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The Grüneisen ratio (GR) has emerged as a superb tool for the diagnosis of quantum phase transitions; it
diverges algebraically upon approaching critical points of continuous phase transitions. However, this paradigm
has been challenged recently by observations of a finite GR for self-dual criticality and divergent GR at
symmetry-enhanced first-order transitions. To unveil the fascinating GR further, we exemplify the idea by
studying an exactly solvable quantum Ising model with Dzyaloshinskii-Moriya interaction, which harbors a
ferromagnetic phase, a paramagnetic phase, and a chiral Luttinger liquid. Although the self-dual criticality of
the ferromagnetic-paramagnetic transition is undermined by the Dzyaloshinskii-Moriya interaction, we find that
the GR at the transition is still finite albeit with an increasing value, signifying a proximate self-dual relation.
By contrast, the GR at the transition between the gapped ferromagnetic phase and the gapless Luttinger liquid
diverges and changes its sign when crossing the first-order transition. This implies that the GR could also probe
the first-order transition between the gapped and gapless phases.

DOI: 10.1103/PhysRevB.105.L060401

Introduction. The quantum phase transitions (QPTs) are
ubiquitous phenomena which occur upon tuning external
parameters in the lowest temperature [1,2]. They are accom-
panied by singular changes of the ground state which could
be probed by information-theoretic quantities, for instance,
the entanglements [3–6] and fidelity susceptibility [7–9].
As temperature increases, the interplay between thermal
and quantum fluctuations strongly promotes the formation
of a quantum critical region of continuous QPTs. Physi-
cally, this special area is always of keen interest as it is
beneficial for unconventional events, such as non-Fermi liquid
behavior in metals [10], deconfined quantum criticality [11],
and superconductivity [12,13]. Therefore, the thermodynamic
quantities, which can not only diagnose the QPTs but are also
experimentally accessible, are highly desirable.

So far, the Grüneisen ratio (GR) � [14,15], which is
defined as the ratio between magnetic expansion coeffi-
cient αT and specific heat Cv , is extremely remarkable. It
is shown that the GR diverges algebraically at the QCP
as � ∼ T −1/(νz) (here, z and ν are the dynamical and cor-
relation length critical exponents, respectively) [14], and
also undergoes a sign change in the vicinity of the QCP
[15]. Such an abnormal behavior of GR has been ac-
tively studied in many quantum systems including strongly
interacting quantum gases [16–18], itinerant electron sys-
tems [19], and quantum spin models [20–22]. Over the
years, the GR has been used to identify and characterize
QPTs in various materials (for review see Ref. [23]), in-
cluding heavy-fermion systems [24–28], spin-chain material
BaCo2V2O8 [29], and spin-liquid candidate α-RuCl3 [30].
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However, the divergence of the GR at QCPs is not a
universal character of all continuous QPTs. Based on the
hyperscaling theory, it is demonstrated by Zhang that the GR
remains finite for self-dual QCPs [31]. The quantum Ising
model H(g) with g being the external magnetic field is perhaps
the most prominent example which exhibits the self-duality.
This model owns an intrinsic Z2 symmetry and can be recast
as gH(1/g). As such gc = 1 is identified as a self-dual QCP
where the GR equals to 1/2 [31–33]. On the other hand, the
GR may also diverge at first-order QPTs on certain condi-
tions. A recent study by Beneke and Vojta shows that in the
symmetry-enhanced first-order QPT which is accompanied by
a vanishing mode gap, the GR indeed diverges albeit with
mean-field critical exponents [34]. These exceptions imply
that a comprehensive understanding of the GR near the QCPs
is still lacking, and it is intriguing to know its behaviors in
the proximity of self-dual quantum criticality and in other
first-order QPTs where the energy gaps vanish.

