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Many-body localization transition from flat-band fine tuning

Carlo Danieli ,1 Alexei Andreanov ,2,3 and Sergej Flach2,3

1Max Planck Institute for the Physics of Complex Systems, Dresden D-01187, Germany
2Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea

3Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea

(Received 22 April 2021; revised 11 January 2022; accepted 11 January 2022; published 28 January 2022)

Translationally invariant flatband Hamiltonians with interactions lead to a many-body localization transition.
Our models are obtained from single-particle lattices hosting a mix of flat and dispersive bands, and equipped
with fine-tuned two–body interactions. Fine-tuning of the interaction results in an extensive set of local conserved
charges and a fragmentation of the Hilbert space into irreducible sectors. In each sector, the conserved charges
originate from the flatband and act as an effective disorder inducing a transition between ergodic and localized
phases upon variation of the interaction strength. Such fine-tuning is possible in arbitrary lattice dimensions and
for any many-body statistics. We present computational evidence for this transition with spinless fermions.
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Introduction — The celebrated Anderson localization [1]
with additional interactions leads to a novel phase of matter
dubbed many-body localization (MBL). Efforts to understand
this phase generated an impressive body of work devoted to
the study of non-equilibrium quantum many-body systems.
Following the first pioneering papers [2–6], a large number of
MBL-related theoretical and experimental studies focused on
the interplay of disorder and interaction—as summarized in
Refs. [7,8]. Interestingly, a variety of diverse interacting sys-
tems were reported to enter MBL phases even in the absence
of disorder [9–12], from networks of Josephson junctions
[13] to Wannier-Stark many-body localization [14–16]. This
opened an active research quest dedicated to disorder-free
MBL. Ergodicity breaking in disorder-free setups can appear
due to the splitting of the Hilbert space into exponentially
large number of disconnected parts. It is induced by the pres-
ence of an extensive number of local conserved quantities.
Discussions relate to lattice models endorsing spin-duality
relations [17–19] or gauge invariance [20], a two-dimensional
quantum-link network [21], and a two-leg compass ladder
[22]. Examples of such splitting have been also found in
setups without any apparent extensive number of conserved
quantities, e.g., in systems conserving dipole moments [23]
or domain-wall numbers [24]. While first realizations of this
phenomenon have been recently emerging [25], the above
references utilize rather abstract models whose applicability
to experimental realizations might be far from trivial.

We use translationally invariant short-range flatband
Hamiltonian networks. Geometric frustration in these fine-
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tuned systems results in a mix of dispersionless (flat) and
dispersive Bloch bands. A hallmark is the existence of
compact localized (eigen)states (CLS) spanned over a finite
number U of unit cells. Flatband lattices and CLS have been
extensively studied over the last decades [26–28], and al-
though the vast majority of results concern single-particle
problems, e.g., lattice generator schemes [29–36]—flatbands
are progressively entering the realm of quantum many-body
physics. Even more importantly, a plethora of experimen-
tal studies using an impressive variety of physical platforms
were performed, which demonstrate the broad applicability of
the fine-tuning procedure [27]. Recently many-particles CLS
[37–39] and flatband-induced quantum scars [40–42] have
been introduced. Networks, which completely lack single-
particle dispersion (all bands flat), can completely suppress
charge transport with fine-tuned interaction [43–45], while
adding on-site disorder and interactions leads to conventional
MBL features [46]. We show that disorder free MBL needs
just one flatband and at least one dispersive band when ac-
companied with a proper interaction fine-tuning. Our results
explain recent reports on MBL-like dynamics for interacting
spinless fermions in particular flatband lattices [47].

Setup — We consider a translationally invariant many-
body Hamiltonian

Ĥ = Ĥsp + V Ĥint, Ĥsp =
∑

l

f̂l , Ĥint =
∑

m

ĝm (1)

with single-particle Ĥsp and interaction Ĥint parts written as
sums of local operators f̂l and ĝm. The integers l, m label unit
cells (with either same or different unit cell choices). Each unit
cell contains ν sites, and the spectrum of Ĥsp ν single-particle
bands. The local operators f̂l , ĝm are given by products of
annihilation and creation operators ĉl,a, ĉ†

l,a with 1 � a � ν.

