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Inverted many-body mobility edge in a central qudit problem
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Many interesting experimental systems, such as cavity QED or central spin models, involve global coupling to
a single harmonic mode. Out of equilibrium, it remains unclear under what conditions localized phases survive
such global coupling. We study energy-dependent localization in the disordered Ising model with transverse and
longitudinal fields coupled globally to a d-level system (qudit). Strikingly, we discover evidence for an inverted
mobility edge where high-energy states are localized whereas low-energy states are delocalized. This prediction
is supported by shift-and-invert eigenstate targeting and Krylov time evolution up to L = 13 and 18, respectively.
We argue for a critical energy of the localization phase transition which scales as Ec ∝ L1/2, consistent with
finite-size numerics. We also show evidence for a reentrant many-body localization phase at even lower energies
despite the presence of strong effects of the central mode in this regime. Similar results should occur in the
central spin-S problem at large S and in certain models of cavity QED.
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Introduction. Improvements in quantum control have
brought nonequilibrium quantum systems to the forefront of
condensed-matter and atomic, molecular, and optical physics.
Novel phases of matter are possible out of equilibrium, most
of which require many-body localization [1,2]. Many-body
localization (MBL) results when sufficiently strong disorder
prevents ergodicity in interacting systems and is the only
known generic route to avoid thermal equilibrium in isolated
quantum systems [3,4]. Most numerical and analytical claims
of MBL rest upon the assumption of low-dimensional, locally
interacting Hamiltonians, and sufficiently long-range noncon-
fining interactions are generally believed to destroy MBL
[5–8].

It was, therefore, surprising when we recently found that
MBL can survive coupling to a global degree of freedom [9].
Global coupling to a photon is a common occurrence in many-
body cavity QED where the cavity mode is primarily used
to create all-to-all interactions between the atoms. The key
result of Ref. [9] was that the strength of this interaction is
controlled by photon number in the cavity N . If one takes the
number of atoms L to infinity whereas keeping the ratio N/

√
L

fixed, all-to-all interactions remain sufficiently weak to allow
an MBL phase.

This opens the interesting possibility that as the photon
number—or, equivalently, the energy—is lowered, all-to-all
interactions will reemerge and thermalize the system. This
implies localization at high energies and thermalization at
low energies, leading to an inversion of the conventional
many-body mobility edge. In this Letter, we will confirm
that prediction using numerical and analytical tools, further
uncovering a reentrant MBL phase at even lower energies.
Although similar phenomena occur in cavity QED, we argue
that they are more favorable in nonbosonic models, such as
the central spin-S and central d-level systems (qudit).

Model. We start from the same Hamiltonian as Ref. [9],
which was motivated by a standard model of spin-1/2 par-
ticles undergoing Floquet many-body localization [10]. In

the Floquet extended zone picture, the time-periodic drive is
treated quantum mechanically by mapping it to a harmonic
mode. This is represented geometrically in the inset to Fig. 1.
The spins form a locally coupled chain with periodic boundary
conditions. These spins all couple globally to a single degree
of freedom, such as a cavity photon or central spin S. The goal
of this Letter will be to study the low-energy limit where quan-
tization of the central degree of freedom becomes important.

Specifically, our Hamiltonian can be written

H = H+
2

+ H−
4

(â + â†) + n̂�, (1)

where H± = Hz ± Hx,

Hx =
L∑

i=1

g�σ x
i ,

Hz =
L∑

i=1

Jσ z
i σ z

i+1 +
L∑

i=1

(h + g
√

1 − �2Gi )σ
z
i ,

â† =
d−1∑

n=1

|n〉〈n − 1|, n̂ = n
d−1∑

n=0

|n〉〈n| , (2)

σ x,z
i are Pauli matrices, and Gi is a Gaussian random variable

of zero mean and unit variance. Units are set by J = 1. The
spin-1/2 Hamiltonians H± yield static models with both MBL
and thermal phases. The operators â and n̂ play the role of
lowering and number operators for the central mode. In this
Letter, we mainly study the case of a central d-level system—a
qudit—for which â lowers the excitation number by one with
the unit matrix element; this will be compared to photons and
central spin S later in the Letter. The qudit levels are split
by a bare energy � (with h̄ = 1) and can be excited through
coupling to the spin Hamiltonian H−. The most important
parameter for localization is �, which controls both transverse
field strength and disorder strength. For small � considered
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FIG. 1. Proposed phase diagram of inverted mobility edge for the
Ising model in the presence of a global qudit or a spin-S mode. For
� < �c ≈ 0.33, we predict a delocalized to MBL phase transition as
the energy is increased—an inverted mobility edge.

