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Transverse instability and universal decay of spin spiral order in the Heisenberg model
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We analyze the intrinsic stability of spin spiral states in the two-dimensional Heisenberg model isolated from
its environment. Our analysis reveals that the SU(2) symmetric point hosts a dynamic instability that is enabled
by the existence of energetically favorable transverse deformations—both in real and spin space—of the spiral
order. The instability is universal in the sense that it applies to systems with any spin number, spiral wave
vector, and spiral amplitude. Unlike the Landau or modulational instabilities which require impurities or periodic
potential modulation of an optical lattice, quantum fluctuations alone are sufficient to trigger the transverse
instability. We analytically find the most unstable mode and its growth rate, and compare our analysis with
phase-space methods. By adding an easy-plane exchange coupling that reduces the Hamiltonian symmetry from
SU(2) to U(1), the stability boundary is shown to continuously interpolate between the modulational instability
and the transverse instability. This suggests that the transverse instability is an intrinsic mechanism that hinders
long-range phase coherence even in the presence of exchange anisotropy.
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Characterizing the mechanisms responsible for the break-
down of phase coherence in quantum systems is a funda-
mental problem with broad implications in quantum science
and technology. The interplay between kinetic effects, inter-
actions, and disorder gives rise to a wide range of phase
relaxation mechanisms. In the simplest scenario, the phase
coherence in a superfluid is subject to the Landau criterion
[1], which defines an upper limit for the superfluid velocity:
when the superfluid moves faster than the sound velocity, a
spatially localized defect can trigger a superfluid instability
that globally destroys phase coherence [2]. In the case of
a Bose-Einstein condensate (BEC) in an optical lattice with
spacing a, the characteristic lattice modulation ql = π/2a sets
another limit for the superfluid wave vector above which a
modulational instability occurs [3,4]. Such instability can be
enhanced in the presence of strong interactions [5,6]. Rich
physics and diverse mechanisms that destroy—and sometimes
stabilize—the phase coherence have been discussed in the
context of counterflowing superfluids [7], multicomponent [8]
and spinor BECs [9–11], and superconductors [12–15], in the
presence of extended disorder [16–19], dipolar interactions
[20–22], and driving [23–27].

In this Letter, we inquire about the fate of spin spiral states
[see Fig. 1(a)] in the isolated two-dimensional Heisenberg
model. Such states can be created, for example, by globally
rotating the spins around the x axis by an angle θ and then
using a magnetic field gradient with wave vector q to rotate
the spins around the z axis. Understanding the stability of
spin spirals and the dynamics of decay under their own in-
ternal degrees of freedom is of relevance in many important

scenarios. The nonequilibrium dynamics of spin spirals has
recently been in the spotlight of several cold-atom experi-
ments [28–30]. By tuning q and θ , we can tune the energy
and magnetization of the system and trigger interesting far-
from-equilibrium phenomena, such as quantum turbulence
[31,32], prethermalization [33], universal self-similar relax-
ation [34,35], and anomalous transport [36]. In addition,

FIG. 1. (a) Schematics of a spin spiral parametrized by a wave
vector q and angular amplitude θ . (b) Imaginary part of the frequency
of Bogoliubov modes. The wave vectors kx,y are relative to q, which
is assumed to be pointing in the x direction (k∗ = q sin θ ). The fastest
growing modes are transverse to q, with ky ≈ k∗/

√
2. (c) Slice of

(b) plotted at the line cuts kx/k∗ = 0 (dot-dashed line) and kx/k∗ =
0.75 (dotted line) and normalized with 1/τ∗ in Eq. (1). Parameters
used: θ = π/4, qxa = 0.5, qy = 0.
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the stability of spin superfluids in ferromagnetic materials,
promising for dissipationless spintronic applications [37–42],
hinges on the stability of long-range coherence of a spin spiral.
As such, our results are useful to understand the relevant
modes that lead to spin superfluid decay when the coupling
to a thermal bath is not important.

