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Linking boundary conditions for kinetic and hydrodynamic description of fermion gas
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An approximate analytical solution of the boundary slip problem in magnetic field is obtained by using the
general form of boundary conditions for the distribution function of fermions with the isotropic energy spectrum.
Exact numerical calculations of the slip length for different models of angle-dependent specularity parameter and
application of the results to the description of the Poiseuille flow demonstrate the reliability of the approximate
solution for establishing a direct link between the hydrodynamic and the kinetic approaches to transport in
bounded fermion systems.
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Studies of hydrodynamic phenomena in electron transport
in solids [1–29] are most often based on investigation of
current flow in the samples of small size where the presence
of boundaries considerably influences the transport proper-
ties. In particular, the nonideal boundaries where electrons
change their momenta as a result of nonspecular reflection
are responsible for drift velocity gradients affecting the hy-
drodynamic flow via the viscosity. The hydrodynamic regime
occurs when the rate of electron-electron collisions conserv-
ing the local momentum of electron system becomes larger
than the rates of momentum-changing scattering of electrons
by impurities, phonons, and boundaries. In this case, the trans-
port is described in terms of the coordinate-dependent drift
velocity u(r), or the related electric current j = enu, where
e and n are the electron charge and density, governed by
the Navier-Stokes equation (NSE). Beyond the hydrodynamic
regime, one has to use a more general albeit more compli-
cated approach based on solution of the Boltzmann kinetic
equation for the distribution function fp(r) that depends on
both the momentum p and the coordinate r. The kinetic
equation approach covers all classical transport regimes and
is indispensable for the description of the transition between
the quasiballistic and the hydrodynamic regimes, when the
modifications of electrical resistance dependence on the tem-
perature and magnetic field serve as hallmarks for the onset of
hydrodynamic behavior [13,24,26–29].

Establishing a connection between the Boltzmann equa-
tion and the NSE in bounded systems is of particular
importance. The NSE itself can be derived from the Boltz-
mann equation either by applying the method of moments [30]
or, equivalently, by expanding fp(r) into series of harmonics
of the angle of p, and neglecting the higher-order moments
under the restrictions imposed by the hydrodynamic regime.
This commonly accepted procedure is straightforward be-
cause the relation between the current and the distribution
function is direct and assumes just an integration over the
entire momentum space. However, a connection between the
boundary conditions (BCs) used in the kinetic theory and
the hydrodynamic BC is not so obvious because of the

different mathematical natures of these conditions. The
hydrodynamic BC relates the tangential component of u
with its derivative at the boundary. The kinetic BC re-
lates the distribution functions from different momentum
semispaces corresponding to incident and reflected particles.
Furthermore, the boundary reflection mixes different angular
harmonics of fp(r), so the use of truncated sets of moments
generally fails near the boundary.

The general form of the hydrodynamic BC for both three-
(3D) and two-dimensional (2D) systems is

ut = lS∇nut , (1)

where ut is the tangential component of the drift velocity,
∇nut is its normal inward derivative, and lS is the slip length
that plays an important role in hydrodynamics. The bound-
ary slip problem, i.e., determination of the relation of lS to
the kinetic properties of gas or liquid became a subject of
study since the foundation of the kinetic theory [31]. For 3D
gases, approximate results relating lS to the viscosity have
been obtained, and the exact values of lS have been calculated
in the limit of fully diffuse boundary reflection [32]. The
increase in lS with increasing degree of specularity has been
also discussed [14,31–33]. Until recently, the existing results
in the boundary slip problem were ignored in the rapidly
developing hydrodynamics of fermion gas in solids, and lS
was often considered as a freely adjustable parameter. The
authors of Ref. [34] have drawn attention to the problem and
calculated lS for 2D fermions in the cases of fully diffuse
and nearly specular reflections. Despite these achievements,
a full and clear correspondence between the kinetic and the
hydrodynamic BCs is still missing.

In this Letter, an approximate expression for the slip length
is derived by using the general form of BC for the dis-
tribution function and in the presence of a magnetic field.
Next, the exact slip length is calculated for nonzero specu-
larity of boundary reflection, including different models of
angle-dependent specularity parameter. It is found that the
exact results approach the approximate ones when specularity
increases. This important property gives more reliability to
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the approximate results and justifies their application in the
hydrodynamics of fermion systems as further demonstrated by
comparing hydrodynamic and kinetic solutions of the trans-
port problem in narrow 2D channels.

