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The existence of localization and mobility edges in one-dimensional lattices is commonly thought to depend
on disorder (or quasidisorder). We investigate localization properties of a disorder-free lattice subject to an
equally spaced electric field. We analytically show that, even though the model has no quenched disorder, this
system manifests an exact mobility edge and the localization regime extends to weak fields, in contrast to gigantic
field for the localization of a usual Stark lattice. For strong fields, the Wannier-Stark ladder is recovered, and the
number of localized eigenstates is inversely proportional to the spacing. Moreover, we study the time dependence
of an initially localized excitation and dynamically probe the existence of mobility edge.
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Introduction. Anderson localization [1], a universal and
extensively studied quantum phenomenon, reveals that the
single-particle eigenstates can become exponentially local-
ized in presence of random disorder. In systems beyond two
dimensions, an energy-dependent localization transition may
occur as a function of disorder strength [2,3] in which mobility
edge (ME) appears as an energy threshold EME separating the
localized and extended eigenstates.

In one dimension (1D), when the random disorder is
replaced by a quasirandom incommensurate potential (the
Aubry-André-Harper model [4,5]), the system manifests the
quantum phase transition, albeit with an energy-independent
transition (no ME), i.e., all localized eigenstates or all ex-
tended, depending on disorder strength. In incommensurate
lattices, ME can be obtained by slowly varying the on-site
potential [6–9], introducing a long-range hopping [10–13],
deforming the on-site potential [14], or by the so-called
mosaic lattices [15,16] where the quasiperiodic potential is
inlaid with equally spaced sites of zero potential. The exis-
tence of ME in low-dimensional open systems enables strong
dephasing-assisted quantum transport [17], which can be
further enhanced by a periodic driving [18,19], current rec-
tification [20,21], and strong thermoelectric response [22,23].

However, neither random disorder nor quasiperiodic po-
tential is essential for the rise of localized eigenstates. We
refer to the lattice in the absence of the random or quasiran-
domness as a disorder-free model. The notion of disorder-free
localization can be traced back to the Wannier-Stark lattice
[24–28] where a constant electric field applied to the lattice
(resulting in a tilted potential) may give rise to exponentially
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localized states. These eigenstates can be determined exactly
as |m〉 = ∑

n Jn−m(2J/F )|n〉 [25], where Jν (z)’s are Bessel
functions of the first kind of hopping strength J and con-
stant force F . For F > 2J , all the eigenstates are localized,
i.e., there is no energy-dependent ME. It took a quarter of a
century for experimental evidence to emerge [29,30], proving
the equally spaced energy spectrum (Wannier-Stark ladder),
and later in recent experiments involving interaction [31–36].
Recent works show that in the presence of particle interac-
tion, the Stark lattice exhibits robust many-body localization
[37–40], which may be destructed by dephasing noise [41]
or coherent/incoherent drive [42,43]. However, the existence
of ME in noninteracting disorder-free systems is not well
established.

It is natural to ask whether random disorder or quasidisor-
der is at all an essential ingredient for a system to manifest
ME. In this Letter, we propose a tractable disorder-free 1D
Stark lattice in the equally spaced mosaic model and ana-
lytically prove that it exhibits exact ME. Remarkably, the
Wannier-Stark ladder is recovered in the localized regime, and
the fraction of localized eigenstates is inversely proportional
to the lattice spacing parameter. We also study the time-
dependent survival probability of an initially localized wave.
The experimental realization of this model may follow from
the original proposal of mosaic model [15], which involves a
spin-dependent potential in a chain of ultracold atoms where
the odd (even) lattice sites experience nonzero (zero) potential
or, alternatively, in a superlattice superimposed by an electric
field where one of the layers is neutral.

Model. We consider a 1D tight-binding Hamiltonian with
Stark effect in the so-called mosaic lattice [15] of length L
parametrized by an integer κ ,

H = −J
∑

n

(c†
ncn+1 + H.c.) +

∑
n

εnc†
ncn, (1)
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where

εn =
{

Fn cos φ, n = κl,
0, otherwise. (2)

Here cn is the annihilation operator at site n = 0–2, . . . , L −
1; J is the nearest-neighbor hopping, F is a constant force, and
l = 0–2, . . . , N − 1. The on-site potential εn is introduced so
that the model has a well-defined phase φ, which is needed to
calculate the ME; it has no physical significance.

