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Ab initio theory of magnetism in two-dimensional 1T -TaS2
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We investigate, using a first-principles density functional methodology, the nature of magnetism in monolayer
1T phase of tantalum disulfide (1T -TaS2). Magnetism in the insulating phase of TaS2 is a longstanding puzzle
and has led to a variety of theoretical proposals including notably the realization of a two-dimensional quantum-
spin-liquid (QSL) phase. By means of noncollinear spin calculations, we derive ab initio spin Hamiltonians
including two-spin bilinear Heisenberg exchange as well as biquadratic and four-spin ring-exchange couplings,
the latter being relevant for the stabilization of putative QSL states. We find that both quadratic and quartic
interactions are consistently ferromagnetic for all the functionals considered. Relativistic calculations predict
substantial magnetocrystalline anisotropy. Altogether, our results suggest that this material may realize an easy-
plane XXZ quantum ferromagnet with large anisotropy.
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Introduction. Materials with flat bands near the Fermi level
are an ideal platform to study correlated-electron phenomena.
There has recently been a renewal of interest in flat-band
materials because of the discovery of correlated-insulating
phases and superconductivity in twisted bilayer graphene
near the so-called magic angle [1,2]. Full characterization
and understanding of magnetism in such systems remains a
theoretical challenge [3]. In certain transition metal dichalco-
genides (TMDs), flat bands emerge near the Fermi level due
to the occurrence of a commensurate charge density wave
(CDW) phase with star-of-David (SOD) reconstruction [4–7].
Among those materials, the most studied one is octahedral
tantalum disulfide, which will be the focus of this paper.

The polymorph of tantalum disulfide with distorted octa-
hedral coordination of metal atoms (1T -TaS2) is a special
member of the TMD family of materials. Like many other
metallic TMDs [8–12], it undergoes CDW instabilities as
the temperature is lowered. At low temperature, it crystal-
lizes in the so-called SOD phase (illustrated in Fig. 1), with√

13 × √
13 periodicity and 13 Ta atoms per supercell. In this

SOD phase, insulating behavior is observed, which has been
commonly attributed to electron localization due to strong
correlations [4,13]. The reason is the following: in the SOD
phase, the number of electrons per unit cell is odd since each
Ta atom contributes one conduction t2g electron [14], so con-
ventional band theory would predict a metal. This argument is
clear for the monolayer, but there is actually a caveat for the
multilayer and bulk cases: the stacking is not exactly known,
so the three-dimensional character could become important,
and the exact role of interlayer interactions is unclear [15].

A longstanding question regarding TaS2 concerns mag-
netism or, to be more precise, the apparent absence of it
[15], as even the signature of local moment formation is not
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observed. Several scenarios have been proposed in the past
decades. The peculiar properties of TaS2 were part of the
inspiring data behind Anderson’s [16] theory of resonating
valence bonds (RVBs). Fazekas and Tosatti [17] suggested
that the strong spin-orbit coupling (SOC) of Ta atoms could
suppress the magnetic moments. A fluctuating Néel order
was proposed in Ref. [18], and recently, the idea of a spin
liquid in TaS2 has gained momentum after Law and Lee [15]
proposed that TaS2 might be a rare realization of a quasi-
two-dimensional (2D) quantum-spin-liquid (QSL) phase. In
follow-up work [19], the theory was worked out, yielding the
interesting proposal of the possible realization of a spinon
Fermi surface in TaS2. This interesting proposal has triggered
experimental efforts to observe these unconventional states,
not only in TaS2 but also in similar materials such as TaSe2

[20,21]. A key ingredient in the theory is the presence, in
the effective spin Hamiltonian, of a sizable antiferromag-
netic four-spin ring-exchange term beyond the conventional
Heisenberg model.