We consider Ĥsp, which hosts a flat band EFBwhile the
remaining ν − 1 bands are dispersive. Our results generalize
to the case of multiple flatbands. Flatbands with short-range
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hopping have compact localized states (CLS), and we con-
sider the case where these eigenstates form an orthonormal
basis. Following Ref. [29], the original basis ĉl,a, ĉ†

l,a of Ĥsp

can be recast via local unitary transformations into a new
representation âl,a, â†

l,a in which Ĥsp turns into a sum of

two commuting components Ĥsp = Ĥf
sp + Ĥd

sp. In particular,
these components are defined over two disjoint sublattices F
and D formed by the a single-particle flatband and the ν − 1
dispersive bands respectively. In this detangled representa-
tion, the flatband component Ĥf

sp in terms of local operators
over sublattice F reads

Ĥf
sp = EFB

∑

l

â†
l,1âl,1. (2)

The dispersive component Ĥd
sp is expressed in the Bloch basis

â(†)
l,a = ∑

k e(−)ikl d̂ (†)
k,a for the annihilation (creation) operators

âl,a (â†
l,a) for 2 � a � ν in terms of local operators over sub-

lattice D

Ĥd
sp =

ν∑

a=2

∑

k

Ea(k) d̂†
k,ad̂k,a (3)

where {Ea(k)}νa=2 are the dispersive bands of Ĥsp .
We assume the interaction Ĥint in Eq. (1) to be two-body,

hence, the local operators ĝm are written as

ĝm =
ν∑

α,β,γ ,δ=1

Jαβγ δ ĉ†
m,α ĉ†

m,β ĉm,γ ĉm,δ + H.c. (4)

In the detangled representation of Ĥsp, the interaction Ĥint

splits in three components

Ĥint = Ĥf
int + Ĥd

int + Ĥdf
int (5)

where (i) the flatband component Ĥf
int is defined over sublat-

tice F with indices α, β, γ , δ = 1 in (4); (ii) the dispersive
component Ĥd

int is defined over sublattice D with 2 �
α, β, γ , δ � ν in (4); and (iii) the intra flat–dispersive com-
ponent Ĥdf

int is defined by all those terms in Eq. (4), which are
not accounted for by either Ĥf

int, Ĥd
int.

The Hamiltonian Ĥf
sp in Eq. (2) is formed only by particle

number operators n̂ = â†â and coined fully detangled (FD),
as introduced in Ref. [43]. Likewise, if we assume the coef-
ficients Jαβγ δ = Jαβδα,γ δβ,δ in one of the three components
Ĥf

int, Ĥd
int, Ĥdf

int in Eq. (5) for the correspondent subset of in-
dices, then that component is called FD—as a combination of
density operators n̂ only.

We first consider Hamiltonians Ĥ in Eq. (1) expressed in
the detangled basis of Ĥsp and with Ĥf

int, Ĥdf
int in Eq. (5) set

as fully detangled. This condition forbids particles to move
within sublattice F nor to move from sublattice F to D and
vice versa. Therefore particles are locked within the flatband
component F and Ĥ possesses an extensive set of local con-
served quantities q̂l = n̂l = â†

l âl for any l . These quantities
are simply the occupation numbers of the particles locked in
the flatband CLS. Consequently, the relevant Hamiltonian Ĥ
in Eq. (1) can be reduced to Ĥ = Ĥq + Ĥf

sp + V Ĥf
int. Indeed,

the components Ĥf
sp, Ĥf

int depend solely on the conserved
quantities {q̂l} and are therefore irrelevant for the particle

dynamics (on sublattice D ). The relevant Hamiltonian

Ĥq = Ĥd
sp + V Ĥd

int +
∑

m,β

ε̂m,β n̂m,β (6)

where ε̂m,β = V J1β q̂m governs the dynamics of interacting
particles in the sublattice D . The term ε̂m,β originates from
interaction between the particles in the flat and dispersive
bands—i.e., the intra flat-dispersive interaction component
Ĥdf

int—and consequently it depends on the values of the con-
served quantities {q̂l}. Hence, the particles locked in the
flatband component act as scatterers for the moving particles
in the dispersive component, inducing an effective disordered
discrete potential ε̂m,β whose strength is controlled by the
interaction strength V . Different realizations of ε̂m,β are gen-
erated by different initial conditions, e.g., the distribution of
the particles locked in CLS of the flatband component F .