This model has the Stark potential on every κth site and
zero otherwise. Since the potential occurs with interval κ ,
we can introduce a supercell containing the nearest-κ sites.
If the model contains N supercells, the lattice length will be
L = κN .

Mobility edge. We will show that this model exhibits ex-
act ME for κ > 1. This can be performed by studying the
Lyapunov exponent (LE), which can be obtained exactly by
applying Avila’s global theory [44]. We first represent the
eigenequation Eun = un+1 + un−1 + εnun (obtained by taking
H |ψ〉 = E |ψ〉, |ψ〉 = ∑

n un|n〉) in the form of(
un+1

un

)
= Tn

(
un

un−1

)
, (3)

where the transfer-matrix Tn is given by

Tn =
(

E − εn −1
1 0

)

=
(

E − Fκl cos φ −1
1 0

)(
E −1
1 0

)κ−1

. (4)

Using matrix eigendecomposition, we can express the
(κ − 1)-th power of the matrix as

(
E −1
1 0

)κ−1

=
(

aκ −aκ−1

aκ−1 −aκ−2

)
, (5)

with the coefficients,

aκ = 1√
E2 − 4

[(
E + √

E2 − 4

2

)κ

−
(

E − √
E2 − 4

2

)κ
]
.

(6)

The LE is

γ (E ) = lim
L→∞

1

2πL

∫
ln ‖TL(φ)‖dφ � 0, (7)

where TL = ∏L=κN
n=1 Tn and ‖ · ‖ denotes a matrix norm.

Now, we are going to use Avila’s theory to find the LE.
Since Tn(φ) has a holomorphic extension to the neighbor-
hood of Im φ, we can define Tn,ε(φ) = Tn(φ + iε). By letting
ε → ∞, the transfer matrix becomes

Tl (φ + iε) = κ

2
le−iφe|ε|

(−Faκ Faκ−1

0 0

)
. (8)

Thus, by a direct computation, we get |TL| = N!|F
2 eεκaκ |N .

Within the Stirling’s approximation, ln N! ≈ N ln N − N , we

FIG. 1. Inverse participation ratio (IPR) and energy spectra for
φ = 0 and L = 100 (open boundary conditions) with (a) κ = 2 and
(b) κ = 6. The black solid curves represent the exact ME from
Eq. (11) whereas yellow dashed curves are the approximate ME,
ẼME = (2/F )1/(κ−1). The exact and approximate MEs coincide for
κ = 2.

have

κγε→∞(E ) = ln
∣∣∣F

2
aκ

∣∣∣ + |ε| + ln(κN ) − 1. (9)

According to Avila’s global theory as well as in Refs. [45–48],
the energy E belongs to a pointlike spectrum of H , i.e., local-
ized states, iff κγε(E ) > 0. Hence, for κγε(E ) = 0 it is either
critical or delocalized (continuous spectrum). The theory also
shows that as a function of ε, the Lyapunov exponent is a
convex piecewise linear function with integer slopes. As we
can see in the above, the slope of γε(E ) with respect to ε

for ε → ∞ is exactly 1. However, in the neighborhood of
ε → 0+, the slope might be 1 (when E is in the spectrum) or 0
(when E is not). Thus, if E lies in the spectrum of the Hamil-
tonian H , we have κγε(E ) = max{ln |F

2 aκ | + ln(κN ) − 1, 0}.
The solution of Eq. (4) for F = 0 behaves, such as un ∼

exp[±γ0(E )n] [49], which has the localization length of

ξ (E ) = 1

γ0(E )
= κ

ln |Faκ/2| . (10)

Note that we have excluded ln(κN ) − 1 since it is just a
constant due to the unbounded nature of the potential and
can be absorbed by wave-function normalization. Reference
[49] also shows that the Lyapunov exponent is proportional
to ln(FN ). When |Faκ | < 2, ξ → ∞ and, thus, the cor-
responding eigenstate is delocalized. Hence, the MEs are
determined by

|Faκ | = 2. (11)

This is the central result of this Letter. For instance, for κ =
1 case (the Stark lattice; no ME) the localization transition
occurs at F = 2, whereas for κ = 2 the MEs are EME = ±2/F
and for κ = 3, EME = ±√

1 ± 2/F . In our model, each case
only possesses a single ME, which is the one with the highest
EME. This is because in this model the energy of localized
states is always higher than the extended ones for all κ (see
Fig. 1).