The purpose of this paper is to propose a realistic picture
of the nature of magnetism in 2D 1T -TaS2 derived from first
principles, using a density functional theory (DFT) frame-
work. Using noncollinear density functional calculations, we
aim to provide estimates for the magnetic interaction pa-
rameters. We address whether magnetism in this material
is expected to deviate strongly from Heisenberg behavior
indeed, as discussed above. While estimating Heisenberg ex-
change couplings using DFT is a relatively simple (although
delicate) and well-established procedure, the calculation of
quartic terms is less common and more challenging. The
approach that we shall adopt here is that of noncollinear spin
calculations (see, e.g., Refs. [22–24]). The method consists
of calculating the total energy for a series of angles between
the spins on different sites of the superlattice. While two-spin
bilinear terms lead to a linear dependency on the angle cosine
only, quartic terms lead to a quadratic dependency, allowing
one to extract the biquadratic and ring-exchange couplings.
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FIG. 1. Ball-and-stick representation of TaS2 in the commen-
surate charge density wave (CDW) phase. Gray balls represent Ta
atoms, while purple balls stand for S atoms. Only the shortest Ta-Ta
bonds were drawn to facilitate visualization of the star-of-David
pattern.

Model hamiltonian. Following He et al. [19] and ne-
glecting anisotropy for the moment, we write H, the
low-energy Hamiltonian describing spin physics in the 2D
Mott-insulating phase of 1T -TaS2:

H = HHeis + Hplaq + Hb , (1)

where HHeis is the usual Heisenberg Hamiltonian, describing
bilinear spin interactions, and Hplaq describes quartic four-
spin plaquette terms. In Eq. (1), we also explicitly include
biquadratic interaction Hb.

The Heisenberg Hamiltonian is given by

HHeis = J
∑

<i j>

�Si · �S j , (2)

where < i j > denotes nearest-neighbor (NN) sites of the tri-
angular lattice, J is the NN Heisenberg coupling, and �Si stands
for the S = 1

2 spin operator at site i. Next-NN (NNN) interac-
tions can be safely neglected because they are much smaller
than NN ones, as verified a posteriori. The biquadratic Hamil-
tonian is given by Hb = B

∑
<i j>( �Si · �S j )2, and the four-spin

Hamiltonian Hplaq describes higher-order spin-spin interac-
tions and reads

Hplaq = K
∑

<i jkl>

( �Si · �S j )( �Sk · �Sl ) + ( �Si · �Sl )( �S j · �Sk )

− ( �Si · �Sk )( �S j · �Sl ), (3)

where < i jkl > denotes a plaquette (see Fig. 2), and K is the
ring-exchange coupling.

Methodology. All the first-principles calculations pre-
sented in this paper were carried out using the QUANTUM

ESPRESSO package [25]. Lattice parameters and atomic po-
sitions were obtained by minimizing forces and stress in
the

√
13 × √

13 supercell, using the generalized-gradient ap-

FIG. 2. Schematic representation of the spin lattice employed
for the spin-polarized calculations. Each black dot represents a star
of David with 39 atoms. The

√
3
√

13 × √
3
√

13 supercell contains
three spin sublattices (one of each color). The red diamond illustrates
an example of a plaquette on the triangular lattice.

proximation (GGA) [26,27]. A grid of 8 × 8 k-points was
used, with a Marzari-Vanderbilt (MV) [28] smearing of 0.01
Ry. Projector-augmented-wave [29] pseudopotentials from
Ref. [30], including explicitly s and p semicore states for Ta
atoms, were used to describe interaction between core and
valence electrons. Plane-wave cutoffs were set to 60 and 300
Ry for wave functions and charge density, respectively.

Heisenberg interactions were calculated by comparing total
energies with different spin configurations in a

√
3
√

13 ×√
3
√

13 supercell (2
√

13 × √
13 for the evaluation of the

biquadratic term), using both the local-density approximation
(LDA) and the GGA, with and without the onsite Hubbard U
parameter for Ta 5d orbitals. For DFT + U calculations, we
have set U = 2.5 eV, in line with previous studies [5] and our
own linear-response estimate in the high-symmetry structure
(2.65 eV). For spin-polarized calculations, we have used a
smaller MV smearing of 0.001 Ry together with a grid of
3 × 3 k-points in the supercell. These parameters were chosen
to ensure convergence of the exchange couplings.