First, a brief review of the BC used in the kinetic theory is
presented. It is assumed below that the particles are described
by the isotropic energy spectrum ε = εp and the boundary
scattering is elastic, |p| = |p′| = pε. The BC for the distribu-
tion function at the hard-wall boundary in 3D media is

f +
p = f −

p +
∫

+

d�′

4π
c′

nPε(p, p′)( f −
p′ − f −

p ), (2)

where f ±
p = fpt ,±pn are the distribution functions of reflected

(+) and incident (−) particles, pn = pε sin ϕ and pt are the
normal and tangential components of the momentum, c =
p/|p| is the unit vector along the momentum, and

∫
+

d�′
4π

· · ·
denotes averaging over the solid angle of p′ in the + hemi-
sphere, where sin ϕ′ > 0. Equation (2) is a general form of
the integral relation between the distribution functions of in-
cident and reflected particles guaranteeing zero particle flow
through the boundary for arbitrary fp. This equation can
be derived from the quantum-mechanical reflection problem,
see Refs. [35–37], and Sec. 44 in Ref. [38]. The boundary
scattering is described by the function Pε, which is sym-
metric with respect to permutation of momenta, Pε(p, p′) =
Pε(p′, p) and equal to zero at ϕ = 0 as the reflection is spec-
ular at grazing incidence. For the macroscopically isotropic
boundary, Pε(p, p′) is invariant with respect to simultaneous
rotation of pt and p′

t . The probability of specular reflection
at angle ϕ is given by the specularity parameter rεϕ = 1 −∫
+

d�′
4π

c′
nPε(p, p′). In the case of noncorrelated boundary scat-

tering, when the nonspecular reflection (whose probability is
1 − rεϕ) is isotropic, Eq. (2) is simplified to the form

f +
p = rεϕ f −

p + (1 − rεϕ ) f ε,

f ε =
∫

+

d�

4π
cn(1 − rεϕ ) f −

p

/∫
+

d�

4π
cn(1 − rεϕ ). (3)

The limiting cases rεϕ = 1 and rεϕ = 0 describe fully specular
and fully diffuse reflection. Despite less generality compared
to Eq. (2), Eq. (3) is far more convenient for applications be-
cause it is not an integral relation, and the boundary properties
can be modeled by specifying the magnitude and the angular
dependence of rεϕ .

The current-penetrable boundary can be described by the
in-flow BC [39]: f +

p = Gε(ϕ), where G models inward emis-
sion of particles. This BC can be viewed as a particular case
of Eq. (3) in the fully diffuse limit.

Equations (2) and (3) are adopted for 2D systems by re-
ducing pt to the scalar variable pε cos ϕ and by substituting∫
+

d�′
4π

· · · → ∫ π

0
dϕ′
2π

· · · . The function Pε(p, p′) can be writ-
ten as Pε(ϕ, ϕ′).

Consider now a steady-state linear-transport classical ki-
netic problem for charged fermions in a homogeneous
magnetic-field B directed parallel to the boundary. The dis-
tribution function is presented as

fp(r) = fε + δ fp(r) = fε − ∂ fε
∂ε

[gp(r) − e�(r)], (4)

where fε is the equilibrium Fermi-Dirac distribution and �(r)
is the electrostatic potential. The BCs given by Eqs. (2) and (3)
are valid as well for the nonequilibrium correction gp. In the
hydrodynamic regime,

gp = g0 + gε · c + Qαβ
ε (cαcβ − δαβ/d ), (5)

where d is the dimensionality of the system, g0(r) = eV (r),
V is the nonequilibrium electrochemical potential, gε(r) de-
scribes the drift velocity u = 〈gε/pε〉, and Qαβ

ε (r) is the
symmetric tensor describing the momentum flow density
�αβ = 2n〈Qαβ

ε 〉/(d + 2). The average over energy is 〈Aε〉 ≡∫
dε Dεvε pε(−∂ fε/∂ε)Aε/dn, where Dε is the density of

states and vε is the absolute value of the group velocity.
Equation (5) is a truncated expansion of the exact gp in powers
of cα . Beyond the hydrodynamic regime, it is necessary to
include all higher-order terms in this expansion.

