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Anomalous retardation of relativistic plasmons: Microwave response of a gated
two-dimensional electron system
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We investigate the microwave response of a gated two-dimensional electron system (2DES) loaded by an
external on-chip resonator. We find the system response to be dominated by the excitation of relativistic
plasmons. These plasmons exhibit anomalously strong coupling to the photon mode of the resonator, which
manifests itself in a drastic reduction of the plasma resonant frequency and linewidth. We develop an analytical
approach to explain the observed phenomenon of strong interaction of 2D plasma with light. The theory turned
out to be in good agreement with the experiment.
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The interaction between light and matter is at the heart
of nearly every optical process found in nature. It gives rise
to hybrid light-matter modes, involving collective oscillations
of polarization charges in matter—polaritons [1,2]. The most
compelling feature of polaritons is that they trap light far
below the optical wavelength [3,4]. As a result, an increase in
the associated electric field strength leads to enhanced light-
matter interaction. A prominent example is the most-studied
case of surface plasmon polaritons supported by electrons
in metals [5]. High-quality two-dimensional electron system
(2DES) can support a new class of polaritons—2D plasmon
polaritons [6–8]. Two-dimensional systems have been proven
an ideal platform for studying polariton effects due to their
high purity and wide parameter tunability [9–15].

Previous experiments have shown that a partly gated 2DES
supports a new family of plasma waves, including relativistic
plasmons [16–18] and proximity plasmons [19–22]. Relativis-
tic plasmons are the electron density oscillations between the
2D electron subsystem and the gate over the 2DES [18]. The
excitation of these plasma oscillations requires the gate to be
electrically connected to the 2DES through an external circuit.
Most importantly, it has been found that relativistic plasmons
have anomalously weak damping due to strong interaction
between the 2D plasma and the photon mode of the external
resonator. For this reason, it is possible to observe relativistic
plasmons even at ωpτ � 1 (where ωp is the plasmon fre-
quency and τ is the momentum relaxation time of electrons),
when ordinary 2D plasmons are overdamped.

Although the physical origin of relativistic plasma ex-
citations has recently been clarified [18], the physics of
their anomalously strong interaction with the light remains
a mystery. This paper presents the experimental study of the
electrodynamic response of a gated 2DES loaded by an exter-
nal on-chip resonator. In this case, we observe a substantial
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reduction in the resonant plasma frequency and drastic nar-
rowing of the plasma resonance caused by the hybridization
of the 2D plasma with the light modes. Importantly, we de-
velop a rigorous theory to expound on the coupling between
the relativistic plasmon and the resonator. Our experimental
results show good agreement with the theory.

The experiments were conducted on an
Al0.24Ga0.76As/GaAs/Al0.24Ga0.76As heterostructure hosting
a two-dimensional electron system in a single 30 nm-wide
quantum well located at a distance h = 370 nm below
the crystal surface. The sample with two-dimensional
electron density ns = 2.4 × 1011 cm−2 and electron mobility
μ = 2.5 × 106 cm2/V s was measured at the temperature
of 1.5 K. The sample structure was patterned after the
Corbino geometry using optical lithography tools, as depicted
in Fig. 1. The 2DES disk with diameter D = 0.5 mm was
partially screened by the central gate of diameter d = 0.1 mm.
The ohmic Au/Ge contact was formed around the perimeter
of the 2DES. The gate and the contact were electrically
connected through a meander-like external resonator circuit
lithographically fabricated on the surface of the chip (Fig. 1).
The values of circuit inductance Lm and capacitance Cm

were determined by running a simulation in Ansys HFSS
software and verified by the direct measurement with an
RLC-meter. In our experiments, we used microwave radiation
in the frequency range of 0.150 GHz. The signal was guided
to the sample through a coaxial cable terminated in a wire
antenna. To detect the plasma excitations, we employed a
nondestructive optical technique [23]. It is based on the high
sensitivity of the 2DES luminescence spectrum to the heating
caused by the absorption of microwave radiation. The sample
was placed into a cryostat with the base temperature of 1.5 K
inside a superconducting coil producing the magnetic field B
in the range of 0–0.6 T.

