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Emergent U (1) gauge theories and artificial photons in frustrated magnets are outstanding examples of many-
body collective phenomena. The classical and quantum regimes of these systems provide platforms for classical
and quantum spin liquids, and are the subject of current active theoretical and experimental investigations.
Recently, realizations of rank-2 U (1) (R2-U1) gauge theories in three-dimensional frustrated magnets have been
proposed. Such systems in the quantum regime may lead to the so-called fracton ordered phases—a new class
of topological order that has been associated with quantum stabilizer codes and holography. However, there
exist few distinguishing characteristics of these states for their detection in real materials. Here we focus on
the classical limit and present the dynamical spin structure factor for a R2-U1 spin liquid state on a breathing
pyrochlore lattice. Remarkably, we find unique signatures of the R2-U1 state, and we contrast them with the
results obtained from a more conventional U (1) spin liquid. These results provide a path of investigation for
future inelastic neutron scattering experiments on candidate materials.
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Introduction. Brought forth from magnetic materials with
frustrated spin interactions is a rich world of unconventional
phases and emergent laws of nature. Quantum spin liquids
(QSLs)—one of the most exotic states known to condensed
matter physics thus far—evade ordering and remain highly
entangled even down to zero temperature [1–4]. These highly
frustrated states can lead to remarkable properties, such as
fractionalized quasiparticle excitations and emergent gauge
theories, thus their detection in real materials has garnered
both fundamental and practical interests.

A well-studied example of a QSL state is the quantum spin
ice, whose low-energy excitations on the pyrochlore lattice
gives rise to U (1) electrodynamics with emergent photons
and magnetic monopoles [5–21]. Another novel branch of
QSLs in three dimensions has been suggested for systems
that effectively mimic higher rank electrodynamics [22–27],
wherein rank-2 or higher electromagnetic tensor fields can
emerge out of the strongly interacting spins. Higher-rank
tensor gauge theories in quantum systems can give rise to
a new type of topological order, known as fractonic phases
[23,28–30]. Fractons, the charged excitations of these higher
rank systems, have been associated with unusual behavior,
such as restricted motion in space [24,28,31–33] and mimick-
ing gravity [22,23,34]. Applications of fractonic phases have
been proposed in quantum local stabilizer codes [32,35,36]
and holography [37]. Hence, both the quantum and classical
regimes of such theories are of great general interest.

Recent studies of a classical spin model [26] have shown
that highly frustrated spins situated on a breathing pyrochlore
lattice (Fig. 1) behave like an electric field with rank-2 tensor
character, earning this state the name of a rank-2 U (1) (R2-
U1) spin liquid. At finite temperature, there exists a regime in
which the R2-U1 state is stable. In this region, fourfold pinch
point (4FPP) singularities in the equal-time spin correlations
on certain momentum planes were observed [26,38], which

are distinct from the usual twofold pinch point singularities
found in spin ice [9,39]. The fourfold structures were seen
in the spin-flip channel of the structure factor, and are a pre-
liminary distinguishing characteristic of the R2-U1 state [26].
Whether there are unique dynamic signatures of the R2-U1
state measurable in inelastic neutron scattering experiments
remains to be investigated, and serves as the motivation for
our studies.

In this Letter, we demonstrate a behavior in the inelastic
spin structure factor of the R2-U1 state in the classical limit.
We consider a spin model on a breathing pyrochlore lattice
(Fig. 1) with Heisenberg antiferromagnetic (HAF) exchange
and Dzyaloshinskii-Moriya (DM) antisymmetric exchange
interactions. Using classical finite temperature Monte Carlo
techniques and molecular dynamics, we demonstrate that the
4FPP persists in the dynamic structure factor at low energies.
Most notably, we contrast the R2-U1 signatures with those
from the usual classical U (1) × U (1) × U (1) Heisenberg spin
liquid, which we refer to as the U (1) spin liquid from this
point forward for brevity. We demonstrate that the signatures
of these two frustrated states are highly distinct from one
another. We then discuss the potential connections of these
classical results to the dynamics of frustrated quantum spin
systems. Our results provide an important avenue of explo-
ration for future inelastic neutron scattering experiments on
material candidates for the R2-U1 spin liquid.