Structure. We begin by optimizing the lattice parameters
and atomic positions in a

√
13 × √

13 supercell containing
13 Ta and 26 S atoms. The resulting structure minimizing
forces and stress were found to be the well-known SOD phase,
illustrated in Fig. 1. The calculated superlattice parameter was
12.18 Å, and the shortest Ta-Ta bonds inside the SOD was
3.18 Å (compared with 3.38 Å in the high-symmetry phase),
in line with previous reports [5]. Figure 3 shows the noninter-
acting DFT bands, exhibiting a half-filled narrow band with
a bandwidth of ∼30 meV. In accordance with the existing
literature [5,31,32], we also find the corresponding electronic
structure insulating when spin polarization is allowed [33].
Parameters of an effective Hubbard model can be roughly
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FIG. 3. (a) Density functional theory (DFT) nonpolarized band
dispersion of single-layer TaS2 in the star-of-David phase, along
the high-symmetry directions of the mini-Brillouin zone. The Fermi
energy is set to zero. (b) Dispersion of the half-filled flat band.

estimated from the DFT results. Through a Wannier trans-
formation, we find a NN hopping of t ≈ 2.5 meV, and the
effective Hubbard interaction can be estimated by examining
the correlation gap (see the Supplemental Material for a brief
discussion [33]), which gives Ueff ≈ 125 meV with DFT and
Ueff ≈ 330 meV with DFT + U , meaning the Ueff/t ∼ 132
ratio sits well in the Mott-Hubbard regime.

Ab initio parameters: isotropic case. We turn to the inves-
tigation of magnetic properties and examine first the collinear
case, neglecting SOC and higher-order interactions. This will
allow us to compare with the values obtained from non-
collinear calculations to check the robustness and consistency
of the methodology. We adopt a

√
3
√

13 × √
3
√

13 supercell
(see Fig. 2), containing three stars of David. In the calcula-
tions, we can force the solution to converge to different spin
configurations by appropriately choosing the initial spin ori-
entation in the self-consistent cycle. The exchange coupling is
then given by

Jcollinear = E↑↑↑ − E↓↑↑
12S2

, (4)

with S = 1
2 for TaS2. In Eq. (4), E↑↑↑ stands for the energy

of the configuration with all the spins parallel to each other,
while E↓↑↑ is the energy of the configuration in which the
spin of one of the three stars points antiparallel to the other
two. Results for different functionals are shown in Table I.
While the exact values of the parameters are somewhat sen-
sitive to the choice of functional and Hubbard parameter, the
qualitative picture remains robust, i.e., coupling is predicted
to be ferromagnetic (with a rather small value of ∼1 meV),
in line with the cousin materials NbSe2 and NbS2 for which

similar values of the parameters were reported [6,34]. We have
verified that the NNN exchange is also ferromagnetic and an
order of magnitude smaller. We have also checked that the
results are consistent for other values of U varied between 0
and 4 eV.

In a one-band Hubbard model, the antiferromagnetic ex-
change would be JAFM = 4t2/Ueff , which gives ≈0.08 meV
with our estimated DFT + U parameters. This is an order
of magnitude smaller than the estimated J , indicating that
other mechanisms prevail. Multiband Hubbard models can
have ferromagnetic kinetic exchange (see Refs. [35,36]) due
to third-order (e.g., cyclic) processes, which tend to become
dominant in the limit of a very flat band. Magic-angle twisted
bilayer graphene and twisted bilayer TMDs were recently also
proposed to host ferromagnetic Mott insulators [3,37], driven
by a large intersite direct Coulomb exchange that dominates
the kinetic JAFM, the latter being small due to the flatness of
the bands.

We then turn our attention to the noncollinear case. Let us
define α as the angle between the spin direction of different
stars in the supercell, as shown in Fig. 2. We can write the
total energy as a function of α in the following way:

E (α) = E0 + E1cos(α) + E2cos2α . (5)

The two- and four-spin exchange can then be extracted from
the E1 and E2 parameters as

J = 2E1 − E2 + 6BS4

12S2
, K = E2 − 6BS4

6S4
. (6)

The system of equations in Eq. (6) is underdetermined, so
we need to first determine B using a different supercell. This
can be done by considering the 2