here, the dominant role is to add delocalizing quantum fluctu-
ations both statically to the spin chain and via coupling to the
central qudit. The limits � = 0 and 1 represent trivially local-
ized and thermalizing phases, respectively. Other parameters
are chosen as g = 0.9045, h = 0.809, and � = 3.927 based
on previous work [9]. �, in particular, is chosen large but finite
to enable nonresonant high-frequency expansions; the results
are expected to apply for a generic such �. We expect that
our results will be independent of these particular parameters,
although we note that MBL is generally favored by large �.
Furthermore, we will use d = 12 throughout to approximate
d = ∞ such that only the lower cutoff on qudit number n � 0
plays a role.

Mobility edge. In this model, Ref. [9] found evidence for
an infinite-temperature phase transition (E ≈ tr[H]/tr[1]) be-
tween MBL at small � and thermalization at large � upon
taking L → ∞ at finite d/

√
L. The transition occurs at �c ≈

0.33 for d/
√

L 	 1, which corresponds to the Floquet limit.
In this Letter, we will study the energy dependence of this
transition. In order to obtain initial insight into energy depen-
dence, we utilize the results of the high-frequency expansion
[9], rederived in the Supplemental Material for clarity [11].
Physically, the high-frequency expansion (HFE) involves per-
turbatively eliminating fluctuations of the central mode via a
canonical transformation, similar to the Floquet-Magnus ex-
pansion [12,13] or Schrieffer-Wolff transformation [14]. For
d = ∞, this gives an effective Hamiltonian,

Heff = H+
2

− (H−)2

16�
|0〉〈0| + n̂� + O(�−2).

The first term in Heff consists of the undriven Hamiltonian H+.
The second term comes from the qudit raising and lowering
operators, which commute with each other except at the edge
of the spectrum (the state |0〉). Physically, this means that for
qudit states n > 0, virtual fluctuations in which the qudit num-
ber increases or decreases destructively interfere with each
other, resulting in no change to the Hamiltonian at second

order. By contrast, in state |0〉, the qudit can only fluctuate up
in number, resulting in a nonzero induced interaction ∝ H2

−/�

which, crucially, is only active when the qudit is at its extremal
state |0〉. For our model, this gives infinite range interactions
near the zero energy state, which compete with local inter-
actions in H+ to thermalize the system. We note that this
prediction is consistent with the conventional mobility edge
found for an Anderson-localized system coupled to a central
site [15] since for that case the effective central dimension
was d = 2 for which all states experience this thermalizing
long-range term. Higher-order terms will give long-range in-
teractions mediated by states |1〉, |2〉, etc. but suppressed by
powers of �−1.

The HFE suggests the existence of an inverted mobility
edge. For high-energy E/� 	 1 for which the qudit number
is n 	 1, no infinite-range interactions are produced, and the
MBL-delocalized transition is given by that of the locally
dressed H+ Hamiltonian with �c ≈ 0.33. For E ≈ 0 (n ≈ 0),
infinite-range interactions compete with H+, generically lead-
ing to thermalization.

Numerics. To distinguish the MBL and thermal phases
numerically, we first study energy eigenstates of the Hamil-
tonian (1) using shift-and-invert methods [16] to target ten
eigenstates near a given energy, up to a maximum system size
of L = 13. Thermal systems are expected to be approximated
by random matrices, whereas MBL systems are not. Look-
ing at the energy levels, this implies that thermal eigenstates
undergo level repulsion, following Wigner-Dyson level statis-
tics, whereas MBL eigenstates follow Poisson level statistics
with no level repulsion. This is captured by the level spacing
statistic [17],

rn = min(δEn, δEn+1)

max(δEn, δEn+1)
, (3)

where δEn = En − En−1 is the gap between ordered eigenen-
ergies En. For Poisson statistics, 〈rn〉 ≈ 0.386 ≡ rPois,
whereas for the Gaussian orthogonal ensemble (GOE), 〈rn〉 ≈
0.53 ≡ rGOE. Figures 2(a)–2(c) show the numerically cal-
culated level statistics. At the largest L, states near E = 0,
corresponding to the bare energy of the qudit ground-state
|0〉, converge toward rGOE. At both lower and higher ener-
gies, the level statistics appear Poissonian, suggesting that
the system is localized. An approximate window for ther-
malization is sketched in the plots. We see that the level
statistics converge towards the GOE value in this region.
Interestingly, a reemergent MBL phase appears at low en-
ergies E < 0. This is consistent with the high-frequency
expansion, which at low enough energies will be domi-
nated by the term −(H−)2/(16�). Although this term has
been argued to give infinite-range interactions that com-
pete with short-range interactions, in isolation it shares
eigenstates with the local Hamiltonian H−. Therefore, MBL
for E < 0 apparently comes from the static MBL phase
of H−.