In this work, we demonstrate unusual behaviors of the
GR by the quantum Ising model with Dzyaloshinskii-Moriya
(DM) interaction [35]. This model has an intimate relation
to Ising-like spin-1/2 chain compounds BaCo2V2O8 [36–38],
SrCo2V2O8 [39,40], and CoNb2O6 [41–44]. The transverse
field is then involved by applying a magnetic field normal to
the Ising spin direction. Meanwhile, for the spin-orbit-coupled
bosons embedded in 1D optical lattices, it can be effectively
regarded as an Ising ferromagnet subjected to DM interaction
along the z direction when the intraspecies interaction strength
is prominently larger than that of the interspecies one [45–50].
This model can be solved exactly by Jordan-Wigner transfor-
mation and it is known to host a ferromagnetic (FM) phase, a
paramagnetic (PM) phase, and a Luttinger liquid with chiral
ordering (hereafter termed chiral LL) [51–55]. As will be
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demonstrated analytically below, the GR in the model exhibits
abnormal behaviors. On the one hand, although the FM-PM
transition is still continuous, the exact self-dual relation is
ruined when the DM interaction is involved. However, the GR
at the critical point remains finite, albeit with a tendency to
diverge as the DM interaction increases. The nondivergence
of the GR herein comes from the self-duality rooted in the
quantum Ising model and the peculiarity of the DM inter-
action. On the other hand, while the transition between the
gapped FM phase and the gapless chiral-LL phase is of first
order, the energy gap vanishes at the transition and the GR dis-
plays a typical power-law divergence as that of a continuous
QPT.

Model. The Hamiltonian of the quantum Ising model with
DM interaction can be described by [35]

H = −
N∑

j=1

[
σ x

j σ
x
j+1 + gσ z

j + D

2

(
σ x

j σ
y
j+1 − σ

y
j σ

x
j+1

)]
, (1)

where σ
γ
j (γ = x, y, and z) is the γ component of the

Pauli operator acting on site i, g is the magnetic field,
and D denotes the strength of the DM interaction along
the z direction. Following the standard prescription, this
model can be diagonalized analytically via the Jordan-Wigner
transformation [56],

σ x
j =

∏
m< j

(1 − 2c†
mcm)(c j + c†

j ),

σ
y
j = −ı

∏
m< j

(1 − 2c†
mcm)(c j − c†

j ), (2)

σ z
j = 1 − 2c†

j c j,

which maps spins into spinless fermions with creation (annihi-
lation) operators c†

j (c j). By transforming the spinless fermion

operator to momentum space c j = 1√
N

∑
k ckeı2π jk/N and ex-

ploiting the Bogoliubov transformation ck = ukγk + ıvkγ
†
−k

where uk = cos(θk/2) and vk = sin(θk/2) with tan θk =
sin k/(g − cos k), the Hamiltonian (1) can be recast into the
following form:

H =
∑

k

εk

(
γ

†
k γk − 1

2

)
, (3)

where the dispersion relation reads

εk = 2
(√

1 + g2 − 2gcos k + D sin k
)
. (4)

For the discussion on the occurrence of the Fermi points in
the reciprocal space, see Sec. S1 in the Supplemental Material
(SM) [57]. The free energy density is calculated as

F (T ) = − 1

β

[
ln 2 + 1

2π

∫ π

−π

dk ln cosh

(
βεk

2

)]
, (5)

where β = 1/kBT (hereafter kB = 1). The thermodynamic
quantities such as the thermal entropy S and specific heat Cv

can be obtained via Eq. (5). For example, the specific heat is
given by

Cv = 1

2π

∫ π

−π

dk

(
βεk

2

)2

sech2

(
βεk

2

)
. (6)

FIG. 1. The phase diagram of the quantum Ising model with
DM interaction. There are three distinct phases, which are a
gapped FM phase (blue), a gapped PM phase (gray), and a gap-
less chiral-LL phase (pink). The FM-PM transition is continuous of
the Ising type, while the FM-chiral-LL transition is of first order.
The low-temperature specific heats Cv on the critical lines exhibit the
behaviors of Cv ∝ T and Cv ∝ √

T , respectively.