√
13 × √

13 supercell for
which the quadratic term E2×1

2 depends only on B, with B =
E2×1

2 /4S4.
Figure 4 shows the calculated total energies in the GGA +

U case for a set of selected angles in both
√

3
√

13 × √
3
√

13
and 2

√
13 × √

13 supercells. Figure 4 also shows the least-
square fits with linear and quadratic functions, showing that
the quadratic form allows one to almost perfectly fit the DFT
results, while the linear fit, which corresponds to a mapping
to a simple Heisenberg model, shows deviations. However, it
is evident from Fig. 4 that the deviations from the Heisen-
berg model are only modest. This is reflected by the ratio
E2/E1 ∼ 0.1 that shows that contributions beyond bilinear
two-spin terms are subdominant. Using LDA, the ratio found
is even smaller (E2/E1 ∼ 0.05). Although GGA is in general
an improvement compared with LDA, the formulation of non-
collinear magnetism with gradient corrections is ambiguous,
so we would expect the LDA results to be more rigorous.

TABLE I. Ab initio Heisenberg, biquadratic, and ring-exchange parameters (in millielectronvolts), calculated with different methods and
approximations.

J (collinear) J B K J ′ K ′

LDA −1.11 −1.15 −0.22 −0.02 −1.12 −0.24
LDA + U −1.19 −1.13 −0.07 −0.18 −1.12 −0.24
GGA −1.62 −1.66 −0.73 −0.04 −1.57 −0.77
GGA + U −1.11 −1.11 −0.55 −0.03 −1.04 −0.57
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FIG. 4. Total energy as a function of the angle between spins,
calculated with GGA + U , in the (a)

√
3
√

13 × √
3
√

13 and (b)
2
√

13 × √
13 supercells. Fits with linear and quadratic functions are

also presented.

We have also checked that higher-order terms (i.e., higher
power in the expansion) are negligible. This is one of the
central results of this paper, that first-principles calculations
predict no substantial deviations from Heisenberg physics,
i.e., from a Hamiltonian truncated to quadratic terms in the
spin operators. It was, however, not obvious a priori since it
had been hypothesized otherwise in theoretical work and was
therefore worth checking. Our finding can be understood in
light of the large Ueff/t 	 1 ratio, which is different than what
was often taken in model Hamiltonians [18,19,38].

In Table I, values for J, B, and K obtained with different
functionals are reported. We also show as a sensitivity analysis
J ′ and K ′, which were obtained by mapping the DFT results
to a model without biquadratic exchange. Bilinear Heisenberg
terms obtained from collinear and noncollinear calculations
are consistent, demonstrating the soundness of our method-
ology. Biquadratic and ring exchange are also found to be
ferromagnetic for both LDA and GGA, with or without the
Hubbard correction U . Table I shows the extracted value of K
is very sensitive to the choice of model (i.e., with or without
biquadratic coupling) and also quite sensitive to the choice
of functional. Nevertheless, the signs of the couplings are
robust and indicate that a QSL phase appears incompatible
with our DFT results. Such phases are predicted to occur for
antiferromagnetic K with either ferromagnetic or antiferro-
magnetic J [39], when the |K/J| ratio exceeds a certain value
and competing ground states have close energies. We are not
aware of any evidence for a QSL in the purely ferromagnetic
case; this appears unlikely because all the terms are minimized
by the same ferromagnetic configuration in that case.

Spin anisotropy. Our results suggest that a ferromagnetic
state might be observed at low temperature in monolayer
TaS2. In 2D systems, a finite Curie temperature requires
spin anisotropy, driven by the SOC. We calculated, using the
LDA (+ U ) + SOC functional, the in-plane and out-of-plane

TABLE II. Ab initio relativistic Heisenberg and onsite anisotropy
parameters (in millielectronvolts) and corresponding exchange
anisotropy γ .

Jx Jy Jz D γ

LDA + SOC −0.94 −0.94 −0.75 0.19 −0.20
LDA + U + SOC −0.78 −0.78 −0.54 0.37 −0.30

bilinear couplings denoted Jx, Jy, and Jz, with z the out-of-
plane direction. We consider here the quadratic Hamiltonian
H = ∑

<i j>(JxSx
i Sx

j + JySy
i Sy

j + JzS
z
i Sz

j ), neglecting possible
anisotropy of the quartic terms. The methodology used is
the same as for the evaluation of isotropic J using collinear
calculations except that we consider three different spin ori-
entations. For these noncollinear calculations including the
SOC, we have not used the GGA because of possible con-
vergence issues in that case.

