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Experimental realization of topological corner states in long-range-coupled electrical circuits
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Topological corner states are zero-dimensional localized excitations whose existence is protected by the bulk
properties of the system. This feature makes them robust to disorder unveiling intriguing physics. Canonical
realizations of higher-order topology in two-dimensional systems typically rely on tight-binding models with the
nearest-neighbor couplings. Here, in contrast, we propose a Ds-symmetric system where the topological band
gap opens due to the additional long-range interactions, which are controllably incorporated in our setup based
on a resonant electrical circuit. In our experiments, we probe the response of the designed circuit at every node,
reconstruct the eigenmode profiles, and directly extract the topological invariant demonstrating the topological

origin of the observed symmetry-protected corner states.
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Higher-order topological (HOT) insulators have recently
emerged as a distinct class of topological systems [1-3] being
implemented experimentally with various platforms, includ-
ing crystalline solids [4], phononic [5], acoustic [6-8], and
electromagnetic setups operating at infrared [9,10] and mi-
crowave [11,12] frequencies, as well as resonant electrical cir-
cuits [13,14]. The formation of such phases is often governed
by the lattice symmetries, with kagome [15] and breathing
honeycomb [16] lattices being prominent examples. Due to
their ability to confine field in the structures of different di-
mensionality, HOT phases are promising candidates for topo-
logical resonators and lasers [17-20]. In a number of systems,
HOT phases are manifested via in-gap corner states. At the
same time, higher-order topology can be detected even if the
topological state overlaps spectrally with the bulk band [21].

In many cases, the physics of such systems can be un-
derstood in terms of tight-binding models involving only
the nearest neighbors’ interaction. However, this is not the
case for photonics, where the long-range interactions of
the individual meta-atoms can significantly alter the band
structure [12,22].

Recently, several microwave [23,24] and acoustic [25]
experiments have demonstrated the emergence of corner
states in the two-dimensional (2D) generalization of the cele-
brated Su-Schrieffer-Heeger (SSH) model with D4 symmetry
[26]. At the same time, the respective tight binding model
[Fig. 1(a)] does not feature a zero-energy band gap, and the
associated corner state appears in the continuum of the bulk
modes [Fig. 1(b)].

In this Letter, we demonstrate that the emergence of
zero-energy band-gap hosting corner-localized states in Dy-
symmetric systems crucially depends on the next-nearest-
neighbor interaction facilitating the formation of an in-gap
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corner state. To isolate the physics related to the next-nearest-
neighbor coupling, we construct a resonant electrical circuit
allowing to flexibly control the magnitude of couplings. Be-
sides the retrieval of frequencies and mode profiles for bulk,
edge, and corner states, we also reveal the generalized chiral
symmetry of the model and extract the topological invariant
associated with D lattice symmetry.

Theoretical model. We introduce the extended 2D SSH
model which differs from the conventional one [Fig. 1(a)]
by the presence of additional couplings M > 0 between the
diagonally opposite next-nearest neighbors, Fig. 1(c). The
eigenstates of both conventional and extended 2D SSH mod-
els [Figs. 1(a) and I(c)] are found as the solutions to the
eigenvalue problem

Z Hmn,m’n’ :Bm’n’ =¢& /Smn s (1)
m',n

where the coefficients §,,, describe the amplitude of the field
at site (m, n), ¢ is the eigenmode energy defined such that
the zero energy corresponds to the resonance frequency of
an isolated site, and H is the Hamiltonian matrix governing
the system’s properties. The nonzero elements of the Hamil-
tonian —J, —K, and —M correspond to the coupling links
between the respective sites (m, n) and (m’, n’). For the unit
cell choice with intracell couplings J shown in Fig. 1(c), the
Bloch Hamiltonian matrix describing one unit cell in the k
space takes the following form:

H(k) = (=1)
0 J+Ke 'k Mek—ik ] 4 Keiky
o7t Ke 0 J+Kel  Mektik
Me=htibe 4 Keh 0  J+Kek
J+Ke &  Mehik  J4 Ke 0
()

with the wave vector components ky, ky spanning the range
[—m, 7] and directed along the x and y axes shown in Fig. 1.
The columns of the Hamiltonian matrix from left to right
correspond to the unit cell sites with indices A, B, C, and
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D, respectively. Without loss of generality, we set smaller
coupling constant J = 1.

