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Excitation spectrum of spin-1 Kitaev spin liquids
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We study the excitation spectrum of the spin-1 Kitaev model using the symmetric tensor network. By
evaluating the virtual order parameters defined on the virtual Hilbert space in the tensor network formalism,
we confirm the ground state is in a Z2 spin-liquid phase. Using the correspondence between the transfer matrix
spectrum and low-lying excitations, we find that contrary to the dispersive Majorana excitation in the spin-1/2
case, the isotropic spin-1 Kitaev model has a dispersive bosonic charge excitation. The bottom of the gapped
single-particle charge excitations is found at K, K′ = (±2π/3, ∓2π/3), with a corresponding correlation length
of ξ ≈ 6.7 unit cells. The lower edge of the two-particle continuum, which is closely related to the dynamical
structure factor measured in inelastic neutron scattering experiments, is obtained by extracting the excitations in
the vacuum superselection sector in the anyon theory language.
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Quantum spin liquids (QSLs) are phases of matter char-
acterized by the existence of long-range entanglement in the
ground states and fractionalized excitations [1–3]. The exactly
solvable model introduced by Kitaev [4] opens up a new
avenue to search for QSL materials in nature that realize
Kitaev-like interactions [5–11]. On the other hand, a higher-
spin Kitaev model has also been theoretically studied, as the
frustrated Ising-like interactions may provide an alternative
route to access QSLs [12–14]. Recently, a microscopic mech-
anism to realize a S = 1 Kitaev model and candidate materials
have been proposed [15], raising the importance of the study
of higher-spin Kitaev physics. Different from its spin-1/2
counterpart, the higher-spin Kitaev model cannot be exactly
solved by mapping the spins to Majorana fermions, and nu-
merical studies have been carried out to identify the nature of
the ground states for the S = 1 Kitaev model [16–21]. While
several studies suggest that the isotropic spin-1 Kiatev model
exhibits spin liquids with a Z2 gauge structure, quantitative
features about the fractionalized excitations, i.e., the excita-
tion spectrum, are still missing.

The excitation spectrum is deeply connected to the exper-
iments. If the system harbors fractionalized excitations, the
dynamical spin structure factor measured in inelastic neutron
scattering (INS) should exhibit a broad continuum arising
from multiparticle excitations [22]. In the two-dimensional
(2D) system, gapped excitations of the QSLs are called
anyons, and different types of anyons are distinguished by
different superselection sectors [4,23]. To be specific, two
particles are in the same sector if there exists a local operator
which can transform from one to another. Take the spin-1/2
Kitaev model as an example, where the quasiparticles are Z2
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vortices and fermions [4]. In the anisotropic limit, the sys-
tem lies in a Z2 QSL phase with four superselection sectors:
vacuum (I), charge (e), flux (m), and fermion (ε). In particu-
lar, while charge and flux anyons both correspond to the Z2

vortices, they belong to different sectors since there exists no
local operator to transform from one to another. Along this
line, one can also deduce that all the even-particle charge, flux,
and fermion excitations belong to the same vacuum sector due
to the fusion rules e × e = m × m = ε × ε = I .

In this Letter, we study the excitation spectrum for the
isotropic spin-1 Kitaev model, exploiting the correspondence
between the transfer matrix (TM) spectrum and low-energy
excitations developed in the tensor network (TN) formalism.
We construct a Z2-invariant projected entangled pair state
(PEPS) [24,25] to represent the spin-1 Kitaev model’s ground
state by applying a loop gas (LG) projector [20,26] on the state
generated by imaginary time evolution (ITE) [27]. We identify
the nature of Z2 QSL of the spin-1 Kitaev model by evaluating
the virtual order parameters naturally defined in Z2-invariant
PEPS [28]. Due to the fundamental distinction between the
integer and half-integer LG projectors [21], we find that in
contrast to the dispersive Majorana excitation in S = 1/2, the
spin-1 Kitaev model possesses a dispersive charge excitation.
Furthermore, only the vacuum and charge-anyon sectors are
dispersive in the TM spectrum, which shows the existence of
the charge excitations with a small gap at the �, K, and K′
points in the Brillouin zone.