Model. We consider a HAF model with DM interactions on
the breathing pyrochlore lattice, composed of spins residing
on the vertices of two different corner-sharing tetrahedra A
and B. The microscopic Hamiltonian is described by

H =
∑
i j∈A

[JASi · S j + DAd̂i j · (Si × S j )]

+
∑
i j∈B

[JBSi · S j + DBd̂i j · (Si × S j )], (1)
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FIG. 1. The breathing pyrochlore lattice with A tetrahedra (blue)
and B tetrahedra (red) of different sizes. The fluctuations of the low-
energy modes of the A tetrahedra are influenced by the surrounding
B tetrahedra. The spin moments are situated on the vertices of the
corner-sharing tetrahedra, labeled by 0, 1, 2, 3.

where the bond-dependent vectors d̂i j can be found in
[40–42]. Treating the spins classically, we can write this
model in terms of the coarse-grained fields m� that
transform according to the irreducible representations � =
{A2, E, T2, T1+, T1−} of the tetrahedra point group Td [43].
The Hamiltonian then becomes

H = 1

2

∑
�

a�,Am2
�,A + 1

2

∑
�

a�,Bm2
�,B, (2)

with the fields m� and couplings a� defined in
Refs. [26,30,43]. a�,A and a�B are functions of the spin
exchange interactions, and their explicit forms can be found
in [40]. We are interested in a minimal parameter choice in
which the R2-U1 state has been shown to arise, given by JA,
JB > 0, DA < 0, and DB = 0 [26]. For the A tetrahedra, this
leads to the hierarchy

aE,A = aT1−,A < aA2,A, aT2,A , aT1+,A , (3)

while on the B tetrahedra, we have

aE,B = aT1−,B = aA2,B = aT2,B < aT1+,B . (4)

These hierarchies dictate the low-energy physics of the sys-
tem. For example, it is energetically costly for the T1+,B mode
to fluctuate, hence, we set mT1+,B = 0. In the low-energy limit,
mE and mT1− can fluctuate on the A tetrahedra, while the other
fields must vanish.

The condition mB,T1+ = 0 on the B tetrahedra imposes
additional constraints on the A tetrahedra [26,30]. These con-
straints can be expressed as a Gauss’ law constraint of the

fluctuating fields living on the A tetrahedra, in the form of

∂iE
i j
A = 0. (5)

Using this constraint, a rank-2 electric field tensor EA can be
constructed in terms of the coarse-grained fields as

EA =

⎛
⎜⎝

2√
3
m1

E,A mz
T1−,A

my
T1−,A

mz
T1−,A

− 1√
3
m1

E,A + m2
E,A mx

T1−,A

my
T1−,A

mx
T1−,A

− 1√
3
m1

E,A − m2
E,A

⎞
⎟⎠
(6)

with properties Ei j
A = E ji

A and Tr EA = 0. These properties fit
within the general framework of a self-dual, vector-charged,
traceless form of R2-U1 electrodynamics [24,25] that obeys
a Gauss’ law described by Eq. (5) in the low-energy limit.
The f(4FPPsingularity has been observed in the hk0 plane of
the correlation function, which for a vector-charged traceless
R2-U1 theory, has the form [38]

〈Ei j (q)Ekl (−q)〉

∝ 1

2
(δi jδ jl + δilδ jk ) + qiq jqkql

q4

− 1

2

(
δik

q jql

q2
+ δ jk

qiql

q2
+ δil

q jqk

q2
+ δ jl

qiqk

q2

)

− 1

2

(
δi j − qiq j

q2

)(
δkl − qkql

q2

)
. (7)

The 4FPP singularity appearing in the Ei j correlation function
can also be seen in the spin-flip channel of the equal-time spin
structure factor in the h0k and hhk planes, which is natural
since Ei j are simply coarse-grained fields due to the spins.

In order to capture the dynamics of the system, we calcu-
late the momentum- and energy-dependent spin correlation,
i.e., the inelastic spin structure factor, given by

Sμν (q, ω) = 1

2πN

N∑
i, j=1

∫ ∞

−∞
dt e−iq·(ri−r j )+iωt

〈
Sμ

i (t )Sν
j (0)

〉
.