Our analysis reveals that the SU(2) symmetry of the
Hamiltonian gives rise to a dynamic instability with differ-
ent characteristics from previously studied instabilities. In
particular, the instability (i) is enabled by gapless symmetry-
allowed deformations of the order parameter rather than
kinematic effects, (ii) is triggered by quantum fluctuations
without the need for defects, disorder, or a lattice, and (iii)
is universal in the sense that it affects systems with arbitrary
spin number S, spiral wave vector, and spiral amplitude. The
main physics can be understood by noticing that the SU(2)
symmetry relaxes the topological constraint that protects the
U(1) phase in superfluids [37]: while in usual superfluids
the thermally activated creation of vortex-antivortex pairs or
large kinematic fluctuations destroy coherence, the SU(2)
symmetry alone furnishes additional “directions” (or rotation
generators) in which the phase coherence can be destroyed for
arbitrary values of q (i.e., the critical wave vector is zero). As
indicated in Fig. 1(b), the instability evolves by unwinding
the spiral via growth of modes in a ring around the wave
vector q. Assuming q = (qx, 0), the fastest growing mode has
transverse wave vector k⊥ ≈ k∗/

√
2 and grows with a rate

1/τ∗, with

k∗ = |q| sin θ,
1

τ∗
= JS sin2 θ [1 − cos(qxa)], (1)

until it becomes macroscopically occupied (J is the exchange
coupling). In addition, numerical simulations show that the
constraint Ŝ2

j = S(S + 1) of each spin regulates the instability
growth, which peaks in a time t ≈ 4τ∗ (largely independent of
q, θ , and S).

We analytically discuss dynamics in the SU(2) symmetric
Heisenberg model for large S, but our conclusions are far more
general. In particular, below we numerically show that the
imprint of the ring of unstable modes survives even in the
S = 1/2 limit for sufficiently small wave vectors. In addition,
we show that the effect of the instability pervades away from
the SU(2) symmetric point. Indeed, although it is known that
the easy-plane XXZ model can host a stable superfluid state
[39], we still observe a strong reduction of the critical wave
vector for modulation instabilities (i.e., |qc| = π/2a) for a
wide range of values of the exchange anisotropy. As such,
manifestations of the transverse instability still exist in the
presence of exchange anisotropy.

Microscopic model. We consider the two-dimensional
Heisenberg model on a square lattice with exchange
anisotropy,

Ĥ = −
∑
〈 j, j′〉

J
(
Ŝx

j Ŝ
x
j′ + Ŝy

j Ŝ
y
j′
) + JzŜ

z
j Ŝ

z
j′ , (2)

where 〈 j, j′〉 denotes summation over nearest neighbors. Each
site contains a spin S degree of freedom and periodic boundary
conditions are assumed in each spatial direction. Our analysis
is not affected by a Zeeman field, which is present in many rel-
evant experiments: although a Zeeman field breaks the SU(2)

symmetry of the Hamiltonian, its effect on dynamics can be
removed by using a rotating frame. The initial condition is a
spin spiral,

〈Ŝ±
j 〉 = S sin θe±iq·r j , 〈Ŝz

j〉 = S cos θ, (3)

with Ŝ±
j = Ŝx

j ± iŜy
j .

Bogoliubov analysis. The equations of motion of the spin
operators are given by ∂t Ŝ j = J

∑
j′∈N j

Ŝ j × (Ŝ j′ + εŜz
j′z),

with ε = (Jz − J )/J , N j the nearest neighbors of site j, and
z a unit vector. We first analyze the linearized dynamics
at short times using the approximation 〈Ŝα

j Ŝβ

j′ 〉 ≈ 〈Ŝα
j 〉〈Ŝβ

j′ 〉,
which gives rise to the equations of motion

Ṡ±
j = ∓iJ

∑
j′∈N j

[
(1 + ε)S±

j Sz
j′ − S±

j′ S
z
j

]
,

Ṡz
j = iJ

2

∑
j′∈N j

[
S+

j S−
j′ − S−

j S+
j′
]
, (4)

with 〈Ŝα
j 〉 = Sα

j . Hereafter, energy and inverse time are ex-
pressed in units of JS and wave vectors in units of 1/a.
Using the initial conditions in Eq. (3), it can be shown
that the solution S̄±

j (t ) = S sin θe±i(q·r j+μt ), S̄z
j = S cos θ , is

a steady-state solution of Eq. (4) with oscillation frequency
μ = 2 cos θ [(1 + ε)2 − cos qx − cos qy]. Therefore, one can
systematically incorporate the effects of quantum fluctuations
on top of this classical stationary solution through a Bogoli-
ubov analysis, as we discuss next.