The ME can also be obtained more simply by using a
self-consistent theory [50]. That is, by studying the imagi-
nary part of the self-energy obtained from the local Green’s
function, Gn(t ) = −i�(t )〈n|e−iHt |n〉. To the first order of the
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self-energy expansion, EME obeys [50]

〈〈ln[(EME − εn)2]〉〉 − ln J2 = 0, (12)

where 〈〈O〉〉 = 1
N0

∑
i0

1
2π

∫
Odφ denotes the average over φ

and all the possible end sites i0 (the number of which is N0),
e.g., if κ = Q then there are Q kinds of end sites: One with the
Stark potential, and the Q − 1 others with zero potential. For
κ = 2, we get the same result as the previous method from
Avila’s theory, EME = 2/F . Note that for κ > 2, the mosaic
model has repeating the zero potential of length more than
two. This typically demands a higher-order theory which can
be obtained in a recursive manner from the self-consistent
theory [51]. However, for our model the first-order approxi-
mation, which results in ẼME = (2/F )1/(κ−1) for any κ > 1,
performs relatively well for small κ’s. This is particularly
useful since the exact result [Eq. (11)] may require solving
a high-order polynomial equation.

Localization properties. We numerically diagonalize the
model defined in Eq. (1) for L = 100 sites with open boundary
conditions; φ = 0 is set hereafter. The degree of localiza-
tion of an eigenstate can be quantified using the IPR. The
IPR for a kth normalized eigenstate ψk is given from the
moment,

I (k)
q =

∑
n

∣∣u(k)
n

∣∣2q ∝ L−Dq (q−1), (13)

by choosing q = 2, whereas Dq is the fractal dimension. For
localized eigenstates, Iq = 1 or Dq = 0, for an ergodic state,
Iq = 0 (order of 1/L) or Dq = 1, and 0 < Dq < 1 for fractal
states [52–55]. The IPR and energy spectra for κ = 2 and
κ = 6 are shown in Figs. 1(a) and 1(b), respectively. We super-
impose the IPR with the analytical result from Eq. (11) and the
approximate one ẼME. It can be seen that the exact EME’s are
in excellent agreement with the numerical IPR map, whereas
ẼME’s match qualitatively for all κ and always underestimate
the localization edge for F/J � 1. For κ = 6, Fig. 1(b), ẼME

slightly deviates from EME, but is still accurate, particularly,
for large F/J .

The important feature of the energy spectra is that localized
states appear even with weak forces F � J as opposed to a
gigantic electric field corresponding to F > 2J in the Stark
lattice, and the Wannier-Stark ladder, i.e., equally spaced en-
ergy levels and position of the eigenstates, is recovered in
high F/J limit as can be seen clearly in Fig. 1(b). In this
limit, we numerically find that the localized eigenstates form
a Wannier-Stark ladder with E loc

k = κFk − (1 − 1/κ )κLF ,
whereas the extended states are nearly degenerate with
|Ek|/F → 0. The maximum energy of the localized regime
grows unbounded in thermodynamic limit since max(Ek ) =
LF , independent of κ . There are the highest �L/κ
 − 1 ex-
ponentially localized eigenstates, each occupies a nonzero
part of the potential εn (one per supercell except for an edge
site, n = 0), with energies matching the potential heights. The
lower spectrum contains extended eigenstates, the number of
which is �(1 − 1/κ )L�, and there are κ − 1 gaps [see also the
partitions in Figs. 2(a) and 2(b)].