Spectrum and eigenstates. Solving the eigenvalue problem
Eq. (1), we recover the spectra of 2D SSH models without
and with the next-nearest-neighbor couplings M, as shown in
Figs. 1(b) and 1(d). Regardless of the ratio K/J, the conven-
tional 2D SSH model is gapless near zero energy, and thus
the energy of the corner state appears in the continuum of
the bulk modes [Fig. 1(b)]. However, the presence of diagonal
couplings M opens a band gap, yielding a spectrally isolated
corner-localized state, Fig. 1(d).

It should be stressed that the proposed system [Fig. 1(c)]
is the minimal model which captures the effect of long-range
interactions in photonic systems since the diagonal links M
introduced in the strong-coupling unit cell are the dominant
terms related to the interaction of the next-nearest neighbors.
Even though the corner state profile shown in the inset of
Fig. 1(d) strongly resembles that in the canonical quadrupole
insulator [1,27], all the coupling links in our model are posi-
tive, which vastly simplifies the experimental implementation
of the proposed system.

Hierarchy of the states. To address the localization prop-
erties of eigenmodes in the introduced model, we study their
inverse participation ratios (IPRs) [28]

IPR = Bl 3)

where the summation is performed over all sites (m, n) of the
system with coordinates 1 < m,n < N, and the eigenmode
profiles are normalized by the condition Zn.m |Bunl? = 1.
Low values IPR — 0 correspond to delocalized excitations,
while high values IPR — 1 indicate tight localization.

The results in Fig. 2(a) suggest that the corner state is spec-
trally isolated only in a certain range of next-nearest-neighbor
coupling strengths Mp,in < M < Mg, With My, =~ 1.6 and
M. =~ 6.3 for K = 4. The corner state profile in such a case
is depicted in Fig. 2(b) featuring a pronounced localization at
the corner with the weak coupling links J.

The emergence of the corner state in our system is accom-
panied by the formation of the edge states [Fig. 2(c)] inherited
from the conventional 2D SSH model and pinned to the edges
terminated by the weak links [29]. Note that the edge states’
energy remains unaffected by the additional coupling M as
long as the edge states remain confined to the edges where
such next-nearest-neighbor couplings are absent, Fig. 2(a).

At the same time, the energies of the bulk modes de-
localized over the entire 2D system [Fig. 2(d)] feature a
pronounced dependence on M. Besides, they give rise to the
states with a stronger localization seen in Fig. 2(a). However,
more careful analysis [30] shows that these states are not
bound states in the continuum like those in the conventional
2D SSH model [31,32] but rather the states with enhanced
localization that still can hybridize with the bulk modes.

Topological properties. Based on the D4 symmetry of the
designed structure, we assess the topological characteristics
of our model by checking the behavior of the field profiles
under C, and C,; symmetry transformations in few high-
symmetry points of the first Brillouin zone [33]. Due to the
C, symmetry of the lattice, the topologlcal invariant contains
three independent components x = (#X @ #F(z) #M, “ _

2D SSH model

(a) 5 8 (b) 10 T
N
1=
e G G DD .—"_:_.0000
I J J[JJ sl
2 = o
P ' N
Loz Sm 4 5071, 2 50 7

Extended 2D SSH model

5 |
1 Uo 0
T 1 T

£= () 012

o J}(J___DQ M - 0} corner e
< 3 A 7 B '] sl edge .
9 1 | J —

FIG. 1. (a) Schematics of the conventional 2D SSH model re-
alized as an array of coupled cavities with the nearest-neighbor
coupling strengths J > 0 and K > J. (b) Spectrum of energies ¢;
versus eigenvalue number j for the model with 9 x 9 sites from panel
(a) with couplings J = 1 and K = 4. Inset shows the wave function
for one of the eigenmodes with ¢ closest to zero. (c¢) The proposed
extension of 2D SSH model with additional couplings M > 0 in the
strong-link unit cell. Orange dashed line shows the weak-link unit
cell choice used for the analysis of a periodic system. Labels A, B, C,
and D denote four sites of the unit cell. (d) Energy spectrum of the
model in panel (c) with parameters J = 1, K = M = 4 having the
size of 9 x 9 sites. Inset shows the field profile of the corner mode.
Red shaded area in (a) and (c) highlights the location of the corner
state.

'

#Fi4), #M§4) — #F?)), where the upper index denotes the type
of the applied rotation operator (C, or Cy), the lower index de-
scribes the behavior of the wave function under the symmetry
transformation, and # denotes the number of eigenstates with
a given transformation law below the particular band gap in
I', M, or X point of the first Brillouin zone.