We proceed to analyze the stability of the spiral in the
isotropic exchange case, ε = 0. We parametrize fluctuations
on top of the steady-state solution using the xy compo-
nents of magnetization, S±

j = S̄±
j + δS±

j ; this implies that
our parametrization is singular at θ = π/2, but taking the
limit θ → π/2 at the end still yields the correct result (a
parametrization in polar coordinates that is nonsingular at
θ = π/2, but more cumbersome, is discussed in the Sup-
plemental Material [43]). Going into momentum space and
expressing modes relative to the wave vector and frequency
of the spiral, δS±

j = e±i(q·r j+μt ) ∑
k ei(k·r j+ωkt )δS±

k±q, the lin-
earized equations of motion are (see Supplemental Material
[43])(

ωk + εq+k + �k
2 − μ �k

2
−�k

2 ωk − εq−k − �k
2 + μ

)
δS = 0. (5)

Here, δS = (δS+
q+k, δS−

k−q)t, and εp, �k are

εq±k = cos θ (γ0 − γq±k), �k = sin θ tan θ (γq − γk), (6)

where we defined γk = 2(cos kx + cos ky). Note that the Bo-
goliubov analysis can be generalized to next-nearest-neighbor
interactions by modifying the definition of γk accordingly.
From Eq. (6), we note that the value of μ is μ = εq. The
frequencies of the Bogoliubov modes are

ωk = εq+k − εq−k

2
± 1

2

√
�ε(�ε + 2�k), (7)

where �ε = εq+k + εq−k − 2εq can be interpreted as the ki-
netic energy cost of unbinding two quasiparticles from the
macroscopically occupied mode q. For large spiral wave vec-
tors, qx, qy > π/2, �ε can be negative because of the negative
mass of bare particles and gives rise to the previously studied
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modulational instability [3]. For qx, qy < π/2, however, �ε

is strictly positive and the condition for the mode S+
q+k to be

unstable (i.e., ω′′
k = Im[ωk] �= 0) is given by

εq+k + εq−k − 2εq + 2�k < 0. (8)

It is instructive to analyze the condition (8) in the limit
of small q and θ such that we can contrast it with the Lan-
dau instability. The initial spin spiral state can be interpreted
as a macroscopically occupied state (i.e., a quasicondensate)
with wave vector q on top of the ferromagnetic ground
state. Upon approaching the classical limit (S → ∞), the
magnon interaction vanishes as 1/S. As a result, the spi-
ral does not decay in the classical limit. At the isotropic
point and for finite S, Eq. (8) reflects an energy balance
condition resulting from unbinding two magnons of energy
εq±k ≈ JSa2(q ± k)2 and with a momentum-dependent pair-
ing energy �k ≈ −JSa2 sin2 θ (q2 − k2). Importantly, �k is
attractive in a ring of radius |k| � |q|. Attractive magnon-
magnon interactions are known to give rise to magnon bound
states in one dimension (1D) [44] and its momentum de-
pendence has been shown to result in unusual quasiparticle
relaxation [45] and hydrodynamic behavior [46,47]. Equa-
tion (8) dictates that independently of S, the growth of modes
with small wave vectors k relative to q is energetically favor-
able (a large value of k, on the other hand, is penalized by
a large kinetic energy cost, εq+k + εq−k − 2εq ∝ k2). In con-
trast, usual superfluids have a repulsive hard-core interaction
�k = gn > 0 that is momentum independent, which means
that the kinetic energy of the superfluid has to be sufficiently
large (i.e., there is a finite critical wave vector) for the in-
stability criterion (8) to be satisfied (g: local interaction; n:
density).

More generally, Eq. (8) gives rise to unstable modes for any
value of q and θ . To analytically find the most unstable mode
when q = (qx, 0), we maximize ω′′

k under the constraint kx =
0 [note that the fastest growing mode in Fig. 1(a) is transverse
to q]. In this case, we obtain

ω′′
k = 2

√
(1 − cos ky)

[
(1 − cos ky) − sin2 θ (1 − cos qx )

]
.

(9)

From this, we see that the maximum of ω′′
k occurs at ky = k̃y,

with k̃y satisfying 1 − cos k̃y = sin2 θ (1 − cos qx )/2, and such
mode grows with a rate max(ω′′

k ) = 1
τ∗

in Eq. (1). Equation (9)
also defines the volume in phase space of unstable modes,
which is bounded by the wave vector k∗ satisfying the condi-
tion 1 − cos k∗ = sin2 θ [1 − cos qx]. In the limit of small qx,
we obtain k̃y ≈ k∗/

√
2, with k∗ defined in Eq. (1).