A way to discriminate among localized, fractal, and er-
godic eigenstates is by analyzing the level spacings of the
eigenenergies Ek (arranged in increasing order), which are

FIG. 2. (a) and (b) Level spacing so−e (blue �) and se−o (orange
◦), and (c) and (d) eigenstate D2 (orange ♦) for L = 2500 and a
large force (F = 10J). Columns (a) and (c): κ = 2 and columns
(b) and (d): κ = 4. Vertical dashed lines divide the levels into κ

equal partitions in which the rightmost partition contains localized
eigenstates. The left κ − 1 partitions, containing L(1 − 1/κ ) states,
are extended.

the odd-even (even-odd) spacings so-e
k = E2k+1 − E2k (se-o

k =
E2k − E2k−1). Localized levels will have overlapping so-e

k and
se-o

k values, whereas the ergodic levels are doubly degenerate
with a gap [4]; fractal states have strongly scattered levels.
Figures 2(a) and 2(b), and the corresponding D2 in Figs. 2(c)
and 2(d), highlight the appearance of κ equal partitions of the
eigenstates in the level spacings for every case. The localized
states are located at the rightmost partition. All the extended
eigenstates are degenerate except at partition edges. Every
partitions edges corresponds to the spectral gaps in Fig. 1. In
addition, the numerical study indicates that in the thermody-
namic limit L → ∞, these gaps are persistent.

The extended states with energies Ek��(1−1/κ )L� are non-
ergodic since 0 < D2 < 1; particularly, the ones at partition
edges. The level spacing is neither gapped nor scattered,
which indicates the absence of fractality that typically occurs
in disordered or an incommensurate lattice. This peculiarity is
related to the continuity of Bessel function Jn−m(F/2J ) as the
solution for κ = 1. There are no sharp transitions as F → 2J
and become localized to one site. For our mosaic lattice, one
can regard the low-energy wave function as a combination of
Bessel-like amplitude and solution of a regular lattice with a
Dirac comb potential, although the exact solution is not found
at present. We numerically find κ − 1 blocklike transitions of
D2 in Figs. 2(c) and 2(d). Every eigenstate in the partition
edges is localized within the leftmost supercell (not shown).
States with higher energies are increasingly spread out until
they fill the entire lattice (D2 = 1) for the state just before the
next partition edge. Note that another model with nonergodic
extended states do exist, such as the generalized Rosenzweig-
Porter (GRP) model [56]. In contrast to the nearest-neighbor
hopping used in our model, GRP contains random long-range
hopping.

Excitation dynamics. To dynamically probe the existence
of ME, we study the time dependence of a Gaussian wave
packet centered at Ek0 , that is, |�(0)〉 ∝ ∑

k exp[−i(k −
k0)2/2σ 2]|ψk〉 up to a normalization constant. We calculate
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FIG. 3. Survival probability f (t ) (L = 100, F/J = 10, and κ =
2) for the wave packet centered at (a) k0 = kloc − L/4 (extended),
(b) k0 = kloc + L/4 (localized), (c) k0 = kloc (crosses ME), and
(d) analytical calculation for (c). Here kloc = 50.

the survival probability [57],

f (t ) = |〈�(t )|�(0)〉|2 =
∣∣∣∣∣
∑

k

|〈ψk|�(0)|2e−iEkt

∣∣∣∣∣
2

, (14)

which is the probability of finding the initial state after time
t . We can analytically calculate f (t ) by considering the ther-
modynamic limit and dividing the summation into extended
(k � kloc) and localized (k > kloc) states where kloc = �(1 −
1/κ )L�. For localized wave packets �(0), we assume that k0 is
deep in the Wannier-Stark ladder with E loc

k so that the summa-
tion extends to infinity and small σ 2. To see the effect of ME,
we allow the tail to cross ME

∑
k�kloc

|〈ψk|�(0)〉|2 ≈ � and
with a common energy ε � F . This approximation is possible
because the extended spectrum is effectively degenerate (aver-
age energy |E |/F ∼ 10−3 for F = 10J and κ = 2) except for
the states near the partition edges (|E |/F ∼ 0.1 at maximum).

