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Relaxation at different length scales in models of many-body localization
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We study dynamical correlation functions in the random-field Heisenberg chain, which probes the relaxation
times at different length scales. First, we show that the relaxation time associated with the dynamical imbalance
(examining the relaxation at the smallest length scale) decreases with disorder much faster than the one deter-
mined by the dc conductivity (probing the global response of the system). We argue that the observed dependence
of relaxation on the length scale originates from local nonresonant regions. The latter have particularly long
relaxation times or remain frozen, allowing for nonzero dc transport via higher-order processes. Based on the
numerical evidence, we introduce a toy model that suggests that the nonresonant regions asymptotic dynamics
are essential for the proper understanding of the disordered chains with many-body interactions.
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Introduction. The phenomenon of many-body localization
(MBL) deals with a challenging interplay of disorder [1] and
interaction in many-body (MB) quantum systems [2], opening
also fundamental questions on the statistical description of
such systems. It is suggested by numerous numerical studies
that prototype one-dimensional (1D) models on increasing
disorder reveal the transition/crossover from an ergodic
behavior to a localized regime characterized by several
criteria: change in level statistics and spectral properties
[3–7], slow growth of entanglement entropy [8–10], vanishing
dc conductivities and transport [11–16], nonergodic behavior
of local correlations, and the absence of thermalization
[17–21], the latter also being the experimental probe in
cold-atom systems [22–24]. Recently, due to the restricted
system sizes available in the numerical investigations, the
stability of the MBL phase has been challenged [25,26].
Nevertheless, even in reachable systems, the transport as
well as the relaxation properties are well defined at high
temperatures T = 1/β → ∞, provided that (i) we consider
properties at fixed disorder configuration, and (ii) we take
into account that the frequency resolution is limited, i.e.,
δω � ωH ∼ 1/τH , where τH is the Heisenberg time which in
considered finite MB systems can be very long τH ∝ 2L.

In this work, we study the high-T transport via the dy-
namical spin conductivity σ (ω), as well as local correlations
embodied by the dynamical imbalance I (ω), and reveal the
characteristic relaxation rates at different length scales in the
prototype model of MBL, i.e., the 1D random-field Heisen-
berg model. While it has already been observed that the
average dc value σ0 = σ (ω → 0) depends exponentially on
disorder W [12,15,16,27,28], we establish that this is also the
property for each disorder configuration. Still, differences of
exponent lead to very broad (log-normal type) distribution of
σ0 [27,29] even at modest disorders W < W ∗

c , where W ∗
c is the

value of the presumed MBL crossover/transition W ∗
c ∼ 4J in

the random HM [4,14,17]. On the other hand, the relaxation of
local quantities, as manifested in I (ω) and spatially resolved
spin correlations, can reveal very small relaxation rates, which
can be below the resolution � < δω in considered systems and
are an indication of much slower thermalization and approach
to ergodicity [6,30]. The observed phenomena can be well
captured within a toy model, which separates for each dis-
order configuration the system into resonant islands [31–33]
and nonresonant quasilocalized islands. The transport through
the latter can happen via higher-order tunneling while local
thermalization occurs on much longer time scales [33,34]. In
spite of its simplicity the model accounts well for observed
steep decrease of conductivity with disorder and its wide
statistical spread. We also find similar transport properties win
the random transverse Ising model (TFIM) [35].

Model. In the following we mostly study the random-field
Heisenberg model,

H =
∑

i

[
J

2
(S+

i+1S−
i + H.c.) + J�Sz

i+1Sz
i + hiS

z
i

]
, (1)

with spin S = 1/2 operators and � = 1, while hi ∈ [−W,W ]
are local fields with uniform probability distribution. We con-
sider 1D chains with L sites and periodic boundary conditions,
with J = 1 as the energy unit. We first concentrate on the
high-T (T � J) dynamical spin conductivity,

σ̃ (ω) = T σ (ω) = 1

L

∫ ∞

0
dt eiωt 〈 j(t ) j〉, (2)

related to the uniform spin current j = (J/2)
∑

j (iS
+
j+1S−

j +
H.c.). We calculate σ̃ (ω) (and other dynamical correlation
functions considered in this work) for each disorder config-
uration using the upgraded microcanonical Lanczos method
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FIG. 1. (a) High-T dc spin conductivities σ̃0 within the random-
field Heisenberg model vs disorder strength W for different disorder
realizations (30 samples for each W ), as evaluated with MCLM
on the L = 26 system. The thick lines represent exponential fits
to the median and average σ̃0. (b) Cumulative distribution function
(CDF) of σ̃0 values for different W (50 samples for each W ). Curves
represent log-normal distributions as a guide to the eye.