The Hilbert space of the full Hamiltonian Ĥ in Eq. (1)
is fragmented: It contains irreducible sectors for any fill-
ing fraction δ, which are characterized by the the values
of the conserved quantities {ql = 〈ψ |q̂l |ψ〉}—similarly to,
e.g., Refs. [17–22]. In a given sector, the wave function de-
composes as |ψ〉 = |ψf〉 ⊗ |ψd〉, where |ψf〉 = |q1, . . . , qL〉
represents Mf = ∑

l�L ql particles locked in the flatband
component—i.e., in the CLS—with correspondent flatband
filling fraction δf = Mf/L. Meanwhile, the second vector |ψd〉
accounts for the remaining mobile particles evolving in the
dispersive component whose dynamics is governed by Ĥq (6)
with associated filling fraction δd. Both filling fractions δf and
δd result in the overall filling fraction δ = 1

ν
δf + ν−1

ν
δd. The

total number Tf of sectors depends on both δf, the system size
L, and the many-body statistics, e.g., for spinless fermions,
Tf = ( L

Mf

)
, while for bosons Tf = Mf

L. Indeed, for spinless
fermions ql = 0, 1 while for bosons 0 � ql � M f , which con-
sequently yield in these cases different value ranges for the
potential ε̂m,β in Eq. (6) (i.e., different potential strengths).

For a fixed pair of values (δf, δd), the flatband filling factor
δf defines statistical properties of the effective potential ε̂m,β

in (6), and consequently the behavior and the properties of the
mobile interacting particles in the dispersive component. The
interaction V and the two filling fractions δf, δd are the three
control parameters, which can drastically change the transport
properties of the considered system. In particular, varying V
and δd can lead to strong correlations, while varying V and
δf will control the strength of effective disorder. We therefore
expect MBL-like properties, despite the fact that the overall
system is translationally invariant. Our considerations apply
to systems with any number of single-particle bands ν, in any
spatial dimension, and are not restricted to specific types of
many-body statistics. Finally we notice that once the mapping
is done, our model is no different from the more conventional
models with discrete disorder. In particular we expect that dis-
order realisations are overwhelmingly dominated by typical
configurations with similar properties, while atypical disorder
realisations—ordered, etc—have no noticeable contribution to
the properties of the model.

Signatures of many-body localization transition — As an
example we consider spinless fermions in a one-dimensional
network with two sites per unit cell, ν = 2. The Hamiltonian
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FIG. 1. (a) The network [(7) and (8)] with Ĥsp (straight black)
and Ĥint (curved green). (b) Detangled Ĥ network with Ĥsp (straight
black), Ĥd

int [curved red (r)], Ĥdf
int [curved blue (b)] and Ĥf

int [curved
orange (o)]. (c) Band structure of Ĥsp (7), with the inset indicating
the nonzero amplitude locations of an E = 0 FB CLS (black-filled
circles). (d) Probabilities Pf(εl = 0) (orange), Pf(εl = V ) (blue),
Pf(εl = 2V ) (magenta), and standard deviation σf (red dashed) of ε̂l

in Eq. (10) for V = 1 vs δf.

Ĥ = Ĥsp + V Ĥint reads

Ĥsp =
∑

l

−[(â†
l + b̂†

l )(âl+1 + b̂l+1) + H.c.], (7)

Ĥint =
∑

l

[n̂a,l + n̂b,l ][n̂a,l+1 + n̂b,l+1]. (8)

The actions of Ĥsp and Ĥint are shown in Fig. 1(a) in
black-straight lines and green curves respectively. Both
single-particle hoppings and interactions connect all sites
in neighboring unit cells. Nevertheless the single-particle
spectrum of Ĥsp consists of one dispersive band E (k) =
−4 cos(k) and one flatband EFB = 0 with its orthonormal CLS
shown in Fig. 1(c).