The honeycomb Kitaev model is given by

H = −Jx

∑
〈i, j〉x

Sx
i Sx

j − Jy

∑
〈i, j〉y

Sy
i Sy

j − Jz

∑
〈i, j〉z

Sz
i Sz

j, (1)

where 〈i, j〉γ represents the nearest-neighboring sites con-
necting through γ links where γ = x, y, z [Fig. 1(a)]. There
exists a flux operator Wp = (−1)2SU z

1U x
2 U y

3 U z
4U x

5 U y
6 which
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FIG. 1. Honeycomb lattice with the flux operator Wp defined on
the plaquette p and the half-infinite string operator μa defined on the
link a = (7, y).

commutes with the Hamiltonian, where U γ = eiπSγ

. The
Hilbert space is thus divided into sectors according to the
eigenvalues of the flux operator wp = ±1. In the isotropic
case Jx = Jy = Jz = 1, the ground state lives in the vortex-free
sector wp = +1,∀p [12]. Therefore, the states with wp = −1
for a given plaquette p can be understood as a Z2 vortex
quasiparticle. On the other hand, one can define a half-infinite
string operator μa = ∏∞

n=i(i)
2SU γn

n labeled by a = (i, γ ) for
a given link γ attached to site i. Here, (i, i + 1, . . .) are sites
traversed by the string and (γi, γi+1, . . .) are links normal to
the string. For instance, the string operator μa with a = (7, y)
in Fig. 1 is

∏∞
n=7(i)2SU z

n . In the vortex-free sector, the path
of the string is irrelevant since one can deform the path by
applying Wp without changing the wave function. Therefore,
one can regard the starting point of the string operator as a
topologically nontrivial excitation. This operator is the same
disorder operator defined in Ref. [12], where by attaching
specific operators to the starting point of μa, one can construct
a set of operators acting as Majorana fermions and hard-core
bosons for the half-integer and integer spin, respectively.

The qualitative difference between the integer and half-
integer Kitaev models can be understood through the identities

U αU β =
{

δαβI + |εαβγ |U γ , S = 0, 1, . . . ,

− δαβI + εαβγU γ , S = 1/2, 3/2, . . . ,
(2)

where εαβγ is the Levi-Civita symbol. Consider moving a
Z2 vortex around the central plaquette p with wp = −1 fol-
lowing the path p1 → p2 → · · · → p6 in Fig. 1. For the
half-integer spin, the action of moving the vortex from p1 to
p2 can be done by U z

1 since {Wp1 ,U z
1 } = {Wp2 ,U z

1 } = 0 due to
the relation {U y

1 ,U z
1 } = {U x

1 ,U z
1 } = 0. Therefore, the operator

moving a Z2 vortex around the central plaquette is exactly the
flux operator Wp = U z

1U x
2 U y

3 U z
4U x

5 U y
6 , leading to the π phase

shift as wp = −1. This nontrivial mutual statistics makes the
half-integer spin Kitaev models become the toric code Hamil-
tonian in the anisotropic limit (Jz 
 Jx, Jy), where the charge
and flux anyons both correspond to the Z2 vortices but live in
alternating rows of plaquettes [4,13]. The half-infinite string
operator μa in Fig. 1 then corresponds to the creation of two
vortices, i.e., the charge-flux composite (gauge fermion), at
p4 and p7. On the other hand, for the integer spin, U γ cannot
move the vortex since [U α,U β] = 0 for α �= β. While one