(MCLM) [28,36–38] with high-resolution δω. The method
evaluates the dynamical correlations within a microcanoni-
cal state |	E〉 corresponding to chosen energy E (which we
choose here in the middle of the MB spectrum, i.e., E ∼ 0)
and with small energy dispersion σE < δω ∼ �E/ML, ob-
tained via a large number of Lanczos iterations ML, where �E
is the system MB energy span. In the following, we present
results for L = 26 sites in the Sz

tot = 0 sector, with the number
of MB states Nst ∼ 107 states, and by using ML ∼ 2.105 we
reach (in considered disorder range W � 4) the resolution
δω ∼ 10−4, still larger than ωH ∼ �E/Nst � 10−5.

It should be noted that even within a finite system for
chosen sample hi and energy E dynamical σ̃ (ω), and in par-
ticular σ̃0, are well defined and resolved provided that σ̃0 �
δω (see Ref. [35] for typical spectra σ̃ (ω) at different W ).
In Fig. 1(a) we summarize results for dc σ̃0 at increasing
W , where we choose hi = W ηi with random configurations
ηi ∈ [−1, 1]. We note that W ∼ 1 roughly represents [35] the
borderline between the weak scattering regime and the inco-
herent diffusion where σ (ω) is maximum at ω > 0. Results
in Fig. 1(a) generally reveal for W > 1 an exponential-like
dependence σ̃0 ∝ exp(−bW ) for each disorder configuration
separately, with typical b ∼ 2.5 [12,15,16,27]. Still, slightly
different (sample dependent) b lead to a large statistical spread
of σ̃0 value, as summarized in Fig. 1(b) by the cumulative
distribution function (CDF) which is close to the log-normal
distribution. We also note that our δω resolution limits reliable
σ̃0 � 10−4 for different samples at marginal W ∗

c ∼ 4, with the
variation δW ∗

c ∼ 0.5.
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FIG. 2. (a) Dynamical imbalance I (ω) within a single disorder
sample at different strength W , calculated for L = 26. Dashed line
depicts the 1/ω dependence. (b) Extracted dc spin conductivity
σ̃π in comparison with the uniform σ̃0 vs W for three potential
configurations.

In contrast to σ̃0, which can be typically well followed for
W � 3.5, local correlations can reveal already exceedingly
long relaxation times. Of interest is the spin correlations Sq(ω)
of modulation operator Sz

q = (1/
√

L)
∑

j exp(iq j)Sz
j which

can be related [16,21,35,39,40] to the q-dependent spin con-
ductivity σ̃q

Sq(ω) = − 1

π
Im

[
χ0

q

ω + i g2
qσ̃q(ω)/χ0

q

]
. (3)

Here gq = 2 sin(q/2) and χ0
q = 〈Sz

−qSz
q〉 = 1/4. Note also that

Sπ (ω) = I (ω) is directly relevant to cold-atom experiments
[22–24], i.e., I (ω) probes the local thermalization, in particu-
lar the relaxation rate �I ∝ σ̃π (ω → 0) = σ̃π , determined by
the saturation I (ω < �I ) ∝ 1̃/σπ . Results in Fig. 2(a) for a
single disorder configuration reveal that �I can become very
small and hardly resolved in the considered system, i.e., �I �
δω, even at modest W ∼ 2.5, where σ̃0 is still well defined.
An indication of finite-size dominated �I is also the devi-
ation from marginal I (ω) ∝ 1/ω [16,21] at larger W � W ∗

c .
Furthermore, the results for σ̃π extracted from I (ω) for a few
samples are presented in Fig. 2(b) and confirm that in general
σ̃π < σ̃0, with the difference becoming large on approaching
W ∼ W ∗

c , i.e., indicated increasing difference between ther-
malization and (local) transport relaxation.

While I (ω) and related �I monitor the local relaxation
averaged over all sites in the system, it is instructive to follow
also the local Ci(ω), i.e., correlations of Sz

i for each site in
the chain. In Fig. 3(a) we present a variation of Ci(ω) among
all sites in one chosen configuration at moderate W = 3.
We note substantial variations in low-frequency Ci(ω → 0) ∝
1/�i, whereby small �i can be directly correlated with large
potential deviations of local hi, also presented in Fig. 3(a).
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FIG. 3. (a) Local spin correlations Ci(ω) for all sites i = 1, L
with potentials hi corresponding to W = 3 (with the potential land-
scape also shown). (b), (c) Local correlations Ci(ω) for different
W = 1−3 for two characteristic sites i = 10, 15, representing reso-
nant and localized islands, respectively. Dashed line in (b) represent
∝ 1/ω dependence, while in (c) ∝ 1/ω and ∝ 1/ω2. (d) σ̃ (ω) for
flattened potentials with various thresholds R = 0 − 2.1 for one con-
figuration with W = 3.