Phase-space methods. To complement the Bogoliubov
analysis, we compute real-time dynamics of the spiral decay
by incorporating quantum fluctuations using the truncated

Wigner approximation (TWA) [48]. Defining 〈Ŝ⊥
j 〉 as the

transverse magnetization of the initial condition (3), we as-
sume Gaussian fluctuations of Ŝ

⊥
j given by 〈Ŝ⊥

j 〉 = 0 and

〈Ŝ⊥
j · Ŝ

⊥
j 〉 = S.

Figure 2(a) shows a single realization of the TWA noise
for a spin spiral with parameters θ = π/4 and qx = 0.5 (same
parameters as in Fig. 1). Independently of the spin number S,

FIG. 2. (a) Real-space snapshot of a single TWA realization at
t/τ∗ = 3.5; see Eq. (1). Shown are snapshots of the spins Ŝ j projected
on the xy plane. Indicated with a bar is the wavelength in the y
direction of the fastest growing mode. (b) Contour plot showing the
connected correlation 〈Ŝx

−K Ŝx
K〉c corresponding to (a). Consistent with

the Bogoliubov analysis, the plot exhibits a ring of unstable modes
around q with size k∗ ≈ qx sin θ and a maximal amplitude transverse
to q. Parameters used in (a) and (b): θ = π/4, qx = 0.25, qy = 0,
S = 10 averaged over 50 realizations. (c) Spatial-temporal scaling of
〈Ŝx

−K Ŝx
K〉c. Shown is the logarithm of 〈Ŝx

−K Ŝx
K〉c for K = (qx, ky ) and

t/τ∗ = 3.5, and for different initial conditions: (qx, θ ) = (0.25, π/2)
(circles), (0.5, π/2) (squares), and (0.25, π/4) (triangles) and S =
10. The dot-dashed line is the Bogoliubov Im[ω] in Eq. (9) as a guide
to the eye. (d) Growth of the most unstable mode, Kf = (qx, k̃y ),
showing saturation and subsequent oscillations for S = 10 (solid
line) and S = 1/2 (dotted lines). Also shown is the depletion of the
spin spiral (dash-dotted line).

we consistently observe growth of unstable modes that lead
to a disordered state. Analysis of the connected correlation
〈Ŝx

−K Ŝx
K〉c = 〈Ŝx

−K Ŝx
K〉 − 〈Ŝx

−K〉〈Ŝx
K〉 [shown in Fig. 2(b), with

K the absolute wave vector] reveals that the spiral state is
primarily decaying into modes located in a ring around the
wave vector q, preferentially in the direction perpendicular to
q, thus confirming the Bogoliubov analysis above.

In addition, Fig. 2(c) shows the scaling of fluctuations for
wave vectors K = (qx, ky ) and various initial conditions at
the rescaled time t/τ∗ = 3.5. Given that we expect unstable
modes to grow as S+

K (t ) ≈ S+
K (0)et/τK , the y axis is plotted in

logarithmic scale and the correlation 〈Ŝx
−K Ŝx

K〉c is normalized
with the maximum value as a function of ky for each initial
condition. We observe excellent agreement with the Bogoli-
ubov analysis for all q and θ .

Instability growth and self-regularization. Going beyond
the linear stability analysis, we inquire about the intermediate
timescale dynamics of instability growth. Figure 2(d) shows
the decay of the spin spiral and multiple stages in the evolu-
tion of the most unstable mode: (i) initial growth compatible
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FIG. 3. (a) Schematics of the most favorable deformation of the
spin spiral order and (b) the corresponding energy shift with respect
to the spiral state. Shown in (a) is the trajectory of the magnetization
vector by moving on the lattice in the x (dotted line) and y (solid line)
directions, and δθ is the amplitude of deformation; see definition
in main text. (c) Contour plot showing the connected component
of 〈Ŝx

−K Ŝx
K〉 for S = 1/2, qxa = 0.12, and θ = π/2. (d) Stability

boundary showing the critical momentum qc as a function of ex-
change anisotropy for a spiral amplitude of θ = π/4 (black circles),
θ = 0.1 (gray diamonds), and S → ∞. The shaded area indicates the
parameter space region of the modulational instability.

with the Bogoliubov analysis above, (ii) saturation, and (iii)
coherent oscillations prior to equilibration. Unlike the usual
instabilities in BEC where unstable modes grow exponen-
tially for long times, the local constraint Ŝ2

j = S(S + 1) and
the conservation of total magnetization regulate the growth
of the transverse spin modulation at relatively short times,
analogously to Refs. [33,49,50]. We observe that saturation
occurs at t ≈ 4τ∗, irrespective of the value of S, q, and θ (see
the Supplemental Material [43]).