Thus, we get f (t ) proportional to

�2 + ϑ3

(
κFt

2
, e−α

)2

+ 2�ϑ3

(
κFt

2
, e−α

)
cos(θ + ε)t,

(15)
where α = 1/σ 2, θ (k0) = (k0 − kloc)κF , and

ϑ3(z, q) = ϑ3(z + π, q) =
∞∑

s=−∞
qs2

e2isz

is the Jacobi ϑ function [58] with s = k − k0. For � = 0
(no ME crossing; localized), f (t ) becomes periodic with T =
2π/κF , independent of k0, and Eq. (15) becomes exact.

Figures 3(a)–3(c) show f (t ) for the wave packet in ex-
tended, localized, and ME crossing regimes, respectively.
Clearly the extended and localized case oscillates with sep-
arate timescales. For the wave packet crossing the ME
[Fig. 3(c)], we choose k0 = kloc, resulting in an oscillation
with the same frequency as in the localized case but bounded
between multiple envelopes. This can be approached ana-
lytically by taking � = 0.5 and ε = Ekloc ≈ 0.1F since it is
significantly larger than the rest of nearby extended spectrum.
The result is in Fig. 3(d), which shares qualitative features
with Fig. 3(c).

Conclusions. In this Letter, we have analytically demon-
strated the existence of ME in a disorder-free lattice. We
show that the analytical ME is in excellent agreement with the
numerical localization properties. For κ > 1, localized states
exist even with weak fields. The existence of the mobility
edge may also probed by the time evolution of an initial
wave packet. The survival probability oscillates with separate
timescales for extended and localized regimes. Our Letter
suggests the possible existence of the disorder-free mobility
edge in the many-body localized Stark lattice [37] with mosaic
spacings.

Acknowledgments. F.P.Z. thanks the Ministry of Higher
Education and Research of Indonesia for Research Funding
2021. The numerical results were obtained using code written
in NUMPY [59] and QUTIP [60], and the figures were made
using MATPLOTIB [61].

[1] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[2] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling Theory of Localization: Absence of
Quantum Diffusion in Two Dimensions, Phys. Rev. Lett. 42,
673 (1979).

[3] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[4] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Israel Phys. Soc
3, 133 (1980).

[5] P. G. Harper, Single band motion of conduction electrons in a
uniform magnetic field, Proc. Phys. Soc., London Sect. A 68,
874 (1955).

[6] S. Das Sarma, S. He, and X. C. Xie, Mobility Edge in a
Model One-Dimensional Potential, Phys. Rev. Lett. 61, 2144
(1988).

[7] S. Das Sarma, S. He, and X. C. Xie, Localization, mo-
bility edges, and metal-insulator transition in a class of
one-dimensional slowly varying deterministic potentials, Phys.
Rev. B 41, 5544 (1990).

[8] T. Liu, H.-Y. Yan, and H. Guo, Fate of topological states and
mobility edges in one-dimensional slowly varying incommen-
surate potentials, Phys. Rev. B 96, 174207 (2017).

[9] T. Liu, G. Xianlong, S. Chen, and H. Guo, Localization and
mobility edges in the off-diagonal quasiperiodic model with
slowly varying potentials, Phys. Lett. A 381, 3683 (2017).

[10] J. Biddle, B. Wang, D. J. Priour, and S. Das Sarma, Localization
in one-dimensional incommensurate lattices beyond the Aubry-
André model, Phys. Rev. A 80, 021603(R) (2009).

[11] J. Biddle and S. Das Sarma, Predicted Mobility Edges In
One-Dimensional Incommensurate Optical Lattices: An Ex-
actly Solvable Model of Anderson Localization, Phys. Rev.
Lett. 104, 070601 (2010).

L081110-4

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevLett.61.2144
https://doi.org/10.1103/PhysRevB.41.5544
https://doi.org/10.1103/PhysRevB.96.174207
https://doi.org/10.1016/j.physleta.2017.09.033
https://doi.org/10.1103/PhysRevA.80.021603
https://doi.org/10.1103/PhysRevLett.104.070601


SINGLE-PARTICLE MOBILITY EDGE WITHOUT … PHYSICAL REVIEW B 105, L081110 (2022)

[12] X. Deng, S. Ray, S. Sinha, G. V. Shlyapnikov, and L. Santos,
One-Dimensional Quasicrystals with Power-Law Hopping,
Phys. Rev. Lett. 123, 025301 (2019).

