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Quantum criticality and spin liquid phase in the Shastry-Sutherland model
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Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-
Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the
previously known plaquette-singlet and antiferromagnetic states. Our conclusions are based on the finite-size
scaling of excited level crossings and order parameters. Together with previous results on candidate models for
deconfined quantum criticality and spin liquid phases, our results point to a unified quantum phase diagram
where the deconfined quantum-critical point separates a line of first-order transitions and a gapless spin liquid
phase. The frustrated Shastry-Sutherland model is close to the critical point but slightly inside the spin liquid
phase, while previously studied unfrustrated models cross the first-order line. We also argue that recent heat
capacity measurements in SrCu2(BO3)2 show evidence of the proposed spin liquid at pressures between 2.6 and
3 GPa.
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The quasi-two-dimensional (2D) S = 1/2 quantum magnet
SrCu2(BO3)2 [1–3] has emerged [4–9] as the most promising
realization of a deconfined quantum-critical point (DQCP)
[10–12], where a state spontaneously forming a singlet pattern
meets an antiferromagnetic (AFM) state in a phase transi-
tion associated with fractionalized excitations (spinons). The
intralayer interactions of the Cu spins correspond to the
Shastry-Sutherland (SS) model [13], with highly frustrated
AFM interdimer (J) and intradimer (J ′) Heisenberg couplings.
The SS model has three known ground states versus g = J/J ′:
a dimer singlet (DS) state for small g [13], a Néel AFM state
for large g, and a twofold degenerate plaquette-singlet (PS)
state for g ∈ [0.68, 0.77] [3,6,14,15].

At ambient pressure SrCu2(BO3)2 is in the DS phase [1,2]
but the other SS phases have been anticipated under high
pressure [16]. Recent heat capacity [7,8], neutron scattering
[4], and Raman [9] experiments have indeed confirmed some
variant [17,18] of the PS phase (from 1.7 to 2.5 GPa at tem-
peratures T < 2 K) and an AFM phase (between 3 and 4 GPa
below 4 K). A direct PS-AFM transition may then be expected
between 2.6 and 3 GPa [19] at temperatures not yet reached.

Here, we show that the above picture is incomplete. Using
the density-matrix renormalization group (DMRG) method
[20], we study the ground state and low-lying excitations
of the SS model. Based on the lattice-size dependence of
the level spectrum and order parameters, we conclude that a
narrow gapless spin liquid (SL) phase intervenes between the
PS and AFM phases. In light of this finding, the absence of
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signs of any phase transition between 2.6 and 3 GPA [7,8]
opens the intriguing prospect of an SL phase in SrCu2(BO3)2.

DMRG calculations. The SS model with AFM couplings J
between first neighbor spins 〈i j〉 and J ′ on a subset of second
neighbors 〈i j〉′ is illustrated in Fig. 1. The Hamiltonian is [13]

H = J
∑

〈i j〉
Si · S j + J ′ ∑

〈i j〉′
Si · S j, (1)

here on Lx × Ly cylinders [21,22] with open and periodic
boundaries in the x and y direction, respectively, and L ≡
Ly = 2n, Lx = 2L. In this geometry, the model has a preferred
singlet pattern which minimizes the boundary energy in the PS
phase; thus the twofold degeneracy is broken and the ground
state is unique, as illustrated in Fig. 1.

We have developed efficient procedures for calculating not
only the ground state with full SU(2) symmetry [23,24], but
also successively generating excited states by orthogonalizing
to previous states [25–27]. Imposing stringent convergence
criteria for a given Schmidt number m, we have reached suffi-
ciently large m for reliably extrapolating to discarded weight
εm = 0 (see Supplemental Material [28]) for L up to 10, 12,
or 14 depending on quantity (energies and order parameters).
Any remaining errors in the results are small on the scale of
the graph symbols in the figures presented below.