A more detailed comparison of Ci(ω) for two typical sites,
representing the weak potential fluctuation, site i = 10, and
strong potential-fluctuation regime at i = 15, respectively, are
shown in Figs. 3(b) and 3(c). While generally C15(ω ∼ 0) �
C10(ω ∼ 0), it also appears that C15(ω) reveals for W � 3
[instead of Ci(ω > �i ) ∝ 1/ω] a Lorentzian behavior [30]
with Ci(ω > �i ) ∝ 1/ω2, representing the marginal �i ∼ δω.
It follows from Fig. 3(a) that the local dynamics captured in
Ci(ω) is particularly slow in the vicinity of sites i with a large
difference in local potentials |hi − hi±1|. One could in fact
expect for the latter a Lorentzian with �i ∝ exp(−a|hi|), with
large a > 3 [33]. While we simulate such a case in Ref. [35],
we find much smaller a ∼ 1, which can better account for
observed differences in �i.

As the main result we demonstrate that the regions with
slow dynamics are essential not only for thermalization of
local operators but also for transport at various length scales,

i.e., σ̃0 vs σ̃π , and various time scales. We introduce a parame-
ter R which allows us to distinguish between the nonresonant
(localized) islands and the resonant (conducting) islands.
Namely, we assume that site i belongs to an isolated island
when |hi − h j | > R for both neighboring sites, j = i ± 1.
Otherwise, i belongs to a conducting island. We note that
taking the standard resonant scenario [28,32], together with
the matrix elements relevant for the spin-flip J/2, one gets
R = J = 1. Interestingly, we observe that the spatial variation
of hi within the conducting islands is not essential for trans-
port. To this end, for all sites i which belong to the conducting
islands we replace hi with h̄i, where h̄i is the average h j over
all sites j in the same island. Such flattening eliminates disor-
der within each conducting island, as is sketched in Fig. 3(d)
for a single configuration at W = 3. We notice from Fig. 3(d)
that the resulting σ̃ (ω) is hardly affected up to R � 1.5. This
result reveals a clear separation of the studied system into
conducting and localized islands, and shows that the transport
is determined by the localized islands.

Toy model. Since the time scales which are relevant for
the dynamics in the conducting and isolated islands differ
substantially, the latter can be considered to be frozen and
transformed out from the Hamiltonian. Then, the transport
through a localized island that contains M frozen spins,
Sz

j · · · Sz
j+M−1, can happen via high-order virtual process in-

volving at least M spin flips. It leads to a new effective
spin-flip term, H̃ ′

j = (Jeff
j /2)(S+

j+MS−
j−1 + H.c), between sites

j − 1 and j + M, which belong to the neighboring conducting
islands [33]. One can derive Jeff

j via the Mth order degenerate
perturbation theory

H̃ ′
j = H ′Q

1

Ē − H0
H ′Q · · · QH ′ 1

Ē − H0
QH ′, (4)

where H0 = Hh + H� and Q projects all intermediate states
equal to the initial or the final ones. Here, H ′, H�, and Hh

denote, respectively, the first, second, and last term in the
Hamiltonian (1). In order to obtain an analytical estimate for
Jeff

j , we introduce a few simplifications. We assume strong
disorder (H0 � Hh) ferromagnetic states of isolated islands
(Sz

i = Sz
i′ for i, i′ = j, ..., j + M − 1), and we fix Ē = (Ei +

E f )/2 as the average between initial and final Hh, taking also
h̄ j−1 ∼ h̄ j+M ∼ 0. Then, one can directly evaluate Eq. (4) and
the effective coupling

∣∣Jeff
j

∣∣ = JM+1

2M

1

h jh j+1 · · · h j+M−1
. (5)

It is interesting to note that Eq. (4) remains valid for other
spin configurations apart from ferromagnetic, which we have
checked explicitly for M � 3.

It is now straightforward to define a toy model which
relies on the assumption that dc transport is dominated by the
incoherent conduction via localized islands. Then, the trans-
port appears through the sequence of incoherent hoppings
(series of resistors), i.e., corresponding to Ji = J for the link
in the resonant islands and Ji = Jeff

j /M for each link in the
nonresonant ones. Under such conditions, the conductivity
is given by σ̃0 ∼ σ ∗

0 J̄eff and 1/J̄eff = (1/L)
∑

i(Ji )−1 where
the numerical constant σ ∗

0 ∼ 0.1 is chosen to reproduce the
incoherent dc conductivity at W ∼ 1. The perturbative expres-
sion, Eq. (5), is applicable for realizations of disorder where
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FIG. 4. (a) Toy-model dc conductivity σ̃0 for various W and
L = 25. The inset show L = 20–1 6000 dependence for W = 1.5.
(b),(c) Density ρM and typical value of Jeff for nonresonant islands
of length M obtained for L = 107. (d) Distribution of Jeff in the toy
model.