Figure 2(a) shows the microwave absorption versus the
applied magnetic field. The data are obtained for the exci-
tation frequencies of 3.6, 11.5, and 16.3 GHz. The sample
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FIG. 1. Schematic drawing and photos of the experimental sam-
ple structure. The contact area, the 2DES, and the gate are shown in
brown, yellow, and orange, respectively. A meander microstrip line
plays the role of the external resonator.

under investigation includes an external resonant circuit of
the inductance Lm = 0.88 nH and capacitance Cm = 0.03 pF,
connected between the center gate and the outer perimetric
contact (Fig. 1). We note that for all tested resonators, the
value of Cm is negligible compared to the capacitance of
the gated region of the 2DES, C = 2.4 pF. Hence, in what
follows, we are interested only in the values of Lm. The
curves in Fig. 2(a) clearly indicate the resonant peak that
rapidly moves to larger magnetic fields with increasing ex-
citation frequency. According to the previous studies [18],
the observed resonance corresponds to the excitation of a
relativistic plasmon—the low-frequency plasma mode that
becomes dominant when the gate is electrically connected to
the 2DES. In the case of a short-circuited gate and 2DES, the
relativistic plasmon frequency can be expressed as [18]:

ω0 =
√

2

1/4 + ln(D/d )

√
nse2h

m∗εε0

2

d
(D/d > 2), (1)

where e is the electron charge, ns and m∗ are the density and
effective mass of the 2D electrons, ε0 and ε are the permittivi-
ties in vacuum and dielectric, D and d are the diameters of the
2DES and the gate, and h is their separation distance.

In our experiments, we have tested eleven samples with
different values of the resonator inductance. For each external
resonator, we measured the resonant frequency as a function
of the magnetic field. Figure 2(c) displays the magnetodis-
persions recorded for Lm = 0.24, 0.88, and 4.86 nH. The
data indicate that the resonator causes substantial changes in
the resonant frequency and the magnetic-field dependency of
the relativistic plasmon. For example, the zero-field plasma
frequency is drastically reduced compared to the quasistatic
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FIG. 2. (a) Dependence of the microwave absorption on the mag-
netic field measured at different frequencies. The sample has the
gate diameter d = 0.1 mm, electron density ns = 2.4 × 1011 cm−2,
and on-chip resonator circuit inductance Lm = 0.88 nH. The curves
are offset vertically for clarity. (b) Microwave absorption spectra
measured at B = 0 T for two geometrically identical samples with
resonator inductances of 0.88 nH (red) and 4.86 nH (blue). (c) Com-
parison between magnetodispersions of the relativistic plasma mode
measured for the same structural geometry but different resonator
inductances of 0.24 nH (black dots), 0.88 nH (red dots), and 4.86
nH (blue dots). The dotted curve presents quasistatic prediction for
the magnetodispersion ωp = √

ω2
0 + ω2

c . The solid curves are the
prediction of the developed theoretical model. The dashed line is the
cyclotron resonance (CR) frequency ωc = eB/m∗.

value from Eq. (1) marked by the black arrow in the figure.
For the resonator with Lm = 4.86 nH, it decreases more than
fivefold, from f0 = 6.0 GHz to fp = 1.1 GHz [blue curve
in Fig. 2(b)], where the reduction in frequency is accom-
panied by a significant narrowing of the plasma resonance
line. At the same time, the magnetic-field behavior of the
plasma mode undergoes considerable transformation due to
its hybridization with the photonic mode of the resonator. The
magnetodispersion crosses the CR line ωc = eB/m∗ [dashed
line in Fig. 2(c)], while for high magnetic fields, the plasmon
frequency asymptotically tends to that of the resonator photon
mode [18]. The observed pattern is in stark contrast to the
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quasistatic case with ωp =
√

ω2
0 + ω2

c , plotted in the dotted
line in Fig. 2(c).