In this context, the GR �(T, λ) is defined as [14,15]

�(T, λ) = 1

T

(
dT

dλ

)
S

= − (∂S/∂λ)T

T (∂S/∂T )λ
= −αT

Cv

, (7)

where αT = (∂S/∂λ)T is the magnetic expansion coeffi-
cient, with λ (g and D) being a tuneable parameter. To
illuminate the overview of the model, we recap the main
features of the phase transitions in Fig. 1. There are three
distinct phases which are known as the FM phase when g
and D are small, the PM phase when the magnetic field g
is very strong, and the chiral-LL phase in the presence of
large DM interaction. The FM-PM transition is recognized
to belong to the Ising universality class with both critical
exponents ν and z being 1. By contrast, the transition be-
tween the FM phase and the chiral-LL phase is of first order
but with a vanishing energy gap in the transition line. We
also note that the FM-chiral-LL transition, which occurs at
the line of g = D (g, D > 1), is continuous and is a possi-
ble realization of Dzhaparidze-Nersesyan-Pokrovsky-Talapov
universality class [58,59]. However, identifying this transition
type is beyond the scope of the current work.

Proximate self-dual criticality. To study the quantum criti-
cality in a relevant temperature region, it is useful to recall the
so-called scaled free energy coefficient introduced by Kopp
and Chakravarty [60]. For the Ising transition line where
gc = 1, it is found that


g(T, D) = 2

T 2
[F (0) − F (T )], (8)

where the ground-state energy F (0) equals −4/π regardless
of the value of D. Figure 2 shows the behavior of 
g(T )
at several different values of D. In the high-temperature re-
gion, 
g(T, D) is insensitive to D and obeys the rule of
2β( ln 2 − 4

π
β ) approximately. With the temperature decreas-

ing, 
g(T, D) displays a broad hump and then saturates to
a constant below a character temperature T ∗. Physically, this
constant is identical to the specific-heat coefficient at the low
temperature, and the value of T ∗ denotes the upper range of
the quantum critical scaling region. When D = 0, it is well
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FIG. 2. The scaled free energy 
g(T, D) along the Ising transi-
tion line with gc = 1. In the high-T region, it is insensitive to D (as
marked by a green belt), while in the low-T region it saturates to
constant values of 0.2618 (D = 0.0, black), 0.2727 (D = 0.2, red),
0.2877 (D = 0.3, cyan), 0.3117 (D = 0.4, green), 0.3491 (D = 0.5,
yellow), and 0.4091 (D = 0.6, blue), respectively.

known that 
g(T → 0) = π/12 [61,62] and T ∗ � 1/2, show-
ing that the quantum criticality can persist up to a temperature
which is as large as one half of the energy unit. However, in
the presence of DM interaction, we find that the plateau of

g(T, D) grows rapidly while the T ∗ is suppressed with the
increase of D. As demonstrated in Sec. S2 in the SM [57], we
find that 
g(T → 0, D) = π/[12(1 − D2)].

As the magnetic field is away from the critical point, there
is a continuous QPT which belongs to the Ising universality

class. For this transition, the GR can be calculated via Eq. (7)
where the magnetic expansion coefficient

αg = 1

2π

∫ π

−π

dk
β2εk (g − cos k)

2
√

1 + g2 − 2gcos k
sech2

(
βεk

2

)
. (9)

The magnetic-field dependence of the GR �(T, g) in the tem-
perature interval of [0.01, 0.05] is plotted in Figs. 3(a) and
3(c) with DM interaction D = 0.0 and 0.6, respectively. In
panel (a), the critical point is demonstrated to own a self-dual
relation, resulting in a nondivergent GR. Crucially, as shown
in the inset and also in Fig. 3(b), the GR intersects precisely
at the QCP with a value of 1/2 that is irrelevant of tempera-
ture. On the other hand, while the GR shown in panel (c) is
also finite in the QCP, it is nonconstant and varies with the
temperature. As T decreases to the lowest temperature, the
GR �(T, gc = 1) increases from 0.4587 (when T → ∞) to
1.0625 (when T → 0); see Fig. 3(d).