It is specified below that a flat boundary is placed at y = 0
and the magnetic field is directed along the Oz axis. Evaluat-
ing the collision integral in the kinetic equation in the elastic
relaxation-time approximation, and taking into account that
the drift velocity depends only on y, one can express the
components of Qαβ

ε (and, hence, of the viscous stress tensor
−�αβ ) as follows:

Qxx
ε = −Qyy

ε = l⊥ωcτ∇ygx, Qxy
ε = − l⊥

2
∇ygx,

Qxz
ε = l‖

2
ωcτ∇ygz, Qyz

ε = − l‖
2

∇ygz, Qzz
ε = 0, (6)

where ωc = −eB/mc is the cyclotron frequency and m =
pε/vε is the effective mass. The lengths l⊥ = lε/[1 +
(2ωcτ )2] and l‖ = lε/[1 + (ωcτ )2], characterize the stress for
the drift in the directions transverse and longitudinal with
respect to B. The stress at B = 0 is determined by lε = vετ ,
where 1/τ = 1/τ2 + 1/τe [9] is the relaxation rate of the
second angular harmonic of the distribution function. This rate
is a sum of the contributions from the momentum-changing
scattering and from the momentum-conserving scattering be-
tween the particles, characterized by the times τ2 and τe,
respectively. In the hydrodynamic regime, τ2 
 τe, so lε �
le = vετe. Applying Eqs. (5) and (6) together with the hydro-
dynamic expression gε(r) = pεu(r) into the kinetic equation,
multiplying the latter by p, and integrating over momentum,
one gets the linearized NSE,

n−1ηαβ∇2
y uβ + (eB/c)εzαβuβ − ζuα = e∇αV, (7)

which is valid both for 3D media and for 2D layers in the xy
plane. Here, εzαβ is the antisymmetric unit tensor, ζ = 〈m/τ1〉,
τ1 is the relaxation time of the first angular harmonic of the
distribution function, also known as the transport time, and
ηαβ is the dynamic viscosity tensor. The components of ηαβ

contributing to Eq. (7) are transverse, longitudinal, and Hall
viscosities,

ηxx = n
〈pεl⊥〉
d + 2

, ηzz = n
〈pεl||〉
d + 2

, ηyx = 2n
〈ωcτ pεl⊥〉

d + 2
.

(8)

The BC for u in Eq. (7) can be derived on an equal footing
by using Eqs. (5) and (6). After expressing gp in terms of g±

p =
gpt ,±pn , the tangential momentum flow density in the direction
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normal to the boundary is

�αy(r) = nd

〈∫
+

d�

4π
cαcy[g+

p (r) − g−
p (r)]

〉
, (9)

where α = x, z for 3D and α = x for 2D systems. Far from
the boundary, Eq. (9) is an identity since it is reduced to the
definition of �αy as the integral of the product pεvεcαcy fp
over the momentum space. Further application of Eq. (9)
at the boundary y = 0 is based on Maxwell’s idea [31]. It
is assumed that the hydrodynamic form (5), which is valid
away from the boundary, remains valid everywhere for the
incident (−) particles. Expressing g+

p in Eq. (9) through g−
p

with the aid of the BC (3) and then using Eq. (5) for g−
p , one

finally obtains two terms proportional to 〈gα
ε 〉 and 〈Qαy

ε 〉. After
applying Eq. (6) together with g = pεu, Eq. (9) assumes the
form of Eq. (1), where lS is expressed as

l (i)
S = 〈pεliλ

+
2 〉

〈pελ
−
1 〉 , λ±

k =
∫ π/2

0
dϕ(1 ± rεϕ ) cosd ϕ sink ϕ,

(10)

where i = ⊥, ‖ for d = 3 and i = ⊥ for d = 2. Application of
the general BC (2) instead of BC (3) is reduced to the formal
substitution rεϕ → r̃εϕ in Eq. (10), where

r̃εϕ = 1 −
∫

+

d�′

4π
sin ϕ′Pε(p, p′)

[
1 − cos ϕ′

cos ϕ
cos θ−

]
,

(11)

and θ− is the difference of the azimuthal angles of p
and p′. In the 2D case r̃εϕ = 1 − ∫ π

0
dϕ′
2π

sin ϕ′Pε(ϕ, ϕ′)[1 −
cos ϕ′/ cos ϕ].