(8)

We investigate the spectrum both with unpolarized neutrons

S (q, ω) =
∑
μ,ν

(
δμν − qμqν

q2

)
Sμν (q, ω), (9)

and in the polarized spin-flip channel

SSF(q, ω) =
∑
μ,ν

(vμ

⊥vν
⊥)Sμν (q, ω), (10)

with neutrons polarized in the v̂ direction perpendicular to the
scattering channel, and v̂⊥ = v̂×q

|v̂×q| . Further details, along with
additional information about the equal-time spin structure fac-
tor, can be found in [40].

Numerical methods. To study the finite temperature dy-
namics of the model in Eq. (1), we utilized finite temperature
Monte Carlo (MC) techniques [44,45]. We fixed the mag-
nitude of the classical spins S = (Sx, Sy, Sz ) to be S = 1/2.
We studied system sizes of 4 × L × L × L, up to a maximum
of L = 20. We allowed the system to thermalize using a
combination of simulated annealing and parallel tempering,
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FIG. 2. Momentum-dependent dynamical structure factor in
the [h0k] plane at varying energies, for the parametrization
(JA, JB, DA, DB ) = (1, 1, −0.15, 0) at T/|JA| = 0.01. The fourfold
pinch point structure is shown in the spin-flip (SF) channel in the
right column, while the total dynamic structure factor is shown in the
left column. The intensity scale for each panel has been normalized
to arbitrary units.

both of which were done for at least 5 × 105 MC sweeps.
After thermalization, we performed another 106 MC steps
with measurements recorded every ten steps.

According to the phase diagram shown in Ref. [26], the R2-
U1 state is stable within a finite temperature window between
T1 ≈ 4 × 10−3|JA| and T2 ≈ 5 × 10−2|JA| for the parameter
set (JA, JB, DA, DB) = (1, 1,−0.15, 0). Above T2, there is a
crossover from the R2-U1 spin liquid state to the U (1) spin
liquid. The two phases can be distinguished from each other
by their pinch point characteristics in the equal-time structure
factor, as shown in Ref. [26]. More specifically, there is an
evolution of the pinch point from a fourfold singularity to a
twofold one at this temperature. Within the R2-U1 tempera-
ture window, we used the many degenerate spin configurations

FIG. 3. Energy dependence of dynamical structure factor along
the [hh0] momentum cut, for the parametrization (JA, JB, DA, DB ) =
(1, 1, −0.15, 0). The total dynamic structure factor (left column) and
dynamic structure factor in the spin-flip (SF) channel (right column)
are shown for T/|JA| = 0.01 and T/|JA| = 0.03 within the R2-U1
regime, and T/|JA| = 0.10 within the U (1) spin liquid regime. The
intensity scale for each panel has been normalized to arbitrary units.

obtained from our MC simulations as the initial conditions
(ICs) for the molecular dynamics at various temperatures. We
time-evolved each IC according to the semiclassical Landau
Lifshitz equations of motion [44–47], and we numerically
integrated and averaged over the configurations to obtain the
dynamical spin structure factor. Details of the numerical meth-
ods used can be found in [40].

Results.– The dynamical structure factor is plotted at vary-
ing energies as a function of momentum at fixed temperature,
shown in Fig. 2, as a function of energy and momentum
at increasing temperatures, shown in Fig. 3, and along high
symmetry directions in momentum space, shown in Fig. 4.

Figure 2 depicts the normalized total and spin-flip dynam-
ical structure factor in the h0k plane at energies 0, 0.1, 0.15,

and 0.2 |JA| for T = 0.01 |JA| where the R2-U1 state is stable.
The 4FPP characteristic present in the equal-time structure
factor is also seen in the static structure factor SSF(q, ω) in
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FIG. 4. Energy dependence of dynamical structure factor in the spin-flip channel along high symmetry directions in the first Brillouin zone
(FBZ). The dynamical structure factor is plotted along the FBZ edge (left column) and inside the FBZ (right column), where �2, K2, W2, X2, U2,
and L2 are shorthands for 1/2 of each high symmetry point, respectively. The temperatures used were T/|JA| = 0.03 within the R2-U1 regime,
and T/|JA| = 0.13 within the U (1) spin liquid regime. Note that the energy scales between the R2-U1 and U (1) case differ. The intensity scale
for each panel has been normalized to arbitrary units.