FIG. 2. (a) Definition of the LG tensor Qss′
ki j . (b) The LG tensor

is invariant under the global σ z action on the virtual Hilbert space.
(c) The schematic representation of U zQki j = ∑

i′ j′ σ
x
ii′σ

x
j j′ Qki′ j′ and

the action of the flux operator Wp to the LG operator. (d) A pair of Z2

vortices can be created by a σ z string on the virtual bonds. (e) The
schematic representation of SzQki j = ∑

k′ σ
z
kk′ Qk′ i jSz.

can move the vortex around the central plaquette by applying
another loop operator Sz

1Sx
2Sy

3Sz
4Sx

5Sy
6 since {U α, Sβ} = 0 (α �=

β ), this operator does not commute with the Hamiltonian and
thus cannot give back to the original state. Whether the Z2

vortices in alternating rows belong to different superselection
sectors and their relation with μa is unclear.

The LG projector [20,26] provides a natural connection
between the Z2 vortex and the half-infinite string opera-
tor μa. The integer spin LG projector is defined as QLG =
tTr

∏
α Qss′

kα iα jα
|s〉〈s′| with the nonzero elements of the LG ten-

sor as [Fig. 2(a)] [21]

Q000 = I, Q011 = U z, Q101 = U x, Q110 = U y. (3)

By construction, the LG tensor is invariant under the global
Z2 action on the virtual Hilbert space, Q(ug ⊗ ug ⊗ ug) = Q
with g ∈ {I, Z} and uI = I2, uZ = σ z [Fig. 2(b)]. A tensor T
contracted with the LG tensor T̃ s

kk0,ii0, j j0
= ∑

s′ Qss′
k,i, jT

s′
k0,i0, j0

acquires the virtual Z2 symmetry with uI = I2 ⊗α ID0 , uZ =
σ z ⊗ ID0 , where D0 is the bond dimension of the original ten-
sor T . The wave functions formed by contracting the virtual
bonds of T̃ is then called a Z2-invariant PEPS [24,25]. On the
other hand, the LG tensor satisfies the physical-virtual relation
U zQki j = ∑

i′ j′ σ
x
ii′σ

x
j j′Qki′ j′ (and similar relations for U x,U y),

making QLG a projector to the vortex-free space: WpQLG =
QLGWp = QLG [Fig. 2(c)]. Remarkably, this physical-virtual
relation transforms the half-infinite string operator μa in Fig. 1
to the local virtual σ x action on the y link shared by p4 and p7.
In addition, using σ xσ zσ x = −σ z, one can show that a pair of
Z2 vortices can be created by a σ z string on the virtual bonds
[Fig. 2(d)], meaning that a single σ z on the virtual bond can be
used to move the Z2 vortex. One can then naturally interpret
all the Z2 vortices as flux anyons and the end point of μa

as a charge anyon since moving the vortex around a = (7, y)
through p5 → p4 → p7 acquires a nontrivial π phase due to
the presence of σ x action. In fact, the corresponding virtual
actions of μa and the Z2 vortex are exactly the creation of the
charge and flux anyon in the framework of Z2-invariant PEPS
[29] (see the Supplemental Material [30] for details).

In the following, we focus on the isotropic Kitaev model
(Jz = Jx = Jy = 1). Different from Ref. [20] where the LG
projected state is used as an initial trial wave function for
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the ITE, we apply the LG projector at the end to obtain a
Z2-invariant ground state. In other words, we first perform the
ITE and then apply the LG projector to the resulting state,
i.e., |ψ〉 = limτ→∞ QLGe−τH |ψ0〉. Here, the initial product
state |ψ0〉 = ⊗α|(111)〉α , where |(111)〉 is the magnetized
state along the (1,1,1) direction. This ensures that the PEPS
with a fixed bond dimension D is vortex free and satisfies
all the nice properties inherited from the LG projector. An-
other interesting property of this construction is that SzQki j =∑

k′ σ
z
kk′Qk′i jSz (and similar relations for Sx, Sy) [Fig. 2(e)],

which indicates that Sz will not only move the vortex but
change the ITE wave function to Sze−τH |ψ0〉, making the
previous argument that the loop operator Sz

1Sx
2Sy

3Sz
4Sx

5Sy
6 will

change the ground state more obvious. It is the LG projector
that allows us to manipulate the vortex on the virtual bonds
using σ z without spoiling the wave function. In addition, our
construction allows for a lower computational cost than that
of the gauge-symmetry-preserved update [31,32], as only half
of the bond dimension is needed during the ITE process.