If energy dependence of rεϕ is absent or inessential,
Eq. (10) is rewritten as

l (i)
S = �d�i, �i = (d + 2)ηi/〈pε〉n, �d = λ+

2 /λ−
1 , (12)

where η⊥ ≡ ηxx and η|| ≡ ηzz, see Eq. (8). The slip length is
equal to the product of the slip coefficient �d by the length
�i related to the diagonal components of the viscosity. The
relation of lS to viscosity, known previously at B = 0, persists
at finite B, when the viscosity is B dependent. Equation (12)
is applicable, e.g., if the specularity parameter is a constant
r. Then the slip coefficients are �3 = (8/15)(1 + r)/(1 −
r) [33] and �2 = (3π/16)(1 + r)/(1 − r). Next, Eq. (12) is
always applicable to degenerate fermion gases as the energy
average fixes ε at the Fermi level εF . Equations (10)–(12) are
derived in the hydrodynamic regime l � l1, where l = 〈lε〉
and l1 = 〈vετ1〉 is the transport mean free path length. They
apply for fermions with an arbitrary energy spectrum and for
ordinary gases if fε is the Boltzmann distribution.

The subsequent consideration contains a more detailed cal-
culation of lS and applications of the results to a transport
problem. The case of degenerate fermion gas is studied, so
�i = li at B = 0 and �i = l at B = 0. Since ε = εF , the energy
index is omitted (lε = l , vε = v, etc.) here and below.

The results given by Eqs. (10)–(12) are approximate be-
cause the distribution function of incident particles loses its
hydrodynamic form in the narrow Knudsen layer near the
boundary [32]. To improve the accuracy and to find the exact
slip length, both numerical and analytical methods have been

FIG. 1. Exact (solid) and approximate (dashed) slip lengths
for different specularity parameters: (a) rϕ = r, (b) rϕ = 1 − (1 −
β ) sin ϕ, and (c) rϕ = exp[−(γ −1 − 1) sin2 ϕ]. The insets show the
relative deviation of the exact results from the approximate ones.

developed for 3D gases [33,40–45]. The problem of exact
slip length is reduced to solution of an integral equation for
the drift velocity near the boundary. Below, this problem is
solved at B = 0, by exploiting the integral equation for the
current density j = enu in a 2D channel obtained [2] from
the Boltzmann equation with application of the BC (3), see
also Ref. [28]. This equation is easily generalized for 3D
fermions and adopted to the case of a single boundary at
y = 0. It is convenient to present the tangential component
of u as uα (y) = uh(y) + δu(y) where hydrodynamic part uh

obeys Eq. (7) at y 
 l and δu is a near-boundary correction.
In the hydrodynamic regime, uh varies on the diffusion length√

ll1/(d + 2) which is much larger than l . Thus, near the
boundary one can apply the linear form uh(y) = h + h′y and
reduce the integral equation for uα (y) to the following one:

δu(y) −
∫ ∞

0

dy′

l
K(y, y′)δu(y′) = lh′F+

1 (y) − hF−
0 (y), (13)

where

K(y, y′) = ad

∫ π/2

0
dϕ

cosd ϕ

sin ϕ

[
e−|y−y′ |/l sin ϕ

+ rϕe−(y+y′ )/l sin ϕ
]
, (14)

F±
k (y) = ad

∫ π/2

0
dϕ cosd ϕ sink ϕ(1 ± rϕ )e−y/l sin ϕ, (15)

with a3 = 3/4 and a2 = 2/π . The approximate slip length
given by Eq. (12) is found by integrating both sides of
Eq. (13) over y from 0 to ∞ and neglecting the integral
term in the resulting equation. Indeed, in this way one ob-
tains lS = lF+

2 (0)/F−
1 (0), which is identical to Eq. (12) at

B = 0 since F±
k (0) = adλ

±
k . The exact slip length lS = h/h′

is determined from the requirement that the solution δu(y)
of Eq. (13) goes to zero at y 
 l . The difference δlS be-
tween the exact and the approximate slip lengths is δlS =
− ∫ ∞

0 dy F−
0 (y)δu(y)/lh′F−

1 (0). Whereas δlS can be either
positive or negative, the relative deviation δlS/lS is always
numerically small.

A comparison of the exact and approximate lS calculated
within several models of rϕ is shown in Fig. 1 for both 3D
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FIG. 2. Kinetic (bold lines) and hydrodynamic (dashed red lines)
distributions of the tangential current density (a) j(y) and (b) Hall
potential V (y) across the 2D channel with equal fully diffuse bound-
aries at l1/L = 5 and l1/le = 25 for several values of B defined by the
ratio of channel width to cyclotron radius: L/Rc = 0, 1.5, 3, and 5.
The dashed green line is the distribution at B = 0 obtained with the
exact slip length 0.637l . The current and the potential are given in
units of j0 = σ0E and El1, where E is the driving electric field along
the channel and σ0 = e2nτ1/m is the Drude conductivity. The inset
shows the region near y = 0.

and 2D systems. The model of angle-independent rϕ = r with
r ∈ [0, 1] is often applied in transport problems, although the
absence of angular dependence of the reflection probability
is a rough assumption, especially near ϕ = 0 and ϕ = π .
The model rϕ = 1 − (1 − β ) sin ϕ with β ∈ [0, 1] reflects the
property Pε(p, p′) ∝ pn p′

n following from the treatment of
boundary scattering in the Born approximation [36]. This
model, however, does not describe fully diffuse boundaries.
The model rϕ = exp[−(γ −1 − 1) sin2 ϕ] with γ ∈ [0, 1] is
free from this disadvantage.