We focus on the window g ∈ [0.7, 0.9], which straddles the
PS and AFM phases. The ground state of the system is always
a singlet, and we analyze the gaps �(S) to the lowest excited
singlet (S = 0), triplet (S = 1), and quintuplet (S = 2). Finite-
size crossings of excited levels with different spin are often
used indicators of quantum phase transitions in spin chains
[29–32], and this method was also applied to the 2D J-Q [33]
and J1-J2 [26,34,35] Heisenberg models. We here use level
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FIG. 1. The SS lattice with open x and periodic y boundary con-
ditions. The lengths Lx and Ly are both even. Nearest neighbors are
coupled at strength J by Eq. (1) and the blue diagonal links represent
the dimer couplings J ′. The open edges break the Z2 symmetry of
the PS phase, thus inducing a singlet density pattern as indicated
schematically by the thickness of the red lines.

crossings to detect the transitions out of the PS phase and
into the AFM state, following Ref. [26] closely. We also study
the PS and AFM order parameters to corroborate the quantum
phases and phase transitions.

We graph singlet and triplet gaps in Fig. 2(a) and similarly
singlet and quintuplet gaps in Fig. 2(b), in g windows where
gap crossings are observed. In Fig. 3 we analyze the gap
crossing points and the singlet minimum that is also observed
in Fig. 2(a). Given the previous empirical observations of
crossing-point drifts in 2D systems [26,33], we graph the
results versus 1/L2 and find almost perfect linear behav-
iors. Interesting, the singlet-triplet crossing and the singlet
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FIG. 2. (a) The lowest singlet and triplet gaps vs g in the neigh-
borhood of the expected quantum phase transition out of the PS
phase. (b) The lowest singlet and quintuplet gaps for g inside the
AFM phase, close to its quantum phase transition. The curves are
polynomial fits.
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FIG. 3. Locations of gap crossings and singlet minimums, with
the lines showing linear-in-1/L2 fits. The L = 4 singlet-quintuplet
point is at g ≈ 1.1, falling very close to the fitted line. The ex-
trapolated critical points are gc1 = 0.788 ± 0.002 and gc2 = 0.820 ±
0.002.

minimum both extrapolate to gc1 ≈ 0.79, while the singlet-
quintuplet points scale to a higher value, gc2 ≈ 0.82.

It was previously shown [26,31] that the crossing point
between the lowest singlet and quintuplet levels is a use-
ful finite-size estimator for a quantum phase transition into
an AFM phase, given that the lowest S > 0 states are An-
derson quantum rotors, separated from the ground state by
gaps �A(S) ∝ S(S + 1)/L2, while the singlet excited state
should be the gapped amplitude (“Higgs”) mode in the AFM
state [6]. In contrast, in other putative phases adjacent to the
AFM phase (in the SS model and many other models), the
S = 2 state will be above the lowest S = 0 excitation. Thus,
we identify the extrapolated singlet-quintuplet crossing point
gc2 ≈ 0.82 with a quantum phase transition into the AFM
state.

Following previous work on the J1-J2 model [26], we iden-
tify the extrapolated singlet-triplet crossing point gc1 ≈ 0.79
with the transition out of the PS state. The singlet minimum by
itself is consistent with the PS gap vanishing at a DQCP and
becoming the gapped amplitude mode in the AFM phase [6].
However, an AFM phase starting at gc1 is inconsistent with the
singlet-quintuplet crossing point gc2. Though the separation
between the transition points gc1 ≈ 0.79 and gc2 ≈ 0.82 is
small, an eventual flow toward a common point for larger
systems appears unlikely, given the absence of significant
corrections to the 1/L2 forms in Fig. 3. Below we will show
evidence for a gapless SL phase for g ∈ (gc1, gc2).