The local unitary transformation âl = ( p̂l + f̂l )/
√

2 and
b̂l = ( p̂l − f̂l )/

√
2 introduced in Ref. [29] recasts the Hamil-

tonian Ĥsp (7) as Ĥsp = Ĥf
sp + Ĥd

sp, where the dispersive part

reads Ĥd
sp = −2

∑
l [ p̂†

l p̂l+1 + H.c.], while the flatband com-

ponent Ĥf
sp = 0. The dispersive component Ĥd

sp is shown in
Fig. 1(b) with black horizontal line. On the other hand, the
interaction Ĥint (8) is invariant under the unitary rotation.
In the detangled basis (pl , fl ), the interaction Ĥint breaks
down into three components (5): Ĥf

int = ∑
l n̂ f ,l n̂ f ,l+1, Ĥd

int =∑
l n̂p,l n̂p,l+1, and Ĥdf

int = ∑
l [n̂p,l n̂ f ,l+1 + n̂ f ,l n̂p,l+1], which

are shown in Fig. 1(b) with orange, red, and blue curves
respectively.

The relevant Hamiltonian Ĥq (6) governing the dynamics
of the particles evolving in the dispersive component reads

Ĥq =
∑

l

[ε̂l n̂p,l − 2( p̂†
l p̂l+1 + H.c.) + V n̂p,l n̂p,l+1], (9)

ε̂l = V (q̂l+1 + q̂l−1), (10)

with n̂p,l = p̂†
l p̂l . The conserved quantities q̂l = f̂ †

l f̂l take the
values {0, 1}—i.e., each q̂l accounts for the presence/absence
of a spinless fermion locked at the lth flatband CLS fl . The

potential ε̂l (10) follows from the intra flat-dispersive interac-
tion component Ĥdf

int, which represent the interaction between
the mobile particles with those locked in the flatband CLS.
In other words, Ĥq (9) describes interacting spinless fermions
in a one-dimensional chain with a random ternary potential
εl ∈ {0,V, 2V } induced by the extensive set of conserved
quantities q̂l . Ternary disorder with equal probabilities 1/3
has been studied in Ref. [48] where an MBL transition was
reported for the Heisenberg spin-1/2 chain by varying the
strength of interaction and disorder independently. Our case is
trickier, since both disorder and interaction strengths are tuned
by the same control parameter V in Eq. (9). Further, the prob-
abilities of εl = {0,V, 2V } depend on the filling fraction δf of
the flatband component. Indeed, at a given site fl the proba-
bility that q̂l = 0 is 1 − δf, while the probability that q̂l = 1
is δf. Consequently, as εl = 0 occurs when both q̂l±1 = 0,
then Pf(εl = 0) = (1 − δf )2. Analogously follows that Pf(εl =
2V ) = δ2

f , while Pf(εl = V ) = 2δf(1 − δf ). These three curves
are shown in Fig. 1(d) in solid lines, where we also include
in dashed line the standard deviation σf = V

√
2δf(1 − δf ) of

εl from the average potential 〈εl〉l = 2V δf [49]. Note as well
that equal probabilities 1/3 are never realized for any filling
fraction value.

We identify the transition between ergodic (thermal-
ized, metallic, delocalized) and nonergodic (nonthermal-
ized, insulating, localized) regimes of our system by
analyzing the energy-resolved adjacent gap ratio r (n) =
min(s(n), s(n+1))/ max(s(n), s(n+1)) with s(n) = En − En−1 for
the eigenenergies En [50]. The expectation is that the ergodic
regime corresponds to the Gaussian orthogonal ensemble
(GOE) with rGOE = 0.5307 [51]. At variance, the nonergodic
regime should yield a Poisson distribution of level spacings
with rPoisson ≈ 0.3863.