While the LG projector forms a natural framework to de-
scribe Z2 QSLs, the topological property of the projected
wave function also depends on the initial trial state. For in-
stance, it is possible to have |ψ〉 = μa|ψ〉 for some state
|ψ〉 = QLG|ψtrial〉. In this case, the half-infinite string operator
μa which should create a charge anyon actually does noth-
ing to the ground state, and thus the charge is condensed.
Similarly, if 〈ψex|ψex〉 = 0, the system is in a charge con-
fined phase [28,29,33]. Therefore, to nail down the nature
of the isotropic spin-1 Kitaev model, one should make sure
μa actually creates a proper excitation. In other words, we
should consider the overlap of the wave functions 〈ψex|ψex〉
and 〈ψex|ψ〉 where |ψex〉 = μa|ψ〉.

As stated previously, the effect of μa is equivalent to
applying a local σ x on the virtual bond using the physical-
virtual relation in Fig. 2(c); therefore, the overlap of the
charge excited state can be evaluated easily in the virtual
Hilbert space. To calculate those quantities, we consider the
transfer matrix (TM) T ≡ limLx→∞ tTr(E1E2 · · ·ELx ) with
E the double tensor formed by contracting the physical in-
dices of the local tensor A and its adjoint A∗. The TM
can be regarded as the building block of the norm of
the two-dimensional PEPS, 〈ψ |ψ〉 = (l| limLy→∞ T Ly |r) =
(l|[ limLy→∞ |l )λLy (r|]|r), where |l ) [|r)] is the left (right)
dominant eigenvector of T and λ is the corresponding dom-
inant eigenvalue which is normalized to 1. Here, we use |·)
to denote a vector defined in the virtual Hilbert space. In our
case, |l ) and |r) are the same and we denote them as |ρ) in
the following. It is then obvious that the overlap of the wave
functions 〈ψex|ψ〉 and 〈ψex|ψ〉 corresponds to the virtual or-
der parameters (ρ|σ x ⊗ I|ρ) and (ρ|σ x ⊗ σ x|ρ). Therefore,
the system is in the topologically ordered phase only when
(ρ|σ x ⊗ I|ρ) �= 0 and (ρ|σ x ⊗ I|ρ) = 0. To evaluate the or-
der parameters in the infinite two-dimensional TN, we employ
the variational uniform matrix product state (VUMPS) al-
gorithm [34–36] whose accuracy can be controlled by the
bond dimension of MPS Dmps [30]. Throughout the calcula-
tion, we find that (ρ|σ x ⊗ σ x|ρ) = 1 and (ρ|σ x ⊗ I|ρ) = 0
regardless of the bond dimension (up to D = 10), suggest-
ing that the system lies in the Z2 spin-liquid phase. This
method has an advantage over identifying the QSL phase

by topological entanglement entropy, which is limited by a
small bond dimension and suffers from the finite-size effect
[20].