Both gap crossings match those in the J1-J2 Heisenberg
model [26], where several numerical studies have reached a
consensus on the existence of a gapless SL phase between
dimerized and AFM phases [24,26,34–36]. Field theories have
also recently been proposed for this SL phase [37,38]. More-
over, the same level crossings were found at the transition
from a critical state to either a dimerized state (singlet-triplet
crossing) or an AFM state (singlet-quintuplet crossing) in
a frustrated Heisenberg chain with long-range interactions
[26,31]. Given these results for related models, the distinct
gc1 and gc2 points suggest a gapless SL phase also in the SS
model.
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FIG. 4. Gaps vs inverse system size. The singlet and triplet at
g = 0.80 (SL phase) have been fitted to the form � = a/L + b/L2

(a and b being fitting parameters). The singlets in the PS (g = 0.76)
and AFM (g = 0.84) phases converge to nonzero values, as shown
with a fit of the form � = a + be−cL (fitting parameters a, b, c) in
the former case and a quadratic form in the latter case.

In Fig. 4 we analyze the size-dependent gaps in and close
to the putative SL phase. At g = 0.80, both the singlet and
triplet gaps exhibit asymptotic 1/L scaling, corresponding to
a dynamic exponent z = 1 inside the SL phase. At g = 0.76,
in the PS phase, the singlet (and also the not shown triplet)
converges exponentially to a nonzero gap, as expected in the
SS model with cylindrical boundaries (Fig. 1) for which the
shifted PS state is gapped by boundary energies. In the AFM
phase, we find convergence to a nonzero amplitude-mode
energy at g = 0.84. In Fig. 4 we have fitted a polynomial in
this case, which works better than an exponentially convergent
form, likely due to a gapless spectrum above the lowest singlet
(unlike the isolated singlet mode in the PS state).

We next study order parameters. We use the squared AFM
magnetization, m2

s = L−4 ∑
i j φi j〈Si · S j〉, where i, j are sites

in the central L × L area of a 2L × L system and φi j = ±1
is the staggered phase. To detect PS order we define Qr ≡
1
2 (Pr + P−1

r ), with Pr a cyclic permutation operator on the
four spins of a plaquette at r. Given the boundary-induced
plaquette pattern (Fig. 1), we can detect the PS order as the
difference of 〈Qr〉 on two adjacent “empty” SS plaquettes
[39]. Thus, we define mp = 〈QR − QR′ 〉, where R and R′
are both close to the center of the cylinder (the landscape of
Qr values is shown in the Supplemental Material [28]). Both
order parameters are graphed versus 1/L in Fig. 5.

Second-order polynomial extrapolations of the AFM or-
der parameter in Fig. 5 show that m2

s vanishes for g ≈ 0.82,
thus providing further evidence for the AFM phase starting
at the extrapolated singlet-quintuplet point gc2 ≈ 0.82. The
polynomial form is strictly appropriate only inside the AFM
phase, while at a critical point (or phase) m2

s ∝ L−(1+η) should
instead apply asymptotically. The g = 0.80 and 0.82 data can
indeed be fitted with η ≈ 0.32 and η ≈ 0.23, respectively.
In the PS phase, polynomial fits extrapolate to unphysical
negative values, which can be understood on account of the
expected ∝L−2 asymptotic form (which, however, cannot be
fitted because of large corrections).
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FIG. 5. Squared AFM order parameter vs inverse system size for
several g values. The corresponding PS order parameters are shown
in the inset. The dashed curves with colors matching the symbols in
the main graph are second-order polynomials, while the solid curves
are of the critical form ∝L−(1+η) with η ≈ 0.32 and η ≈ 0.23 for g =
0.80 and 0.82, respectively. Fitting to the mp data is not meaningful,
but the nonmonotonic behavior for g = 0.80–0.84 is explained by
boundary PS order outside the PS phase (see Supplemental Material
[28]) and mp → 0 for L → ∞.