To substantiate such an abnormal behavior of the relativis-
tic plasmon, we have developed a rigorous theory that takes
into account the electrodynamics of the complex system under
study [24]. However, the same results can be obtained quan-
titatively by an intuitive lumped-element approach [25–29].
Let us consider an axisymmetric plasma excitation in a 2DES
disk with a radially directed electric field. The longitudinal of
the 2DES conductivity tensor can be described by the Drude
formula:

σs(ω, B) = nse2τ

m∗
1 + iωτ

(1 + iωτ )2 + ω2
cτ

2
, (2)

where τ is the transport relaxation time. In this case, the 2DES
impedance per square, Zs = 1/σs, can be decomposed into
the “lumped” element resistance and reactance. Hence, in the
limit of ωτ � 1, the 2DES impedance can be factored out as

Zs(ω, B) = Rs + iωL�, (3)

where L� is the kinetic inductance of the 2DES and Rs is
the resistance per square. The L� results from the kinetic
energy that electrons gain in an alternating electric field. From
Eq. (2), it follows that

L�(ω, B) = m∗

nse2

(
1 − ω2

c

ω2

)
. (4)

It has been established that relativistic plasmons are charge
oscillations between the gate and 2DES that involve the
charge flow through the external circuit. Therefore, the rel-
ativistic mode can be regarded as a resonance in a series
resonant circuit composed of the kinetic inductance of 2D
electrons, Lk , an external circuit, and the capacitance between
the center gate and the 2DES, C. If we assume the impedance
of the external circuit to be negligible, the resonant plas-
mon frequency can be expressed as ω0 = 1/

√
LkC, where

the inductance and capacitance are defined by the structure
geometry under study as follows: [24]

Lk = m∗

2πnse2

(
ln

(D

d

)
+ 1

4

)
, C = εε0πd2/4

h
. (5)

The effect of an external resonator can be taken into account
by adding the microstrip magnetic inductance, Lm, as an extra
term in the net inductance of the resonant LC circuit: L =
Lk (1 − ω2

c/ω
2) + Lm. Here, we also include the magnetic-

field dependence of the 2DES kinetic inductance from Eq. (4).
Since a typical external resonator capacitance (0.05 pF) is
much less than the capacitance between the gate and 2DES
(2.4 pF), the Cm term can be neglected at small magnetic fields
when the resonant frequencies of the relativistic plasmon and
the resonator are far apart.

ω2
p = 1

LC
= ω2

0 + ω2
c

1 + Lm
Lk

. (6)

We note that the change in the plasma frequency ωp due
to the magnetic inductance Lm can be treated as the manifes-
tation of electromagnetic retardation. It is usually quantified
by introducing the dimensionless retardation parameter A—a
measure of the plasmon-photon coupling [6,7]. In our case,
given the Eq. (6), it is convenient to consider the retarda-
tion parameter in the form A2 = Lm/Lk . Thus, the plasmon
frequency and the effective CR frequency are scaled by a
factor 1/

√
1 + A2, reflecting the extent of plasmon-photon

hybridization. This concept has a wide range of applications.
For example, the same approach can be used to account for the
retardation effects of ordinary plasmons in gated and ungated
2DESs [24].

To validate the proposed notion of relativistic plasmon-
photon coupling, we conducted a series of experiments on
a set of structures with different on-chip resonators. For
these measurements, all the samples had the same 2DES
parameters—a fixed kinetic inductance Lk = 0.29 nH accord-
ing to (5). For the resonator circuit, we used a meander
microstrip line with a different number of sections (Fig. 1).
The magnetic inductance Lm was calculated numerically using
CST Microwave Studio and verified by direct measurements
with RLC-meter (see Supplemental Material [24] for more
details). As a result, we obtained the values of magnetic in-
ductance in the range of 0.88–9.1 nH.