The slip length is the smallest for fully diffuse reflection,
when the calculations give lS/l = 0.582 for 3D, in agreement
with [43,44], and lS/l = 0.637 for 2D fermions. The absolute
value of the relative deviation δlS/lS is the largest in this
case (however, less than 9%), and decreases with increas-
ing specularity. For angle-independent model, the exact lS
does not simply scale as (1 + r)/(1 − r) with respect to its
value at r = 0 but approaches the approximate value given
by Eq. (12). For rϕ = 1 − (1 − β ) sin ϕ, both |δlS|/lS and
the difference between 2D and 3D cases are very small. The
model rϕ = exp[−(γ −1 − 1) sin2 ϕ] shows sign inversion of
δlS: the approximate value of lS , which is the lower bound
of the exact solution for low specularity, becomes the upper
bound for higher specularity at γ � 0.12.

The smallness of δlS/lS justifies application of Eq. (12) in
the hydrodynamic BC (1). This conclusion has been tested
by calculating the distributions of current density j(y) and
electrochemical potential V (y) in a narrow 2D channel of
width L. The results obtained from a numerical solution of the
kinetic equation with the BC (3) [28] have been compared to
the approximate analytical results obtained from Eq. (7) with
the BC given by Eqs. (1) and (12), under the conditions of
hydrodynamic regime, le/l1 � 1 and le/L � 1. Several rep-
resentative plots are shown in Figs. 2 and 3. If le is estimated

FIG. 3. The same as in Fig. 2 for the channel with nonequal
partly diffuse boundaries described by rϕ = exp[−(γ −1 − 1) sin2 ϕ]
with γ = 1/3 (lS/l � 1.7) at y = 0 and γ = 2/3 (lS/l � 6.0) at
y = L. The inset shows the region near y = L and additional plots
(circles) for the model of angle-independent specularity parameter
with r = 0.49 (lS/l � 1.7) at y = 0 and r = 0.82 (lS/l � 6.0) at
y = L.

according to le � vh̄εF /T 2, the chosen ratios l1/L = 5 and
l1/le = 25 can be achieved in GaAs 2D channels with L �
1.5 μm at the densities n � 5 × 1011 cm−2 and temperatures
T � 40 K. For equal boundaries, typical profiles of j(y) and
V (y) [26–28] are realized (Fig. 2), whereas the boundaries
of different specularities lead to asymmetric profiles (Fig. 3).
In both cases, the hydrodynamic approximation shows good
agreement with the numerical solution at B = 0. For highly
diffuse boundaries (Fig. 2), the agreement is improved by
using the exact lS . Within the narrow Knudsen layers near
the boundaries, the difference between the hydrodynamic and
kinetic solutions is maximal, and the kinetic solution becomes
most sensitive to the choice of specularity parameter model
(Fig. 3, inset). The sign of this difference correlates with the
sign of δlS . Good agreement is also found at finite B, although
the slopes of j(y) expectedly differ near the boundaries within
the cyclotron diameter 2Rc which defines the effective Knud-
sen layer at Rc < l . A detailed discussion of the underlying
physics requires a solution of the problem of exact slip length
in the presence of a magnetic field, which is the subject for a
future study.

To summarize, a direct link between the BC for the dis-
tribution function and Maxwell’s BC for the drift velocity
is given by the approximate expression of the boundary slip
length lS through the specularity parameter characterizing
properties of the boundary scattering [Eqs. (10)–(12)]. For a
gas of charged fermions in magnetic field B, lS is B dependent
and anisotropic, reflecting the behavior of the viscosity. The
exact lS , calculated at B = 0 for several models of angle-
dependent specularity parameter, is within a few percent from
the approximate one and converges to it with increasing spec-
ularity [Fig. 1]. This finding, together with applications of
the results to Poiseuille flow [Figs. 2 and 3], proves that the
approximate expression for lS works much better than one
might initially expect.
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