The inset of Fig. 5 shows how PS order is stabilized only
for the larger system sizes inside the PS phase, reflecting
large fluctuations in small systems (as shown explicitly in the
Supplemental Material [28]). The central plaquettes where mp

is defined are close to the cylinder edges for small L, and
only for larger L can mp reflect a disordered bulk. Outside
the PS phase the boundary-induced order close to the edges
first increases with L, thus causing nonmonotonic behavior as
seen most clearly at g = 0.82 and 0.84 (see also Supplemental
Material [28]). At g = 0.80, mp for L = 14 also falls below
the value for L = 12, indicating that indeed mp → 0 when
L → ∞, as it should in the SL phase.

DQCP and unified phase diagram. The originally proposed
DQCP is generic, reachable by tuning a single parameter
[10]. Quantum Monte Carlo studies of several variants of
J-Q Hamiltonians [12] have indeed found direct transitions
between AFM and dimerized ground states [40–51]. Similar
results have been obtained with related classical loop [52,53]
and dimer [54] models. In most cases, no discontinuities were
observed, though unusual scaling violations point to weak
first-order transitions [41,48,55] or other scenarios [45,50].
One proposal is that the DQCP is unreachable (e.g., exist-
ing only in dimensionality below 2 + 1) and described by a
nonunitary conformal field theory (CFT) [56–62].

In some variants of the J-Q model clearly first-order transi-
tions were observed [5,63,64]. The checkerboard J-Q (CBJQ)
model [5] (and a closely related loop model [65]) has a Z2

breaking PS phase such as that in the SS model. A first-order
spin-flop-like transition with emergent O(4) symmetry of the
combined O(3) AFM and scalar PS order parameters was
found, with no conventional coexistence state with tunneling
barriers up to the largest length scales studied. This unusual
behavior indicates close proximity to an O(4) DQCP.
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FIG. 6. Unified phase diagram, where an O(4) DQCP separates a
line of first-order PS-AFM transitions and an extended SL phase. The
PS-SL and SL-AFM transition may both be continuous DQCP-like
transitions. The dashed horizontal lines illustrate cuts through the
phase diagram when a single parameter g is tuned, corresponding to
the CBJQ model (top line) and the SS model (bottom line).

Lee et al. recently considered a proxy of the excitation
gap with the iDMRG method (infinite-size DMRG, where
Lx → ∞ and Ly is finite), studying correlation lengths of
operators with the symmetries of the excited levels of interest
[6]. Following Ref. [26], they identified both crossing points
discussed here (Figs. 2 and 3), but these points were not
extrapolated to infinite size. It was nevertheless argued that
the singlet-triplet and singlet-quintuplet crossings will drift to
a common DQCP with increasing system size, in the SS model
as well as in the J1-J2 model. However, in a very recent work,
Shackleton et al. revisited the J1-J2 model and constructed
a quantum field theory of a gapless SL phase and a DQCP
separating it from the AFM state [37]. A different field theory
was outlined in Ref. [38].

The narrow SL phase found here in the SS model suggests
proximity to the DQCP discussed by Lee et al. [6], which
most likely would be the same DQCP as the one influencing
the O(4) transition in the CBJQ model [5]. Moreover, it has
recently been argued that the DQCP is actually a multicritical
point [66,67]; a second relevant scaling field with all the sym-
metries of the Hamiltonian was detected in the conventional
critical J-Q model [66], and subsequently such a field was also
identified in a deformed self-dual field theory [67]. In the J-Q
model it was found that the system flows toward a first-order
transition when a certain interaction is turned on in a way
maintaining a sign-free path integral [63]. It is possible that
the interaction with the opposite sign could instead open up
an SL phase. Taken together, all these observations suggest the
unified phase diagram schematically illustrated in Fig. 6. The
two parameters (g, h) correspond to two relevant symmetric
fields, and in models with just one tuning parameter g, e.g.,
the CBJQ and SS models, either the first-order line or the
SL phase is traversed. Possible ways to tune h in a model are
further discussed below.