We diagonalize Ĥq in Eq. (9) for L = 16 sites with open
boundary conditions averaging over 200 realizations at fixed
filling fractions δf and δd—i.e., over 200 sectors of the Hilbert
space [52]. Following Ref. [53], the spectrum is normalized
as ε(En) = (En − Emin)/(Emax − Emin) for each realization,
divided into 50 intervals, and the mean adjacent gap ratio
〈r〉 is computed for each segment separately. The results are
reported in Figs. 2(a)–2(d). In all cases, the MBL transition
emerges at large enough interaction strength V � 1. Note that
the MBL transition occurs for different values of V within
different irreducible sectors of the Hilbert space characterized
by different pairs of filling fractions (δf, δd) despite sharing
the same global filling δ—e.g., Figs. 2(b) and 2(c).

Our construction also explains the nonergodic dynamics
observed for a ν = 3 case with spinless fermions in Ref. [47].
The model is shown in Fig. 3(a) and it is described by the
Hamiltonian Ĥ = Ĥsp + V Ĥint with

Ĥsp = −
∑

l

[(â†
l + b̂†

l )(ĉl + ĉl+1) + H.c.], (11)

Ĥint =
∑

l

[n̂a,l + n̂b,l ][n̂c,l + n̂c,l+1] + n̂a,l n̂b,l . (12)

The single-particle spectrum of Ĥsp consists of two dispersive
bands E1,2(k) = ±2

√
2 cos(k/2) and a flatband E = 0 with

orthonormal CLS. Detangling local unitary transformations
for the single-particle Hamiltonian have been reported in Ref.
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FIG. 2. [(a)–(d)] Energy resolved mean adjacent gap ratio 〈r〉
vs (ε,V ) for model (9) and (10). (a) δd = 0.5; δf = 0.5; (b) δd =
0.25; δf = 0.5; (c) δd = 0.5; δf = 0.25; (d) δd = 0.25; δf = 0.25. (e)
〈r〉 vs V for ε = 0.5 at δf = 0.5 (orange) and δf = 0.25 (blue) for
δd = 0.5. (f) Same as (e) for δd = 0.25. The system size L = 16 for
all cases.

[29]. For spinless fermions, the resulting system is shown
in Fig. 3(b). In the new basis the product terms in Eq. (12)
decompose into Ĥf

int = 0, Ĥd
int = ∑

l n̂p,l (n̂c,l + n̂c,l+1), and
Ĥdf

int = ∑
l n̂ f ,l (n̂c,l + n̂c,l+1)—defining the Hamiltonian

Ĥq =
∑

l

[ε̂l n̂c,l −
√

2( p̂†
l ĉl + p̂†

l ĉl+1 + H.c)

+V n̂p,l (n̂c,l + n̂c,l+1)] (13)

with the potential ε̂l = V (q̂l−1 + q̂l ). Interestingly, the terms
n̂a,l n̂b,l result in p̂†

l p̂†
l f̂l f̂l + H.c in addition to the Hubbard

interaction terms on p, f sites, which could violate the fine-
tuning. These terms need more than one particle per state and
therefore disappear for spinless fermions. Consequently they
do not enter Ĥq in Eq. (13). However such terms will appear
for example bosons and spinful fermions, and will move pairs
of particles between sublattices F to D . Consequently the
quantities q̂l will be no longer conserved for spinful fermions
or bosons, and will wash out the irreducible sectors in the
Hilbert space of Ĥ . In Figs. 3(c) and 3(d) we plot the energy-
resolved mean adjacent gap ratio 〈r〉 for two pairs of filling
factors δd and δf upon increasing the interaction strength V .
We observe signatures of an MBL transition for large V � 1.
The transition is further visualized in Fig. 3(e) where we plot
the energy-resolved 〈r〉 versus V around ε = 0.5.