The unusual temperature dependence of the GR at the QCP
can be understood analytically. When g = 1, we find that the
GR can be simplified as

�(T, gc) = −αg

Cv

= I1(T, D) + I1(T,−D)

I2(T, D) + I2(T,−D)
, (10)

where

Iυ (T, D) =υ

π

∫ π/2

0
dk(1 + D cos k)υ (2β sin k)2

× sech2[2β sin k(1 + D cos k)]. (11)

FIG. 3. (a) The magnetic field g dependence of the GR �(T, g) in the temperature interval of [0.01, 0.05] with DM interaction D = 0.0.
The inset shows the GR in the vicinity of gc = 1, where different curves intersect with a value of 0.5 exactly. (b) The GR �(T, gc = 1) plotted
as a function of T with D = 0.0. It is a constant of 0.5 that is irrelevant of temperature. Panels (c) and (d) are respectively analogs of (a) and
(b) but for D = 0.6. Inset of (c) shows the GR in the vicinity of gc = 1, where different curves intersect with a value of 1.0625 asymptotically.
(d) As T decreases to the lowest temperature, the GR �(T, gc = 1) increases from 0.4587 (when T → ∞) to 1.0625 (when T → 0). Behaviors
of the GR �(T → 0, g) in the zero-temperature limit are shown in Sec. S4 in the SM [57].
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In the high-temperature limit where T → ∞ (i.e., β → 0),
we have I1 � β2[1 + 4D/(3π )] and I2 � β2[16D/(3π ) +
(4 + D2)/2]. Therefore, the GR behaves as

�(T → ∞, gc) = 2

4 + D2
� 1

2
. (12)

In the low-temperature limit where T → 0 (i.e., β → ∞),
we have I1 � 1/[2πβ(1 + D)2] and I2 � 1/[πβ(1 + D)].
The GR is

�(T → 0, gc) = (1 + D2)

2(1 − D2)
� 1

2
. (13)

The lower limit and the upper limit of the GR revealed in
Eqs. (12) and (13) are plotted in Fig. 3(d) with D = 0.6.
The curve in Fig. 3(d) may be beneficial for extracting ex-
change parameters in real materials like BaCo2V2O8 [29].
It is inferred from Eq. (13) that the GR will diverge in the
case of D = 1 where the conventional continuous QPT occurs.
Therefore, our study reveals the precious evolution of the GR
when away from the self-dual QCP. In closing, we attempt
to uncover the origin of the nondivergence of the GR at the
QCP. According to the hyperscaling ansatz [14], the GR in
the quantum critical region has the form of �(T, g → gc) =
−GT T −1/(zν) where GT ∝ � ′(0) (for details, see Sec. S3 in
the SM [57]). Here, � ′(0) is the linear scaling term in the
reduced free energy F (T )/T 2 with respect to (g − gc)/T .
Following the recipe depicted in Ref. [32], we find that the
free energy near the QCP in the low-temperature limit reads

F (T ) = −T 2

π

[
ag,D + 1

2

(
1 − g

T

)2]
, (14)

where ag,D = ln 2 + (g + D2/4)/6. It is inferred from Eq. (14)
that the linear scaling term of (1 − g)/T indeed vanishes and
thus � ′(0) = 0 for arbitrary D. Therefore, the inclusion of the
DM interaction does not bring about an extra relevant term but
only has a correlation on the constant term [64].

The gapped-gapless transition. We now turn to study the
quantum criticality at the first-order FM–chiral-LL transition.
The FM phase is gapped and its energy gap vanishes as
2
√

1 − g2(1 − D) in the vicinity of the transition line Dc = 1.
In contrast to Eq. (8), the scaled free energy coefficient in the
transition line is found to be


D(T, g) = 3

4T 3/2
[F (0) − F (T )], (15)

where F (0) = − 2(1+g)
π

E ( 2
√

g
1+g ) is the ground-state energy, with

E (x) being the elliptic integral of the second kind [63]. The
scaled free energy 
D(T, g) as a function of T for a series of
g is illustrated in Fig. 4. When the temperature is large enough,
we have 
D(T ) = 3

4

√
β(ln 2 − β ) (see the green belt). As the

temperature decreases, 
D(T, g) approaches different levels
whose values grow with g. When g = 0, the specific heat is
calculated to have a square-root low-temperature behavior at
the critical point (see Sec. S5.A in the SM [57]),

Cv = 3(
√

2 − 1)ζ
(

3
2

)
8
√

2π

√
T ≈ 0.1619

√
T , (16)

where ζ (s) stands for the Riemann ζ function [63]. Obviously,
the prefactor of the specific heat in Eq. (16) is consistent

FIG. 4. The scaled free energy 
D(T, g) along the first-order
transition line with Dc = 1. In the high-T region, it is insensitive to
g (as marked by a green belt), while in the low-T region it saturates
to constant values of 0.1619 (g = 0.0, black), 0.1636 (g = 0.2, red),
0.1691 (g = 0.4, green), and 0.1809 (g = 0.6, blue), respectively.

with the result of 
D(T, g = 0) (black line) shown in Fig. 4
[65]. As g increases, the prefactor exhibits a behavior of
0.1619/(1 − 0.26g2) approximately when g is small.