Full convergence to rGOE is difficult to see, particularly,
for small values of �. Therefore, we turn to the half-system
mutual information and Kullback-Leibler divergence. The
KLd measures similarity between eigenstates [18]. For each
eigenstate |n〉, a probability distribution is defined by pn(i) =
|〈i|n〉|2, where |i〉 is an element of the σ z ⊗ n̂ basis. For two
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FIG. 2. Energy dependence of localization via three metrics: (a)–(c) level statistic 〈rn〉, (d)–(f) Kullback-Leibler divergence (KLd), and
(g)–(i) half-system mutual information [I (L/2)]. The shaded red color indicates the approximate region of delocalization, based on finite-size
crossings of the KLd. The inset plots show magnification of I (L/2)/L for higher-energy data points.

neighboring energy eigenstates |n〉 and |n + 1〉, the KLd is
defined by K = ∑dim(H )

i pn(i) ln pn(i)
pn+1(i) . In the MBL phase,

this quantity increases linearly with system size ∝ ln [dim(H )]
because nearby eigenstates are completely uncorrelated. For
the thermal phase, one expects K = 2 in the thermodynamic
limit from random matrix theory [18]. The energy-dependent
KLd is shown in Figs. 2(d)–2(f). The KLd of the thermal
phase is notably lower than MBL phase and for small � shows
an inversion of the finite-size dependence; K increases with
system size in the MBL phase and decreases with system size
in the delocalized phase. A finite-size crossing of the KLd
gives an approximate location of the delocalized phase, which
is seen to increase for increasing �.

Similar behavior is seen in the half-system mutual infor-
mation of the energy eigenstates, defined as

I (L/2) ≡ I (A, B) = S (A) + S (B) − S (A ∪ B), (4)

where S (A) = −tr[ρA ln(ρA)] is the von Neumann entangle-
ment entropy of subsystem A. The system is split into three
pieces as shown in the inset to Fig. 1, where A and B corre-
spond to dividing the spin system into halves and S(A ∪ B) =
Sq is the entanglement entropy of the qudit. Mutual infor-
mation is chosen to best capture entanglement between the
subsystems A and B, which should be area law in the MBL
phase and volume law in the delocalized phase [19]. As seen
in Figs. 2(g)–2(i), mutual information is indeed higher in
the delocalized phase, although the apparent super-volume-
law scaling is a finite-size effect which is expected to go
away at larger system sizes [9,20]. Note that the mutual in-
formation remains well below its maximal (Page) value of
I (L/2) → L ln (2) ≈ 0.693L, further demonstrating the large
finite-size effects.

To approach larger system sizes up to L = 18, we use
Krylov time evolution [16], which is limited to shorter times.
For the localized phase, we expect the system to retain mem-
ory of its initial state to an exponentially long time, resulting
in a quick plateau of the mutual information, followed by
slow—potentially logarithmic—growth [21,22]. By contrast,
ergodic phases should quickly reach thermal equilibrium with
much larger entanglement. The crossover behavior is more
complicated, but physics deep in these phases should be well
approximated by this simple picture.

We studied time evolution by preparing initial product
states in the σ z ⊗ n̂ basis and evolving the wave function using
the Krylov method [23]. We initialized these states within
a given energy window of width �E = 0.2. Fig. 3 shows
energy-resolved mutual information. We are not able to obtain
data for sufficiently long times to clearly identify a late-time
plateau, but points within the MBL and delocalized regions
show different trends. For delocalized values of E/

√
L = 0.5,

the mutual information approaches a plateau value near the
theoretical maximum I (L/2) = L ln(2). On the other hand,
for the states near the ground state and in the middle of the
spectrum, data consistent with a logarithmic growth of mutual
information is detected, which is suggestive of localization
in the thermodynamic limit [21,22]. Taking the instantaneous
mutual information at late-time t = 3900, we observe the
same trend as the data obtained using energy eigenstates (top
panel of Fig. 3).

Finally, we note that, in our model, the qubit ground state
is at E = 0, and all excited states are at E = n�. Unlike other
words that are symmetric around E = 0 [9,24], our model has
no such symmetric energy spectrum.