The considered topological invariant depends on the choice
of the unit cell. If the unit cell is chosen with the strong
links inside, the invariant is (0,0,0), indicating the absence
of topological states at the strong link corner. However, if
the unit cell is chosen with weak links inside [Fig. 1(c)], the
topological invariant becomes nonzero:

x =(=1,-1,0), “

heralding the emergence of a corner state with associated
corner charge Qcomer = 3 and dipole polarization P = (3, 1)
[33]. The calculations are detailed in [30]. It should be
stressed that the topological invariant does not depend on M.
Nevertheless, the next-nearest-neighbor interaction is crucial
to open the band gap at energies close to zero.

It is important to emphasize that the corner state persists in
our system even if the D4 symmetry of the lattice is broken by

LO81107-2



EXPERIMENTAL REALIZATION OF TOPOLOGICAL ...

PHYSICAL REVIEW B 105, L081107 (2022)

(a) Mode localization for K=4 IPR
1
0.1
0.01
1073
-20 ' ' ' 104
0 2 4 6 8
M/ J
In-gap modes Continuum modes 9
(b) Comer  (¢) Edge  (d) Bux
g 9 g 1
e5 e 5 £5 0.5
=
1 13 1 0

FIG. 2. (a) Energy spectrum of 9 x 9 structure with coupling
constants J/ =1 and K =4 versus the strength of next-nearest-
neighbor coupling M in the range 0 < M < 8. Color shows the
inverse participation ratios (IPR) of the eigenmodes. (b),(c) Eigen-
mode profiles corresponding to the in-gap corner state (b) and the
edge state (c) at M = 4. (d) The delocalized bulk state at M = 4.

the appropriate choice of the couplings [30]. This hints that
the corner state may arise partly due to the contribution of the
edge states band [34]. Our calculations for the semi-infinite
geometry indeed reveal nontrivial polarization associated with
the band of edge states [30].

Electrical circuit platform. To experimentally confirm that
the next-nearest-neighbor couplings M provide the crucial
ingredient in the formation of in-gap topological corner state,
we need to eliminate the contribution of other long-range
couplings that inevitably arise in optical or microwave se-
tups based on resonator arrays. To this end, we construct a
topological electrical circuit, Figs. 3(a) and 3(b), in which
we can directly control the couplings between the circuit
nodes by placing the desired lumped elements. This ex-
treme flexibility in managing the geometry and amplitudes
of the couplings in comparison with the other platforms
allows applying electrical circuits to emulate such exotic
phenomena as four-dimensional quantum Hall phase [35],
two-particle topological states of interacting photons [36],
and nonlinearity-induced topological states [37] along with
the implementation of higher-order topological insulators
[13,38,39] and edge states in topological insulators [40], in-
cluding the conventional 2D SSH model [29].

The construction of electrical circuit is based on the exact
correspondence between the tight binding problem Eq. (1)
describing the on-site amplitudes S, and a set of Kirchhoff’s
rules describing electric potentials ¢,,, at the respective nodes
of the equivalent circuit depicted in Fig. 3(a). The parameters
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FIG. 3. (a) Equivalent electrical circuit realizing the tight-
binding model Fig. 1(c). Each node is grounded by the inductor
L and connected to its neighbors via capacitors Cj, Cx, and Cy
representing respective tunneling links J, K, and M of the extended
2D SSH model. The boundary nodes of the circuit are grounded with
additional elements to provide the exact mapping between the Kirch-
hoff’s rules for the circuit and tight-binding equations. Labels A, B,
C, and D denote sites of the unit cell in accordance with Fig. 1(c).
(b) The photograph of the experimental setup with 9 x 9 nodes. Half
of the additional diagonal couplings Cy are seen at the top side of
circuit along with capacitors Cj, Cx and grounding inductors L, while
the remaining couplings Cy; are placed at the bottom side carrying
also the plugs to connect the measurement equipment. The unit cell
of the circuit is shown in the insets at the bottom. The left inset
demonstrates top view, while the right inset shows the opposite side
of the setup mirrored to show the matching of the bonds.

of the circuit such as capacitances Cj, Cx, Cy, and grounding
inductors L on one side and the parameters of tight-binding
model on the other are linked as

PONLC SRR SR

G G 1?

where f is the frequency of the circuit mode, ¢ is the en-
ergy in the tight-binding model, and fy = 1/(27+/LCy). Thus,
ascending energies ¢ correspond to the descending mode fre-
quencies f in the electrical circuit. To compensate for the
absence of neighbors for the boundary nodes of the circuit
and maintain the correspondence with the theoretical model,
nodes at the edges are grounded with additional elements Cj,
Cx, and Cy parallel to the inductors L, in accordance with
Fig. 3(a). Further details on electrical circuit model, includ-
ing the discussion of the boundary conditions, are provided
in [30].