Extracted parameters are shown in Table II. In-plane cou-
plings Jx and Jy are equal, indicating in-plane isotropy. We
observe smaller couplings in the relativistic case compared
with isotropic J that we understand as due to the reduced
magnetic moment induced by the SOC (≈0.82μB/SOD with
LDA + U ). The total energy difference between the ferro-
magnetic state with x and y polarization is negligibly small
EFM

x − EFM
y < 0.1 μeV/SOD, which we interpret as evidence

for almost if not perfect isotropy. On the other hand, the
out-of-plane coupling Jz is significantly smaller, giving a
negative anisotropy term γ = Jz/Jx − 1 = −0.3 in DFT +
U . The exchange anisotropy γ was found to be insufficient
to account for the calculated magnetocrystalline anisotropy
EFM

z − EFM
x ≈ 0.27 meV/SOD in LDA + U . The simplest

way to account for the remaining difference is through an
onsite anisotropy term D

∑
i(S

z
i )2 in the Hamiltonian. The

corresponding extracted values for D are shown in Table II.
Our first-principles results thus indicate that, at the DFT

(+ U ) level of theory, 2D TaS2 in the SOD phase maps
into an easy-plane quantum ferromagnet. For the XXZ model
with easy-plane anisotropy, the Mermin-Wagner theorem ap-
plies, meaning that no finite-temperature second-order phase
transition is expected [40]. This is unlike the easy-axis case
for which a finite Curie temperature is predicted due to
the opening of a gap in the spin-wave dispersion (see, e.g.,
Ref. [41] in the case of CrI3). Classical Monte Carlo simu-
lations of the easy-plane XXZ model on a 2D lattice show a
Berenzinskii-Kosterlitz-Thouless transition with TBKT ∼ JS2

[42]. Results for the quantum model were less conclusive
since large fluctuation in the extreme quantum limit (S = 1

2 )
may reduce the effective anisotropy and exchange coupling
magnitude [43]. Very recently, QSL physics was discussed in
the context of the easy-plane XXZ ferromagnet [44], but the
triplet RVB state was not found to be the ground state, and
it was speculated that four-spin terms might stabilize it. We
have found the four-spin terms to be also ferromagnetic, so
the ferromagnetic-ordered ground state also minimizes such
terms. In that case, we expect the effect of the ring-exchange
term is to merely renormalize the spin-wave dispersion [45],
but more thorough investigation would be needed.

Discussion. Magnetism in the SOD phase of TaS2 is a
longstanding question, which has led to several interesting
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proposals. Theoretical understanding has been so far hindered
by two factors. First, experimental work probing magnetism
was only done on a layered form of TaS2. Uncertainty on
the exact stacking remains, and the approximation of a quasi-
2D material is questionable. Secondly, an ab initio model
Hamiltonian for spins was not known, and parameters were
mostly derived from simplified one-band Hubbard models.
Our results differ significantly from these models, as we have
found opposite signs for both two- and four-spin couplings
(i.e., we have found both terms to be ferromagnetic). In theory,
our results are derived from first principles, so they should be
more robust than a Hubbard model studied perturbatively to
derive a spin Hamiltonian. However, in the presence of strong
correlations, we cannot exclude that the approximations of the
DFT + U method break down and that it fails qualitatively,
even though it usually performs well for magnetism in various
correlated systems [41,46].

In this paper, we suggest that single-layer TaS2 could re-
alize a 2D easy-plane ferromagnet. This could help interpret

future experiments, not only on TaS2 but also on similar
materials such as TaSe2, although the generalizability of the
present results to other materials remains to be established. If
confirmed, that would also have bearing on the understanding
of bulk TaS2, as it would mean that a quasi-2D spin-liquid
cannot explain the absence of magnetic ordering observed.
There is growing evidence that interlayer interactions are
more important than initially thought and that this material
might actually be quasi-one-dimensional rather than quasi-2D
[5,47,48]. The origin of the observed insulating behavior is
still unclear and might therefore be explained from a different
perspective than a Mott insulator [49]. Recently, it was pro-
posed that bulk TaS2 could be a simple band insulator, with
gap formation driven by the stacking pattern [50,51].
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