the spin-flip channel. As the energy increases, the fourfold
nature of the pinch point gradually washes out to a twofold
pinch point characteristic of U (1) spin liquids. Interestingly,
the energy at which this crossover occurs, i.e., approximately
0.2 |JA|, is similar to the temperature above which the 4FPP
disappears in the equal-time structure factor. Next, we present
the energy dependence of the dynamical structure factor along
the hh0 momentum path in Fig. 3. The first two rows are de-
picted for temperatures well within the R2-U1 regime, while
the last row shows the dynamics in the U (1) spin liquid
regime. There are two important observations to note. First,
as the temperature is increased from 0.01 |JA| to 0.03 |JA|,
the energy scale for the excitations also increases. Secondly,
the triple-peak structure of the signatures in the R2-U1 state
is easily differentiated from the broad structures seen in the
U (1) spin liquid case.

Figure 4 shows the dynamical structure factor in the spin-
flip channel along a high symmetry path �-K-W -X -U -L-�
in the extended first Brillouin zone (FBZ), and along a path
�2-K2-W2-X2-U2-L2-�2 inside the extended FBZ. There are
a few notable distinguishing features of the R2-U1 state to
contrast with the U (1) state. Along the FBZ edges, the mul-
tipeak structure present in Fig. 3 also appears along the �-K
path in the R2-U1 regime, whereas the signal is simply broad
along this cut for the U (1) spin liquid. On the second path
within the FBZ, there is a stark contrast between the R2-U1
and U (1) inelastic structure factors. The signal for the R2-U1
is suppressed between the W2 and X2 points and between the
X2 and U2 points, as opposed to the broad signal along these
points in the U (1) case. In other words, the signal suppression
in the inelastic structure factor along this second momentum
path is another characteristic of the R2-U1 state, in addition to
the 4FPP structure seen in Fig. 2.

Discussion. In this Letter, we demonstrated distinguishing
characteristics of the R2-U1 state in its inelastic spin structure
factor. Not only does the 4FPP characteristic persist at low

energies, shown in Fig. 2, but both Figs. 3 and 4 demonstrate
how the energy dependence of the dynamical structure factor
can be used to distinguish the R2-U1 from the U (1) state.
We emphasize that these features are universal to systems
with emergent R2-U1 gauge structures since they originate
from the Gauss’ law constraint in Eq. (5). Thus, our results
illuminate a new path for experimentally detecting the R2-U1
state from inelastic neutron scattering in real materials.

Naturally, the question of whether these features would
also be present in the quantum spin system arises. Solving the
quantum model and its dynamics for 3D systems, however,
has been a historically difficult feat. Meanwhile, classical sim-
ulations of frustrated spin systems using molecular dynamics
have indicated good qualitative agreement with their quantum
counterparts, even in the quantum spin liquid and quantum
paramagnetic regimes [48,49]. This type of semiclassical
modeling has been done for Kitaev-like frustrated magnets,
involving bond-dependent Kitaev [48] and off-diagonal �

[49] interactions on a honeycomb. These studies showed
that qualitative features seen in the classical inelastic spin
structure factor persisted in the dynamics of the quantum
system, implying that the highly degenerate classical states
are participating in quantum fluctuations down to low-energy
scales. Due to this quantum-classical correspondence in the
dynamics, we believe that our classical results provide in-
valuable insight into the putative R2-U1 quantum state. This
work, therefore, serves as a reference point for future finite-
temperature dynamical simulations for the quantum rank-2
U (1) spin liquid state. Moreover, if the magnitude of the spin
magnetic moments in real breathing pyrochlore materials is
large, then our classical results would directly apply. Yb-based
pyrochlore oxides such as Ba3Yb2Zn5O11 [50–53], whose Yb
atoms form a breathing pyrochlore lattice, have been pro-
posed as candidates to host the R2-U1 state, thus they are
a potential playground for future inelastic neutron scattering
experiments.
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