[13] M. Saha, S. K. Maiti, and A. Purkayastha, Anomalous transport
through algebraically localized states in one dimension, Phys.
Rev. B 100, 174201 (2019).

[14] S. Ganeshan, J. H. Pixley, and S. Das Sarma, Nearest Neighbor
Tight Binding Models with an Exact Mobility Edge in One
Dimension, Phys. Rev. Lett. 114, 146601 (2015).

[15] Y. Wang, X. Xia, L. Zhang, H. Yao, S. Chen, J. You, Q. Zhou,
and X.-J. Liu, One-Dimensional Quasiperiodic Mosaic Lat-
tice with Exact Mobility Edges, Phys. Rev. Lett. 125, 196604
(2020).

[16] Y. Liu, Y. Wang, X.-J. Liu, Q. Zhou, and S. Chen, Exact
mobility edges, PT -symmetry breaking, and skin effect in one-
dimensional non-Hermitian quasicrystals, Phys. Rev. B 103,
014203 (2021).

[17] D. Dwiputra and F. P. Zen, Environment-assisted quantum
transport and mobility edges, Phys. Rev. A 104, 022205
(2021).

[18] D. Dwiputra, J. S. Kosasih, A. Sulaiman, and F. P. Zen, Driving-
assisted open quantum transport in qubit networks, Phys. Rev.
A 101, 012113 (2020).

[19] D. Dwiputra, A. Sulaiman, J. S. Kosasih, W. Hidayat, and F. P.
Zen, Driving the dephasing assisted quantum transport, J. Phys.:
Conf. Ser. 1245, 012075 (2019).

[20] V. Balachandran, S. R. Clark, J. Goold, and D. Poletti, Energy
Current Rectification and Mobility Edges, Phys. Rev. Lett. 123,
020603 (2019).

[21] M. Saha and S. K. Maiti, Particle current rectification in a
quasi-periodic double-stranded ladder, J. Phys. D Appl. Phys.
52, 465304 (2019).

[22] K. Yamamoto, A. Aharony, O. Entin-Wohlman, and N. Hatano,
Thermoelectricity near Anderson localization transitions, Phys.
Rev. B 96, 155201 (2017).

[23] C. Chiaracane, M. T. Mitchison, A. Purkayastha, G. Haack, and
J. Goold, Quasiperiodic quantum heat engines with a mobility
edge, Phys. Rev. Research 2, 013093 (2020).

[24] G. H. Wannier, Dynamics of band electrons in electric and
magnetic fields, Rev. Mod. Phys. 34, 645 (1962).

[25] H. Fukuyama, R. A. Bari, and H. C. Fogedby, Tightly bound
electrons in a uniform electric field, Phys. Rev. B 8, 5579
(1973).

[26] D. Emin and C. F. Hart, Existence of Wannier-Stark localiza-
tion, Phys. Rev. B 36, 7353 (1987).

[27] M. Holthaus and D. W. Hone, Localization effects in ac-driven
tight-binding lattices, Philos. Mag. B 74, 105 (1996).

[28] T. Hartmann, F. Keck, H. Korsch, and S. Mossmann, Dynamics
of Bloch oscillations, New J. Phys. 6, 2 (2004).

[29] E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Stark Local-
ization in Gaas-Gaalas Superlattices Under an Electric Field,
Phys. Rev. Lett. 60, 2426 (1988).

[30] P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and
A. Regreny, Observation of the Wannier-Stark Quantization
in a Semiconductor Superlattice, Phys. Rev. Lett. 61, 1639
(1988).

[31] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Exper-
imental probes of Stark many-body localization, Phys. Rev. B
102, 054206 (2020).

[32] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. H.
Madhusudhana, I. Bloch, and M. Aidelsburger, Observing non-
ergodicity due to kinetic constraints in tilted Fermi-Hubbard
chains, Nat. Commun. 12, 4490 (2021).