The TM’s subdominant eigenvalues encompass signatures
of the low-energy excitations [33,37–40]. This is a manifesta-
tion of the fact that the information of a local Hamiltonian’s
excitations is encoded in the ground state, which can be
extracted by measuring the ground-state correlations. The
prominent example is that the minus logarithm of the largest
subleading eigenvalue − log |λ|, which corresponds to the
inverse of the correlation length ξ , can be related to the spec-
tral gap up to an overall energy scale [41]. This argument
has been further extended in Ref. [37] to include the mo-
mentum dependence. To be specific, for a generally complex
eigenvalue λ = e−ε+iφ of the TM, the corresponding physical
excitation energy is given as E ∼ ε = − log |λ|, while the
corresponding momentum is related to the phase k ∼ φ =
arg λ. Therefore, by solving the eigenvalue problem of the
transfer matrix Hamiltonian HT = − logT , one can access
the physical Hamiltonian’s low-lying excitations. The fixed
point |ρ) now corresponds to the ground state of the TM
Hamiltonian HT since the energy ε = − log |λ| = 0. Since the
TM Hamiltonian is one dimensional, the excitations for this
Hamiltonian, which we term TM excitations, can be studied
by constructing the excitation ansatz on top of the fixed point
[36,42]. Note that if the TM has a zero subleading eigenvalue,
i.e., λ = 0, it implies that elementary excitation is static since
the correlation length ξ = −1/ log |λ| is zero. In addition, the
nondispersive nature of the static excitation can be observed
by noting that there is no low-lying momentum as the corre-
sponding momentum k ∼ φ is not well defined.

In the Z2 topologically ordered phase, the TM excitations
can be divided into four types, which correspond to physical
excitations belonging to four superselection sectors [33]. The
ground-state wave function’s norm can be obtained from the
TM. However, if there exist locally indistinguishable degen-
erate ground states, the TM should also contain the overlap
of different ground states. For the spin-1 Kitaev model, the
ground-state subspace is spanned by the basis |(±)1(±)2〉
labeled by the eigenvalues (±1) of the global Wilson loop
operators W1 = ∏∞

i∈L1
(i)2SU z

n and W2 = ∏∞
i∈L2

(i)2SU y
n with L1

(L2) the noncontractible path along the n1 (n2) direction
in Fig. 1. Here, the global Wilson loop operator W1 (W2)
can be understood as a process of creating a pair of charge
anyons, wrapping them around L1 (L2), and finally annihilat-
ing them. To relate the ground-state overlap to the anyonic
excitations, we consider the basis of minimally entangled
states (MES) defined as |ψ (I )〉 = | + +〉 + | − +〉, |ψ (e)〉 =
| + +〉 − | − +〉, |ψ (m)〉 = | + −〉 + | − −〉, and |ψ (ε)〉 =
| + −〉 − | − −〉 [43]. The TM can then be divided into four
sectors corresponding to different MES overlaps: T〈I|I〉, T〈I|e〉,
T〈I|m〉, and T〈I|ε〉 [44]. Since applying the Wilson operator
characterized by different anyons along L1 to the vacuum state
generates a new MES [43], one can relate the TM excitations
from T〈I|a〉 with a = e, m, ε to the physical charge, flux, and
fermion (charge-flux composite) excitations [33,37]. On the
other hand, TM excitations from T〈I|I〉 have no anyonic dif-
ference between the ket and bra states; hence they belong to
the vacuum, i.e., topologically trivial, excitations. Using this
correspondence, one can probe different anyonic excitations
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FIG. 3. (a) Transfer matrix spectrum for the PEPS tensor with
(D, Dmps) = (10, 10). (b) Brillouin zone with labeled positions of the
minimum of TM spectrum. (c) The inverse of the correlation length
of the D = 10 PEPS wave function as a function of Dmps.

by distinguishing the TM spectrum with appropriate quantum
numbers defined on the virtual Hilbert space [30].

Interestingly, for the spin-1 Kitaev model, we find that
λ〈I|m〉 = λ〈I|ε〉 = 0, indicating there are no TM excitations
belonging to the T〈I|m〉 and T〈I|ε〉 sectors. This shows that
the LG projector for the integer spins only supports disper-
sive excitations belonging to the vacuum and charge sectors,
while the flux- and fermion-sector excitations are static. This
is intrinsically different from the half-integer LG projector,
where only vacuum and fermion excitations are dispersive
[44]. In addition, this is consistent with the argument put forth
in Ref. [12] that the integer-spin Kitaev model has bosonic
exciations instead of Majorana fermions, indicating that the
different sign structures of the integer and half-integer spin
LG projectors may faithfully describe the distinct nature of
the integer and half-integer spin Kitaev models [21].