The existence of unstable modes in the linearized analysis
and the small oscillations in Fig. 2(d) are linked to the exis-
tence of smooth, symmetry-allowed deformations of the spin
spiral order with a valley-shaped potential. Using the in-
sights gained from the Bogoliubov analysis, we propose a
simple ansatz for a transverse spin texture given by S±

j =
S sin θie±iq·r j and Sz

j = S cos θ j , with θ j = θ̄ + 2δθ cos(k̃yyi )

and k̃y defined below Eq. (9) [see Fig. 3(a)]. The value of δθ

controls the amplitude of transverse spin deformations around
θ̄ and is modulated by the transverse wave vector k̃y. This
ansatz trivially satisfies

∑
j S±

j = 0 for all values of θ̄ and δθ ,

and the condition 1
N

∑
j Sz

j = S cos θ defines a constraint that
links θ̄ and δθ . Because we recover Eq. (3) when θ̄ = θ and
δθ = 0, our ansatz is smoothly connected to the original spiral
and preserves its total magnetization. Figure 3(b) shows that
increasing the transverse modulation δθ reduces the energy
of the spin spiral. In addition, the observed oscillations in
Fig. 2(d) can be interpreted as amplitude oscillations on a

valley-shaped potential. The same argument can be applied
to any value of k that satisfies the instability condition (8), but
the valley is deepest for K = (qx, k̃y).

Crossover to the quantum regime. The stability analysis
above relies on a 1/S expansion of the equations of motion,
opening the question on its validity in the experimentally
relevant S = 1/2 case. The competition between quantum-
ness in the S → 1/2 limit and classicality in the q → 0 limit
suggests that a smeared, but still observable, ring of unsta-
ble modes is obtained for finite but small q and S = 1/2.
Indeed, our numerics reveal that strong quantum fluctuations
suppress the exponential growth of unstable modes and smear
out coherent oscillations in the two-point correlation function
[see Fig. 2(d)], but the latter still exhibits an imprint of the
ring of unstable modes [see Fig. 3(c)]. Remarkably, we also
find that our stability analysis is valid in the one-dimensional
Heisenberg model despite integrability and reduced dimen-
sionality, as shown with matrix product states and TWA in the
Supplemental Material [43] (in this case, the most unstable
modes are necessarily collinear with qx).

Crossover to modulational instability. To study the
crossover between the transverse instability in the Heisenberg
model (Jz = J) to the modulational instability that charac-
terizes a superfluid on a lattice, we extend the Bogoliubov
analysis for values of Jz < J (see details in the Supplemental
Material [43]). Tuning Jz can be realized experimentally using
Feshbach resonances, dipolar interactions, or lattice shacking
[51–55]. The anisotropic exchange energetically penalizes the
transverse deformation of the spin spiral order. In the lan-
guage of the stability condition in Eq. (8), the pairing �k

becomes repulsive, �k ≈ (J − Jz ), and εk becomes linearly
dispersing. Although reducing the SU(2) symmetry to U(1)
has a stabilizing effect on the spin spiral state, there is still a
strong reduction of the critical wave vector close to the SU(2)
symmetric point, as shown in Fig. 3(d). This suggests that
the instability mechanism that we describe is also relevant for
systems with weak anisotropic exchange.

Conclusions. We analyzed a class of dynamic instability
which is enabled by the topology of the order parameter
manifold rather than kinematic effects. Such instability is an
intrinsic mechanism that hinders long-range phase coherence
in spin systems. While the mechanism that we discuss is
intrinsic to the Heisenberg model with ferromagnetic order-
ing, open problems include understanding the enhancement
of the instability in the presence of disorder and long-range
interactions, and understanding the mechanisms of decay in
systems with antiferromagnetic ordering and different lat-
tice types. In addition, extending our simulations to longer
timescales in order to obtain a holistic perspective of ther-
malization, which captures the growth of unstable modes
and subsequent quasiparticle relaxation, remains an important
challenge.
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