[33] X.-Y. Guo, Z.-Y. Ge, H. Li, Z. Wang, Y.-R. Zhang, P. Song, Z.
Xiang, X. Song, Y. Jin, L. Lu et al., Observation of Bloch os-
cillations and Wannier-Stark localization on a superconducting
quantum processor, npj Quantum Inf. 7, 51 (2021).

[34] Q. Guo, C. Cheng, H. Li, S. Xu, P. Zhang, Z. Wang, C. Song, W.
Liu, W. Ren, H. Dong, R. Mondaini, and H. Wang, Stark Many-
Body Localization on a Superconducting Quantum Processor,
Phys. Rev. Lett. 127, 240502 (2021).

[35] W. Morong, F. Liu, P. Becker, K. S. Collins, L. Feng, A.
Kyprianidis, G. Pagano, T. You, A. V. Gorshkov, and C.
Monroe, Observation of Stark many-body localization without
disorder, Nature (London) 599, 393 (2021).

[36] T. Kohlert, S. Scherg, P. Sala, F. Pollmann, B. H.
Madhusudhana, I. Bloch, and M. Aidelsburger, Experimen-
tal realization of fragmented models in tilted Fermi-Hubbard
chains, arXiv:2106.15586.

[37] M. Schulz, C. A. Hooley, R. Moessner, and F. Pollmann, Stark
Many-Body Localization, Phys. Rev. Lett. 122, 040606 (2019).

[38] E. van Nieuwenburg, Y. Baum, and G. Refael, From Bloch
oscillations to many-body localization in clean interacting sys-
tems, Proc. Natl. Acad. Sci. USA 116, 9269 (2019).

[39] R. Yao and J. Zakrzewski, Many-body localization of bosons
in an optical lattice: Dynamics in disorder-free potentials, Phys.
Rev. B 102, 104203 (2020).

[40] L. Zhang, Y. Ke, W. Liu, and C. Lee, Mobility edge of
Stark many-body localization, Phys. Rev. A 103, 023323
(2021).

[41] L.-N. Wu and A. Eckardt, Bath-Induced Decay of Stark
Many-Body Localization, Phys. Rev. Lett. 123, 030602
(2019).

[42] D. S. Bhakuni, R. Nehra, and A. Sharma, Drive-induced
many-body localization and coherent destruction of
Stark many-body localization, Phys. Rev. B 102, 024201
(2020).

[43] D. S. Bhakuni, S. Dattagupta, and A. Sharma, Effect of noise on
Bloch oscillations and Wannier-Stark localization, Phys. Rev. B
99, 155149 (2019).

[44] A. Avila, Global theory of one-frequency Schrödinger opera-
tors, Acta Math. 215, 1 (2015).

[45] J. Bourgain and S. Jitomirskaya, Absolutely continuous spec-
trum for 1d quasiperiodic operators, Invent. Math. 148, 453
(2002).

[46] J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov
exponent for quasiperiodic operators with analytic potential,
J. Stat. Phys. 108, 1203 (2002).

[47] S. Y. Jitomirskaya, Metal-insulator transition for the almost
Mathieu operator, Ann. Math. 150, 1159 (1999).

[48] S. Jitomirskaya, D. Koslover, and M. Schulteis, Continuity
of the Lyapunov exponent for analytic quasiperiodic cocycles,
Ergod. Theory Dyn. Syst. 29, 1881 (2009).

[49] F. Bentosela, V. Grecchi, and F. Zironi, Stark-Wannier states in
disordered systems, Phys. Rev. B 31, 6909 (1985).

[50] A. Duthie, S. Roy, and D. E. Logan, Self-consistent theory
of mobility edges in quasiperiodic chains, Phys. Rev. B 103,
L060201 (2021).