Using the correspondence Ek1 ∼ − log |λk1 | for a given mo-
mentum k1 in the x direction, the TM spectra for PEPS states
with bond dimension D = 10 are shown in Fig. 3(a). The ex-
citations belonging to charge and vacuum sectors are labeled
by red and blue colors, respectively. While the overall energy
scale of the minimum of Ek1 and exact excitation energies
are unknown due to the lack of the knowledge of the Lieb-
Robinson velocity [45], the corresponding momentum k1 at
the local minimum of Ek1 allows us to identify the location of
the low-energy dispersion [41]. It then follows that both the
charge- and vacuum-sector excitations are clearly identified
at k1 = 0, 2π/3, and −2π/3. We also perform the corner
transfer matrix renormalization group (CTMRG) [46–48] to
obtain the TM spectrum [30], and the results are consistent. To
gain more insights into the two-dimensional system, we con-
sider the momentum in the y direction using k2 ∼ arg λk1 . The
locations of three minimum excitations are then identified at

(k1, k2) = (0, 0), (2π/3,−2π/3), and (−2π/3, 2π/3), sug-
gesting that the spin-1 Kitaev model harbors three low-lying
charge anyon excitations at the �, K, and K′ points in the
Brillouin zone [Fig. 3(b)]. To nail down the origin of the
vacuum-sector excitations, which correspond to all possible
even-particle excitations, we note that the global minima
lie at K (K′): εmin = ε(K) = ε(K′) < ε(�). The low-lying
vacuum-sector excitations at �, K, and K′ can then be well
explained by attributing to the two-particle charge excitations
ε(K) + ε(K′), ε(K′) + ε(K′), and ε(K) + ε(K), respectively.
Therefore, we conclude that the excitations belonging to the
vacuum sector describe the minima of the two-particle contin-
uum.

Figure 3(c) shows the the inverse of the correlation length,
i.e., the corresponding charge excitation energy at K (K′), as a
function of the accuracy-controlled dimension Dmps. Extrapo-
lation to Dmps → ∞ shows that the system is gapped with a
correlation length of ξ ≈ 6.7 unit cells. Using the excitation
gap E24 site ≈ 3.6 × 10−2 from a 24-site exact diagonaliza-
tion [16] as the upper bound, we estimate the characteristic
velocity vLR ≈ 2.4 × 10−1 using the relation ξE24 site = vLR

[37,41].
In this Letter, we find that the spin-1 Kitaev model harbors

bosonic excitations and locate the single- and two-particle
excitations’ minima at �, K, and K′. Note that the dynamical
spin structure factor, which allows a direct comparison with
the INS experiment, involves not only the two-particle excita-
tion, but also the static gauge flux as the spin-flip operator will
necessarily induce a flux anyon pair [49–51]. This makes the
connection between the INS experiments with the two-particle
excitations less trivial. However, we note that the resonant
inelastic x-ray scattering experiments may provide a route to
single out the Majorana sector without the influence of flux
in the spin-1/2 Kitaev model [52]. It is interesting to further
investigate whether a similar scheme can be applied to the
spin-1 case to detect the signal from the charge sector only.
We also remark that directly computing the dynamical struc-
ture factor using the technique developed in Ref. [53] is
feasible and worth exploring. On the other hand, the construc-
tion of the Z2-invariant PEPS using the LG projector is an
efficient method to separate different anyonic excitations and
can be easily generalized to the anisotropic Kitaev model. By
tracing the evolution of the excitation spectra, one should be
able to understand whether the QSL feature in the isotropic
Kitaev model persists when the system is driven away from
the isotropic point.
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