.

[43] the above discussed temperature dependence of local
compressibility to that for double occupation 〈n↑n↓〉, which
describes the average value of the square of the local spin
〈S2〉 = (3/4)(1 − 2〈n↑n↓〉). Similarly to local compressibil-
ity, the double occupation has a minimum at approximately
the same temperatures Tc,min. Notably, the double occupation
only slightly increases below Tc,min, in contrast to the local
compressibility χc, which almost recovers at low temperatures
its maximal value at the temperature Tc,max. This reflects the
difference between electrons participating in virtual transi-
tions and the number of electrons participating in screening at
a given time. Instantaneously, only a small portion of electrons
can participate in screening at half filling, since most of them
already form local magnetic moments. However, due to virtual
transitions, substantial screening effects can be achieved at a
given site of the lattice over long timescales. According to
the thermodynamic relation (∂S/∂U )T = −(∂〈n↑n↓〉/∂T )U

(cf. Ref. [53]), the entropy S reaches a local maximum as a
function of U at the boundary of the PLM and SCR regions.
This reflects maximal spin degeneracy, which occurs in the
regime of fully formed local moments.

The phase diagram, summarizing the above results, is
shown in Fig. 4. The obtained boundary of the beginning
of the formation of a local magnetic moment correspond-
ing to the temperatures Tc,max of maxima of local charge
compressibility is qualitatively similar to the interaction de-
pendence of the local moment formation, obtained recently
in Ref. [26]. The interaction dependence of the temperatures
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Tc,max repeats also qualitatively the line of the first diver-
gence of the irreducible charge vertex, obtained previously
in Ref. [25]. At first glance, this confirms the interpretation
of vertex divergencies as a trace of local moment formation,
proposed in Ref. [22]. The temperatures Tc,max are however
somewhat larger than the temperatures, at which first diver-
gence of the irreducible charge 
irr vertex occurs, which may
indicate that the local moment formation starts, in fact, ear-
lier than the vertex 
irr diverges. Also, the first divergence
line is characterized by odd in frequency eigenfunctions of
the charge susceptibility χνν ′

c [19], while only even in fre-
quency eigenfunctions contribute to local compressibility (see
Refs. [22–24,55] and the Supplemental Material [43]).

The temperatures Tc,min, corresponding to the minima of
χc(T ), as we have discussed above, determine the complete
formation of local magnetic moments, and separate the region
of partially formed local moments (at T > Tc,min) and their
subsequent screening (at T < Tc,min). The location of this
boundary, as it is mentioned above, appears to be very close
to the temperatures of the minima of the double occupancy
(green dashed line with squares); the temperatures Tc,min are
also sufficiently close to the low-temperature boundary of
the plateau of μ2

eff . On the other hand, as we discuss in the
Supplemental Material [43], the temperature scale Tc,min is
related to the half width of the central (quasiparticle) peak,
which confirms that the screening of the local moment below
Tc,min (and change of the temperature dependence of μ2

eff from
the plateau to the Kondo behavior) occurs due to states at the
quasiparticle peak of the spectral function. We also note that
the minima and maxima of local compressibility, as well as
Hubbard subbands of the spectral function, are obtained only
above the interaction U , at which the first vertex divergence
occurs (see also Ref. [56]). With increasing interaction the
line Tc,min approaches the endpoint of the critical interaction
Uc2 of MIT, where it joins with the crossover line between
the bad metal and Mott insulator (not shown). This reminds
us of a change of the critical exponent of resistivity ρ ∼ T β

from β > 2 to β < 2 at the boundary of a similar shape,
located near the Widom (crossover from metal to insulator)
line, discussed some time ago for frustrated magnetic systems
[57]. The boundary between PLM and SCR regimes also qual-
itatively follows the bendings of irreducible vertex divergence
lines, obtained in Ref. [19], which allows us to associate these
bendings with the PLM-SCR crossover.

At T < TK the Fermi liquid state of screened local mo-
ments appears; the interaction U dependence of the Kondo
temperature is shown in Fig. 4. For comparison, we also
plot the results for the Kondo temperature from the “finger-
print” criterion, based on a comparison of χνν ′

c at the lowest
fermionic Matsubara frequencies [25,43]. One can see that
the two definitions of Kondo temperatures yield close results
near MIT, providing a “universal” definition of the Kondo
temperature in this regime. In agreement with the results of
Ref. [34], we obtain therefore two different energy scales
near MIT, the Kondo temperature and Tc,min. However, with

a decrease of the Coulomb interaction, the “fingerprint” cri-
terion yields an overestimation of the Kondo temperature and
turns into the boundary of the divergence of the irreducible
vertex, obtained in Ref. [19], above the temperature of the
bending of the first divergence line. This shows that away from
MIT not only the lowest Matsubara frequencies contribute to
screening, which reflects the widening of the central peak of
the spectral function with decreasing interaction. It is plau-
sible to assume that the screened state is described by some
linear combination of odd in frequency eigenfunctions of the
susceptibility χνν ′

c . This would be consistent with the fact that
the local charge compressibility, which is contributed by even
eigenfunctions of χνν ′

c , does not show any peculiarities at the
Kondo temperature.

In summary, we have studied the relation between spin and
charge responses in different stages of local moment forma-
tion and screening. The formation of a local magnetic moment
is signaled by the plateau of the temperature dependence of
the effective magnetic moment μ2

eff = T χs(0), the minimum
of local charge susceptibility, and double occupation. With
further reducing temperature the local moment is screened,
the effective moment decreases, while local charge compress-
ibility and double occupation increase. A strong increase of
charge susceptibility versus a weak increase of double occu-
pation demonstrates the importance of virtual transitions in
local magnetic moment screening. Since local charge com-
pressibility is affected by the formation of a local moment, we
associate this process with a contribution of even in frequency
eigenfunctions of the susceptibility χνν ′

c . Full screening of the
local moment occurs at T < TK . We show that in the vicinity
of MIT, TK is correctly described by the fingerprint criterion,
while further away from the transition the latter criterion
somewhat overestimates the Kondo temperature.

In the present Letter, we neglect magnetic correlations due
to the long-range order in the ground state. In this respect, the
results are applicable to frustrated lattices and can be used to
describe peculiarities of the spin liquid state [58–60]. More
generally, the results of this Letter can be further used for the
description of materials with almost formed local moments,
such as Hund’s metals, systems in the vicinity of MIT, etc.
The relation of the obtained results to the recently pointed
topological nature of MIT [61] has to be further investigated.
Analytical studies of the relation of charge and spin responses
in systems with local moments are also of certain interest.
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