L081110-5

https://doi.org/10.1103/PhysRevLett.123.025301
https://doi.org/10.1103/PhysRevB.100.174201
https://doi.org/10.1103/PhysRevLett.114.146601
https://doi.org/10.1103/PhysRevLett.125.196604
https://doi.org/10.1103/PhysRevB.103.014203
https://doi.org/10.1103/PhysRevA.104.022205
https://doi.org/10.1103/PhysRevA.101.012113
https://doi.org/10.1088/1742-6596/1245/1/012075
https://doi.org/10.1103/PhysRevLett.123.020603
https://doi.org/10.1088/1361-6463/ab3a0e
https://doi.org/10.1103/PhysRevB.96.155201
https://doi.org/10.1103/PhysRevResearch.2.013093
https://doi.org/10.1103/RevModPhys.34.645
https://doi.org/10.1103/PhysRevB.8.5579
https://doi.org/10.1103/PhysRevB.36.7353
https://doi.org/10.1080/01418639608240331
https://doi.org/10.1088/1367-2630/6/1/002
https://doi.org/10.1103/PhysRevLett.60.2426
https://doi.org/10.1103/PhysRevLett.61.1639
https://doi.org/10.1103/PhysRevB.102.054206
https://doi.org/10.1038/s41467-021-24726-0
https://doi.org/10.1038/s41534-021-00385-3
https://doi.org/10.1103/PhysRevLett.127.240502
https://doi.org/10.1038/s41586-021-03988-0
http://arxiv.org/abs/arXiv:2106.15586
https://doi.org/10.1103/PhysRevLett.122.040606
https://doi.org/10.1073/pnas.1819316116
https://doi.org/10.1103/PhysRevB.102.104203
https://doi.org/10.1103/PhysRevA.103.023323
https://doi.org/10.1103/PhysRevLett.123.030602
https://doi.org/10.1103/PhysRevB.102.024201
https://doi.org/10.1103/PhysRevB.99.155149
https://doi.org/10.1007/s11511-015-0128-7
https://doi.org/10.1007/s002220100196
https://doi.org/10.1023/A:1019751801035
https://doi.org/10.2307/121066
https://doi.org/10.1017/S0143385709000704
https://doi.org/10.1103/PhysRevB.31.6909
https://doi.org/10.1103/PhysRevB.103.L060201


DONNY DWIPUTRA AND FREDDY P. ZEN PHYSICAL REVIEW B 105, L081110 (2022)

[51] A. Duthie, S. Roy, and D. E. Logan, Localisation in quasiperi-
odic chains: a theory based on convergence of local propagators,
Phys. Rev. B 104, 064201 (2021).

[52] H. Aoki, Fractal dimensionality of wave functions at the mobil-
ity edge: Quantum fractal in the Landau levels, Phys. Rev. B 33,
7310 (1986).

[53] B. Huckestein, Scaling theory of the integer quantum Hall ef-
fect, Rev. Mod. Phys. 67, 357 (1995).

[54] M. Janssen, Statistics and scaling in disordered mesoscopic
electron systems, Phys. Rep. 295, 1 (1998).

[55] A. De Luca, B. L. Altshuler, V. E. Kravtsov, and A.
Scardicchio, Anderson Localization on the Bethe Lattice: Non-
ergodicity of Extended States, Phys. Rev. Lett. 113, 046806
(2014).

[56] V. Kravtsov, I. Khaymovich, E. Cuevas, and M. Amini, A
random matrix model with localization and ergodic transitions,
New J. Phys. 17, 122002 (2015).

[57] E. J. Torres-Herrera, A. M. García-García, and L. F. Santos,
Generic dynamical features of quenched interacting quan-
tum systems: Survival probability, density imbalance, and
out-of-time-ordered correlator, Phys. Rev. B 97, 060303(R)
(2018).

[58] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis,
5th ed. (Cambridge University Press, Cambridge, UK, 2021),
Chap. 21.

[59] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith et al., Array programming with numpy, Nature (London)
585, 357 (2020).

[60] J. R. Johansson, P. D. Nation, and F. Nori, Qutip 2: A python
framework for the dynamics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

[61] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

L081110-6

https://doi.org/10.1103/PhysRevB.104.064201
https://doi.org/10.1103/PhysRevB.33.7310
https://doi.org/10.1103/RevModPhys.67.357
https://doi.org/10.1016/S0370-1573(97)00050-1
https://doi.org/10.1103/PhysRevLett.113.046806
https://doi.org/10.1088/1367-2630/17/12/122002
https://doi.org/10.1103/PhysRevB.97.060303
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1109/MCSE.2007.55