Discussion. Our data are consistent with the picture from
the high-frequency expansion suggesting an inverted mobility
edge for � < �c. A concern for this analysis is the fact that
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FIG. 3. (a) Dynamics of I (L/2) obtained using Krylov time
evolution starting from a product state. The dashed curves corre-
spond to the MBL regime (E/

√
L = −1.26 ± 0.024), and the solid

lines correspond to the delocalized regime (E/
√

L = 0.51 ± 0.024).
(b) Energy dependence of I (L/2) at late times, t = 3900. All data
are for � = 0.3. In this plot, the finite-size effect is strong as going
from L = 14 to L = 15 the form of the logarithm plot changes
significantly.

the HFE is asymptotic rather than convergent for L = ∞ and
finite � [25]. Therefore, we numerically compare the results
from the exact numerics to those from the HFE. The HFE
matches very well in the low-energy reemergent MBL phase
and appears to approach the correct answer in the high-energy
phase where convergence is expected when the system is
localized by standard arguments for Floquet MBL [26,27].
Unsurprisingly, the HFE does not converge in the thermal
regime, which is a signature of resonant delocalization [11].

The HFE also shows why inverted mobility edges are
more apparent with central qudits or spins than with bosonic
modes. In the photonic HFE, the leading long-range interac-
tions become −(H−)2/� independent of photon number [11].
Higher-order corrections will pick up photon number depen-
dence but are more difficult to see due to the �−r suppression
at rth order. For a central spin S, the relevant commutator is
[S−, S+] = −2Sz, which becomes large at the edges of the
spin spectrum (large |Sz|), similar to the qudit and, thus, will
also show an inverted mobility edge as seen in the Supple-
mental Material [11]. In general, the energy dependence of
localization will depend on the manner in which the photon
couples to the many-body system, and similar HFEs should
enable analysis of the energy dependence.

We can also get some insight from the HFE about the en-
ergy at which the MBL-delocalized transition occurs. Within
the HFE, the density of states for each qudit level |n〉 is ap-
proximately Gaussian with mean n� and width ∼J

√
L. From

the HFE, only states from the n = 0 branch contribute to the
infinite-range thermalizing interactions at leading order. Since
the energy window corresponding to n = 0 extends up to

E0 ≈ J
√

L, we postulate that the critical energy will scale sim-
ilarly: Ec ∝ L1/2. We are unable to definitively confirm this
scaling given our small finite-size numerics. However, plot-
ting data as a function of E/

√
L—as is performed throughout

the Letter–appears to give better data collapse than plotting as
a function of E (see the Supplemental Material [11]).

Experimentally, a few systems exist in which a nonbosonic
central mode is globally coupled to an interacting spin or elec-
tron system as required for this physics. A notable example is
the recent realization of a cavity QED-like architecture with
superconducting qubits playing the role of mirrors [28,29].
The cavity mode is replaced by the dark state manifold of
a qubit chain, whose raising and lowering operators satisfy
the commutation relations of large spin S [11]. The size of
this spin is controllable by the number of qubits in the chain,
and hence can be scaled to large values as we use here.
Currently, experiments have shown coupling of the dark mode
to a single atomlike qubit to simulate cavity QED, but we
expect that coupling to a disordered interacting spin chain is
practical through conventional superconducting qubit archi-
tectures [30]. Similar large-spin algebra results for coupling
between polaritons in a semiconductor microcavity and spin
impurities in the semiconductor since in certain regimes the
polaritons “inherit” the nonbosonic commutation relations of
their matter component [31,32]. Finally, we note that, for
generic cavity-atom coupling in conventional cavity QED
we also expect an inversion of the mobility edge in certain
regimes, as will be detailed in an upcoming paper [33].

To summarize we have shown that in centrally coupled
spin chains, such as those with a central qudit or spin S in a
magnetic field, an inversion of the many-body mobility edge
is possible. Although a similar inversion has been predicted in
other scenarios [34,35], the mechanism here is fundamentally
different, relying on infinite-range interactions induced by a
central mode. We postulate that an inversion of the mobility
edge will be a generic feature of many such models since long-
range thermalizing interactions are most strongly induced at
the edge of the spectrum where the finiteness of the central
mode becomes apparent. This phenomology opens up further
intriguing questions about localization in such systems with
competition between local and global interactions, such as
the existence and character of localized bits (�-bits [36,37]).
Furthermore, as the energy-dependent phase transition comes
from global interactions, it should be in a different class than
recent avalanche pictures of the MBL transition [38–41].
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