Summary and discussion. Our DMRG results can consis-
tently be explained by a previously not anticipated SL phase
between the known PS and AFM phases of the SS model.
The PS-SL point gc1 ≈ 0.79 is above the PS-AFM point gc ≈
0.765 obtained with tensor product states [14] (where the sys-
tem is infinite but the results may be affected by small tensors)
but is not at significant variance with the more recent iDMRG

calculation [6], where gc ≈ 0.77 for L = 12 and an increase
in gc with L was observed (see Table 1 of Ref. [6]). The tensor
technique used in Ref. [14] has a bias to ordered phases and
may induce AFM order in the fragile SL phase. In Ref. [6]
the AFM order parameter was not studied, and its appearance
only at higher g may have been missed. While these works
did not consider any other phase intervening between the PS
and AFM phases, an early field theory of the SS model within
an 1/Si expansion (with Si = 1/2 being the target spin value)
contains phases not detected numerically to date, including
a gapped SL and a helical phase, but no gapless SL [68].
Topological order has also been proposed [69]. As discussed
further in the Supplemental Material [28], for all values of g
we find the dominant spin correlations at the Néel wave vector
k = (π, π ), i.e., no helical order.

Given our SS results and the existence of a gapless SL
in the square-lattice J1-J2 model [24,26,34–37], SLs ending
at DQCPs may be ubiquitous between symmetry-breaking
singlet and AFM phases. The commonly studied Dirac SLs
should be unstable on square lattices and lead to DQCPs
[6,70], and the SL identified here should fall outside this
framework [37,38]. In our scenario, in a multiparameter
model the SL can be shrunk to a multicritical DQCP with
emergent symmetry, followed by a first-order direct PS-AFM
transition. In principle there could be a triple point instead of
the DQCP in Fig. 6, with weak first-order transitions as in the
nonunitary CFT proposal [56–60,62].

A DQCP separating a line of first-order transitions and an
SL phase is a compelling scenario also considering that the
J-Q models can be continuously deformed into conventional
frustrated models. Placing Q terms on the empty plaquettes
of the SS lattice, by gradually turning off Q and turning on
J ′ the unusual first-order PS-AFM transition with emergent
O(4) symmetry of the CBJQ model [5] should evolve as if the
upper dashed line in Fig. 6 moved to lower h, and eventually
the SS SL phase should appear. In general, we expect that
many perturbations of the SS and J1-J2 models could act as
the parameter h in Fig. 6, e.g., longer-range interactions or
multispin cyclic exchange with appropriate signs. The O(4)
symmetry should be replaced by SO(5) in cases where the PS
phase is instead a dimerized phase, e.g., with some extensions
of the conventional J-Q and J1-J2 models.

An SL phase can explain the absence of any observed
phase transition in SrCu2(BO3)2 at pressures 2.6–3 GPa [7,8],
between the PS and AFM phases. Since SrCu2(BO3)2 can
be synthesized with a very low concentration of impurities,
unlike many other potential spin liquid materials, an SL phase
would be significant. A direct PS-AFM transition has already
been observed at high magnetic fields [8], but the nature of the
transition remains unexplored. The phase diagram in Fig. 6
may also hold with h corresponding to the field strength, but
with the symmetry of the AFM order reduced to O(2) and
potentially emergent O(3) symmetry of the DQCP [instead
of O(4) at zero field] and on the adjacent direct PS-AFM
line.

Note added. A recent functional renormalization group cal-
culation, partially stimulated by our work, supports a gapless
SL phase in roughly the same parameter regime as reported
here [71]. Moreover, a study with tensor-product states of
the J1-J2-J3 Heisenberg model detected an isolated SL phase
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ending at a DQCP [72], very similar to our phase diagram
in Fig. 6 when g and h are identified with J2/J1 and J3/J1,
respectively (and with a dimerized Z4 phase instead of the
Z2 PS phase). However, a line of continuous dimerized-AFM
transition was proposed beyond the O(5) DQCP, instead of the
weakly first-order transitions argued for here.
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