potentials inside the island are not degenerate with the outside
ones, i.e., |hi| � 0. In order to account for the latter, we
neglect localized islands with M sites for which Jeff

i > J/M.
We have carried out simulations of the toy model following

all steps previously tested via full quantum calculations. For
each realization of disorder we identify the resonant and
nonresonant islands, flatten the disorder within the resonant
islands (hi → h̄i) and evaluate σ̃0. Based on results shown in
Fig. 3(d) we take R = 1.5. The main panel in Fig. 4(a) shows
the CDF of σ̃0 obtained for different disorder realizations.
The toy model correctly reproduces the main features of
the full-quantum calculations. In particular, the median
of the CDF decays approximately exponentially with W ,
however the rate is slower than results shown in Fig. 1(b).
Moreover, the distribution of σ̃0 for L ∼ 25 is very broad
indicating that the spread of σ̃0 may span over a few orders
of magnitude. For weak disorder, the width of the distribution
decreases with L, and for sufficiently large systems the
distribution approaches the normal (Gaussian) distribution
expected for diffusive systems, as shown in the inset of
Fig. 4(a).

For stronger disorder, the toy model reveals an anoma-
lous Griffiths scenario reported in several numerical studies
[13,41,42]. To explain its origin, in Fig. 4(b) we show the
density of nonresonant islands of length M, ρM = NM/L,
where NM denotes the number of localized islands and the
simulations were carried out for L = 107. The probability of

finding a nonresonant link in strongly disordered system is
(1 − R/W ), hence ρM ∝ (1 − R/W )M . Figure 4(c) shows the
typical value of Jeff for nonresonant islands of length M. We
find 〈Jeff〉typ ∝ W −M , which straightforwardly follows from
Eq. (5). The exponential dependence of ρM and Jeff (M ) on
M is very robust. As a consequence, the toy model realizes
the Griffiths scenario, i.e., large nonersonant islands are ex-
ponentially rare but the corresponding 1/Jeff is exponentially
large. Consequently, such islands have a substantial impact
on transport. The interplay leads to a power-law CDF ∝ Jα

eff

shown in Fig. 4(d). The probability density f (Jeff ) ∝ J (α−1)
eff

and the average 〈J−1
eff 〉 = ∫ 1

0 dJ f (J )/J is finite only for α >

1 and diverges otherwise. The latter implies σ̃0 → 0 in the
L → ∞ limit, indicating subdiffusive transport or localiza-
tion. It should be stressed that the toy model is based on the
assumption that the nonresonant islands are strictly frozen. If
the lifetimes are finite, then the nondiffusive transport may be
transient while the asymptotic transport may still be diffusive.
It is also possible that the role of large islands may be over
represented due to possible inherent internal resonances. Re-
sults in Fig. 3(c) indicate that the relaxation of the nonresonant
islands can be studied numerically only up to relatively weak
disorder W � 2.5.

Conclusions. We have studied dynamical correlation func-
tions which probe the relaxation mechanisms at different
length scales in the random-field Heisenberg model. The dc
conductivity σ̃0 probes the transport at large length scales
(wave vectors q → 0) and was shown to decrease expo-
nentially with disorder with an increasing log-normal-like
distribution of σ̃0 values. Still, its decrease disorder is much
slower than the dynamical imbalance and the correspond-
ing σ̃π , which probes the smallest length scales (q = π ).
We argue that the surprising difference between σ̃0 and σ̃π

originates from the presence of nonresonant regions (islands)
with particularly slow or completely frozen dynamics. These
extremely long (or infinite) relaxation times are probed by
the long-time dynamics of the imbalance or, equivalently, by
σ̃π (ω → 0). However, their contribution to σ̃0 can be treated
perturbatively in that spins excitation can pass nonresonant is-
lands via virtual spin-flip processes (on the much shorter time
scales). As a consequence the nonresonant islands influence
σ̃π more strongly than σ̃0. Still, the presence of nonresonant
islands explains large sample-to-sample spread of σ̃0 and the
exponential dependance of σ̃0 on the strength of disorder.
Large nonresonant islands may also give rise to anomalous
(nondiffusive) transport for stronger disorder, although their
role can be overestimated in the present study. It is evident
from the presented results that the fate of the MBL phase
and transport properties of the disorder many-body systems
depends on the relaxation times of the nonresonant islands,
i.e., whether the latter are finite or infinite.
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