The experimental realization of the circuit with Cy = 1 uF,
Cx =Cy =4uF, and L =23.2 uH corresponding to the
considered model with K = M = 4 and the size of 9 x 9 sites
is shown in Fig. 3(b). Such a circuit has resonances in the kHz
frequency range. To probe the modes of the circuit, we apply
the external harmonic signal at frequency f with amplitude
Uexy = 63 mV, attaching the signal generator having the series
impedance 50 2 between the given node and ground. Then,
we measure the resulting voltage as a function of frequency,
which characterizes the circuit impedance.
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FIG. 4. (a) Resonant response of the circuit measured at every
node in the range from 1 to 20 kHz showing the on-site voltages U (f)
between the given node (m, n) and ground excited by the external
harmonic driving at frequency f with the amplitude Uy = 63 mV
applied between the corresponding node and ground. Grey curves
represent bulk and edge nodes with coordinates 1 < m, n < 8, blue
curves correspond to the edge nodes with 1 <m < 8,n =9,and 1 <
n < 8, m =9, the red curve represents the corner node m =9, n =
9. The arrow points towards the frequency f = 18616 Hz at which
the topological invariant is retrieved. (b)—(e) Spatial maps of the on-
site voltage responses to the external excitation Ug, = 63 mV at a
given frequency f representing bulk (b),(c), corner (d), and edge (e)
states of the extended 2D SSH model. Color shows the absolute value
of voltage between the node (m, n) and ground normalized by its
maximal value calculated for each map separately.

Resonant response of the circuit. The impedance spectra at
bulk circuit nodes shown in Fig. 4(a) by gray lines exhibit a
band gap between 9 and 18 kHz. This band gap is occupied
by the modes with frequencies 10-12 kHz localized at the
edges of the circuit, and a single mode pinned to the node
(9,9) with the frequency around 9 kHz. Attaching a harmonic

signal generator to every node of the circuit and measuring
the voltages between the given node (m, n) and the ground
at the fixed frequency f, we recover voltage maps shown
in Figs. 4(b)-4(e). As seen from these maps, the respective
modes represent bulk, edge, and corner states in the consid-
ered extended 2D SSH model and their measured frequencies
agree with the predictions of the tight-binding model. The
detected corner mode reveals the topological origin of our
system. To support this conclusion further, we retrieve the
topological invariant directly from the experimental data as
outlined in Ref. [30].

The peaks in the spectrum experience considerable broad-
ening caused by ohmic losses in the inductors and wires of
the printed circuit board. Another reason for broadening is
the spread in lumped elements’ values, as discussed in [30].
It should be stressed that the in-gap corner state Fig. 4(d)
possesses the largest Q factor compared to the other reso-
nances in the circuit, reaching Q ~ 10. It also remains nearly
unperturbed even in the presence of losses and disorder in the
component values in contrast to the corner state in continuum
[Fig. 4(c); see [30] for details] which strongly hybridizes with
the bulk modes [Fig. 4(b)].

The above robustness is especially interesting since the
fluctuations in the values of capacitors in the circuit si-
multaneously induce off-diagonal and diagonal disorder.
Nevertheless, the experimental results demonstrate an ex-
cellent agreement with the theoretical predictions even in
the presence of disorder and dissipation for a system size
small as 9 x 9 sites which is explained by the significant
band-gap width compared to the magnitude of disorder.
These results highlight the potential of topological corner
states in constructing small-scale photonic [41] and electronic
devices.

Conclusion. We have demonstrated the crucial role played
by the next-nearest-neighbor interaction in the formation of
topological corner states in Dj-symmetric systems. While
the conventional 2D SSH model is gapless at zero energy,
even a small interaction of the next-nearest neighbors opens
the topological band gap. Thus, our results provide a clear
physical interpretation of the corner states observed in recent
experiments with the arrays of microwave resonators [23,24]
and acoustic metamaterials [25]. Furthermore, our study re-
veals the fundamental role of long-range interactions in the
formation of topological phases and further highlights the
potential of resonant electrical circuits in probing topological
states and phases.
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