Figure 3 shows the relativistic plasmon frequency ωp/ω0

and the effective CR frequency ω′
c/ωc as a function of the

retardation parameter A. In the figure, we compare the ex-
perimental data, plotted in red and blue circles, with the
theoretical dependency 1/

√
1 + A2 according to Eq. (6),

denoted with respective solid curves. These results indi-
cate good agreement between the theory and experiment.
As for the estimate of ω′

c, we note that in the limit of
small magnetic fields, the magnetodispersions from Fig. 2
are well approximated by the quadratic dependence on B,
as illustrated by the inset to Fig. 3(b). Here, the mag-
netodispersion for the 0.88 nH resonator is plotted as f 2

versus B2. Hence, the effective CR frequency ω′
c can be

determined using the linear fit of the experimental data
at B = 0 T.

Notably, the dependencies in Fig. 3 are qualitatively similar
to those obtained for the ordinary plasmon-polariton modes
excited in a disk and stripe geometries [6,30]. However,
the magnitude of the 2D plasma hybridization with light
far exceeds the level expected in the case of ordinary 2D
plasmons indicated by the dashed line in Fig. 3(a). Such
an ultrastrong hybridization of the relativistic plasmon with
light ultimately leads to extremely weak damping of the
plasmonic mode [16,17]. It is also worth noting that the
beauty of data representation in Fig. 3 is that both depen-
dencies are expressed in a dimensionless form. As a result,
the measurement of samples with arbitrary parameters and
resonator dimensions can be reduced to a single universal
dependence.

Another significant implication of the developed model
is that it explains why hybridization between the relativistic
plasmon and light leads to a drastic decrease in the plasmon
damping. According to the theory [24], at zero magnetic field,
the half-width of the relativistic plasmon resonance can be
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FIG. 3. The normalized resonant frequency of the relativistic
plasmon at zero magnetic field (a) and the normalized effective CR
frequency (b), plotted versus the retardation parameter A. In both
pictures, the experimental data (red and blue circles) are compared
to the theoretical dependency 1/

√
1 + A2 (solid lines) based on

equation (6). The dashed line represents the prediction for ordinary
plasmon-polariton modes [6,30]. The inset illustrates the comparison
between the measurement data for the 0.88 nH resonator (black dots),
plotted as frequency squared versus the square of the magnetic field,
and the linear behavior in the limit of low magnetic fields (solid black
line).

written as

�ω = 1

τ

1

1 + A2
. (7)

In essence, the plasmon damping is suppressed due to the
delocalization of the plasma mode from a lossy 2DES to the
external resonator. In this case, it is of particular interest to
estimate the Q-factor of the relativistic plasmon in the limit of
strong retardation:

ωp

2�ω
= ω0τ

2

√
1 + A2

≈ σ0

c ε0
×

√
hLm

d2μ0

× 1

ln(D/d ) + 1/4

2
√

π√
ε

, (8)

where σ0 = nse2τ/m∗ is a static conductivity of the 2DES at
zero magnetic field and c is the speed of light in vacuum. Here,
the quotient Lm

μ0
can be understood as an effective length of the

external resonator, corresponding to its magnetic inductance.
Indeed, for the external resonator with Lm = 0.88 nH, the
experimental data from Fig. 2(b) yields Q = 4.7. This value is
relatively consistent with the prediction of Q = 6.2 calculated
from equation (8). Remarkably, we observe the relativistic
plasma mode in the frequency range ωpτ < 1, where the ordi-
nary plasmons are overdamped. For example, for the resonator
with Lm = 4.86 nH, the resonance plotted in blue color in
Fig. 2(b) occurs at ωpτ = 0.66.

In conclusion, we have experimentally investigated the
relativistic plasma excitation in a partly screened two-
dimensional electron system loaded by an external on-chip
resonator. We have observed that the relativistic plasmon
strongly couples to the resonator photon mode, causing a
drastic reduction in the plasma frequency and linewidth. We
have developed a physical approach that accurately describes
the ultrastrong hybridization of 2D plasma with light. The
predictions of the proposed model show good agreement with
the experimental data. Furthermore, it has been found that in
the regime of strong retardation, the damping of the relativistic
plasmon is determined by the parameter σ0/c ε0.
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