Without loss of generality, below we study the GR in the
case of g = 0. By analogy with the magnetic expansion coef-
ficient shown in Eq. (9), its analog that is driven by the DM
interaction reads

αD = 1

2π

∫ π

−π

dk
β2εk sin k

2
sech2

(
βεk

2

)
. (17)

Figure 5(a) shows the GR �(T, D) as a function of DM in-
teraction, and the QPT is manifested by the sign change of
�(T, D) when crossing Dc = 1. In the zero-temperature limit,
the GR near the transition point is solely determined by the
behavior of energy gap �(D) [30],

lim
T →0+

�(T, D) = −�′(D)

�(D)
, (18)

where the numerator represents the derivative of �(D). This
implies that if the energy gap closes linearly around the
transition point (which is indeed the case in the FM phase
since �(D) = 2

√
1 − g2(1 − D) when |1 − D| � 1), the GR

should diverge as �(T → 0, D) = 1/(1 − D). To confirm it,
we present the evolution of GR as a function of T at D = 0.95
[see inset of Fig. 5(a)], whose value becomes 20 as temper-
ature approaches zero. An alternative way to understand the
divergence of GR near the transition point is shown in Sec. S6
in the SM [57].

At the critical point, the magnetic expansion coefficient
(see Sec. S5.B in the SM [57])

αD = (
√

2 − 1)ζ
(

1
2

)
2
√

πT
(19)

in the low-temperature regime. With Eqs. (16) and (19) in
mind, the GR at the critical point turns out to be

�(T → 0, Dc) = −4
√

2ζ
(

1
2

)
3ζ

(
3
2

) 1

T
≈ 1.0541

T
, (20)

which diverges as ∝ 1/T when T → 0. Further, the power-
law divergence of the GR is also verified numerically in
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FIG. 5. (a) The DM interaction D dependence of the GR �(T, D) in the temperature interval of [0.01, 0.05] with magnetic field g = 0.0.
The black line of 1/(1 − D) represents the asymptotic behavior of �(T → 0, D). Inset: Evolution of �(T, D) as a function of T at fixed
D = 0.95. (b) The GR �(T, Dc = 1) plotted as a function of T with g = 0.0. The pink open circles are the selected data while the solid black
line is the fitting formula with the best fitting constant C ≈ 1.0541.

Fig. 5(b). Our analysis indicates that the GR can also probe the
first-order QPT when the energy gap vanishes algebraically in
the vicinity of the transition point.

Conclusions. In this work, we have studied analytically the
abnormal behaviors of the GR in the quantum Ising model
with DM interaction. The peculiar feature of the model is
that it hosts two distinct QPTs in which one is continuous
with a proximate self-dual QCP while the other is a first-order
transition between gapped and gapless phases. In the contin-
uous FM-PM transition with nonzero DM interaction, the GR
increases gradually as the temperature is lowered towards the
absolute zero. However, in the lowest temperature limit the
GR remains finite albeit with a tendency to diverge, which
is a reminiscent of the proximate self-dual relation where
the exact self-duality is eroded but the condition � ′(0) = 0

retains. By contrast, in the first-order transition driven by DM
interaction, the GR can perceive the QPT by changing its
sign when crossing the transition point. Furthermore, akin to a
continuous QPT, it also exhibits a power-law singularity at the
transition point. Our analytical results thus constitute a signif-
icant contribution of the GR in diagnosing a broad family of
QPTs. They will be useful in detecting characteristic features
of magnetocaloric effect in experiments and can further guide
the exploration of field-induced phenomena in real materials.
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