Conclusions — To conclude, we showed that disorder free
many body localization is obtained for flatband networks with
fine-tuned interaction. The flatband supports compact local-
ized states, and the fine-tuning locks particles in these states

FIG. 3. (a) The network [(11) and (12)] with Ĥsp (straight black)
and Ĥint (curved green). (b) Detangled network (13) with Ĥd

int [red
(r)] and Ĥdf

int [blue (b)]. [(c)–(d)] Energy resolved mean adjacent gap
ratio 〈r〉 versus (ε,V ) for (c) δd = 0.5; δf = 0.5; (d) δd = 0.25; δf =
0.5. (e) 〈r〉 vs V around ε = 0.5 at δd = 0.5 (blue) and δd = 0.25
(orange) for δf = 0.25. The system size L = 16 for all cases.

even in the presence of interaction. These locked particles turn
into scatterers for particles from dispersive states. These fam-
ilies have been obtained by fine-tuning two–body interaction
terms on single-particle lattices that host dispersive bands and
flatbands with orthonormal sets of CLS. We showed that these
scatterers are equivalent to conserved quantities and enter
the Hamiltonian of the system inducing an effective disorder.
We studied numerically two sample cases, Eqs. (7), (8) and
Eqs. (11), (12), for spinless fermions in 1D, confirming that
such disorder indeed induces signatures of many-body local-
ization transition upon changing the interaction strength. We
performed the simulations for a single size L = 16 for the two
examples considered. For generic models featuring MBL one
usually has to consider several system sizes and perform finite
size scaling to confirm the transition. We note that the system
sizes available for exact or even sparse diagonalisation might
not be enough to confirm the presence of the MBL transition
[54]. In our case, however, the effective models (6) are es-
sentially the standard models studied in the MBL community,
but with two differences: (i) the disorder is discrete—this is
not relevant, as shown in Ref. [48]; (ii) the interaction and the
disorder scale with the same interaction strength parameter
V . This suggests that the signatures of the MBL transition
are to be expected, based on all the previous studies of such
models. However (ii) makes our models only explore a single
line on the phase diagram of a typical MBL model, potentially
allowing to avoid crossing the phase boundary. Under this
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condition, i.e., mapping to the standard MBL model, it is
justified to consider a single system size: A single size is
enough for us to check whether the variation of the parameter
V , allows to cross the phase boundary to the possible MBL
phase. The finite-size scaling in our model would then be
similar to the conventional MBL models if the crossing is
present.

The proposed fine-tuning scheme applies in any lattice
dimensions and for any type of many-body statistics. We
therefore arrive at a systematic generic generator of quantum
many-body systems characterized by an extensive number of
local conserved operators, which result in ergodicity break-
ing phenomena. Another important extension is that we can
abandon the translational invariance of Ĥ and consider local
rotations and/or the energies Ea in Eq. (2) unit cell dependent;
one can also consider flatband Hamiltonians Ĥsp without or-
thonormal sets of CLS [55].

Our findings explain recent spinless fermion results for
a rhombic lattice considered by Daumann et al. [47] (or-
thonormal set of CLS) and hint those for a sawtooth ladder
considered by Khare et al. [56] (nonorthonormal set of CLS).
It is straightforward to observe that for total filling frac-
tion δ � 1/ν there are exact eigenstates with all particles

confined to single-particle CLS. These eigenstates coexist
with extended eigenstates characterized by volume-law en-
tanglement, and become flatband many-body quantum scars
[39–42]. Many-body quantum scars are related to weak er-
godicity breaking phenomena [57–59].

The above obtained fine-tuned models can be both ap-
pealing from a purely mathematical point of view, and for
experimentally relevant setups. Indeed, flatband networks
have been indeed experimentally realized in diverse platforms,
such as ultracold atoms [60] and photonic lattices [61–63]—
see also [26–28]. Flatband systems with orthonormal CLS
allow the energy levels EFBin Eq. (2) to be freely tuned. They
can thus either cross the dispersive bands Ea(k) in Eq. (3) or
be gapped away from dispersive bands. This freedom allows
to tune the flatband energy at the Fermi level, and to load the
particles into the flatband states prior reaching the complete
filling of dispersive bands in an experimentally achievable
way.

This work was supported by the Institute for Basic Science
(Project No. IBS-R024-D1). We thank I. Khaymovich for
helpful discussions.
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