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Dynamical exponent of a quantum critical itinerant ferromagnet: A Monte Carlo study
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We consider the effect of the coupling between two-dimensional (2D) quantum rotors near an XY ferromag-
netic quantum critical point and spins of itinerant fermions. We analyze how this coupling affects the dynamics of
rotors and the self-energy of fermions. A common belief is that near a q = 0 ferromagnetic transition, fermions
induce an �/q Landau damping of rotors (i.e., the dynamical critical exponent is z = 3) and Landau overdamped
rotors give rise to non-Fermi liquid fermionic self-energy � ∝ ω2/3. This behavior has been confirmed in
previous quantum Monte Carlo (QMC) studies. Here we show that for the XY case the behavior is different.
We report the results of large-scale quantum Monte Carlo simulations, which show that at small frequencies
z = 2 and � ∝ ω1/2. We argue that the new behavior is associated with the fact that a fermionic spin is by
itself not a conserved quantity due to spin-spin coupling to rotors, and a combination of self-energy and vertex
corrections replaces 1/q in the Landau damping by a constant. We discuss the implication of these results to
experiments.
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I. INTRODUCTION

In the study of strongly correlated systems, quantum criti-
cality in itinerant fermionic systems is of crucial importance
because it offers a pathway towards non-Fermi liquids and un-
conventional superconductivity (see for example Refs. [1–3]
and references therein). In this study, we focus on ferromag-
netic quantum critical points in itinerant fermion systems,
where non-Fermi liquid (nFL) behaviors have been observed
in the quantum critical region in a variety of materials, such
as the Kondo lattice materials UGe2 [4], URhGe [5], UCoGe
[6], YbNi4P2 [7] and more recently CeRh6Ge4 [8,9], where
in the latter a pressure-induced quantum critical point (QCP)
with the characteristic power-law nFL specific heat and resis-
tivity is reported. This experimental progress poses a series
of theoretical questions on the origin and characterization of
these nFL behaviors. In particular, it is of crucial importance
to understand the fundamental principles that govern these
QCPs and to identify the universal properties that are enforced
by these principles.

On the theoretical side, extensive efforts have been de-
voted to this topic in the past few decades. Based on the
Hertz-Millis-Moriya theory [10–12], the dynamic critical ex-
ponent of an itinerant ferromagnetic QCP, or indeed any
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isotropic long-wavelength collective excitation with order-
ing vector q = 0, is z = 3. The extension of the theory to
study fermionic properties [13–17], predicts that fermions
near such QCPs are overdamped, with fermionic self-energy
scaling as � ∝ ω2/3

n , where ωn represents the Matsubara fre-
quency. The fact that this power is less than 1 implies that
the system is an nFL at low enough frequencies. Within
the one-loop framework, these conclusions and scaling ex-
ponents are universal for all itinerant ferromagnetic QCPs.
When higher-order contributions are taken into account, addi-
tional phenomena may appear, e.g., first-order behavior, spiral
phases, and low-frequency scaling violations [17–25], as well
as superconductivity. In particular, if the order parameter (OP)
is nonconserved, higher-order processes modify the damping
of the bosons in the long-wavelength limit, and usually change
the value of z to 2 [26,27].

With the recent development in quantum Monte Carlo
(QMC) techniques [28–32], it has become possible to simu-
late such fermionic systems at large scale in the close vicinity
of the quantum critical point [33–35]. Such simulations offer
an unbiased and accurate numerical measurement to examine
and to test these theoretical ideas. In recent QMC studies on
the itinerant (2 + 1)d ferromagnetic Ising quantum critical
point, numerical results confirm the universal scaling relation
predicted by the z = 3 theory [31,36]. The fermionic self-
energy, properly extrapolated to T = 0 [36,37], agrees with
the expected non-Fermi liquid ω2/3 behavior at low energies.

2469-9950/2022/105(4)/L041111(6) L041111-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0853-1933
https://orcid.org/0000-0001-5751-8837
https://orcid.org/0000-0003-0088-4259
https://orcid.org/0000-0001-9771-7494
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.L041111&domain=pdf&date_stamp=2022-01-24
https://doi.org/10.1103/PhysRevB.105.L041111


YUZHI LIU et al. PHYSICAL REVIEW B 105, L041111 (2022)

In this Letter, we study a ferromagnetic QCP in which the
spin OP is of XY type. The key difference between an Ising-
type and XY ferromagnetic QCP is that in the latter case a spin
of an itinerant fermion is not separately a conserved quantity
in the presence of a spin-spin interaction with a rotor, and the
same is true for a rotor.

From large-scale QMC simulations, we show that instead
of z = 3 and � ∝ ω2/3

n , the scaling exponent becomes z =
2, and fermion self-energy becomes � ∝ ω1/2

n . The mecha-
nism driving this change is the form of the boson damping
∝ |�n|/�(q,�n). We find that �(q,�n) for conserved and
nonconserved OPs is very different, as � is constrained by
a Ward identity in the conserved case only [26,27,38,39]. In
our case we find �(q,�n) ≈ �0 is constant over a wide range
of temperatures, frequencies and momenta, similar to that in
an antiferromagnet. Such damping arises from scattering pro-
cesses beyond the one-loop order and is generally associated
with noncancellation between self-energy and vertex correc-
tions (including Aslamazov-Larkin-type terms) [27]. Once
this is introduced into the Hertz-Millis-Moriya framework, the
bosonic dynamical exponent becomes z = 2, and the fermion
self-energy gets modified to � ∝ ω1/2

n .

II. MODEL AND PHASE DIAGRAM

We simulate lattice system composed of two identical
fermion layers and one rotor layer as shown in Fig. 1(a),
and the Hamiltonian is Ĥ = Ĥf + Ĥqr + Ĥint. The fermion
part of the Hamiltonian is Ĥf = −t1

∑
〈i, j〉σ,λ ĉ†

iσλĉ jσλ −
t2

∑
〈〈i, j〉〉,σ,λ ĉ†

iσλĉ jσλ + H.c., where t1 = 1, t2 = 0.2, 〈〉 (〈〈〉〉)
denote (next) nearest neighbor, σ =↑ or ↓ is the spin in-
dex, and λ = 1 or 2 labels the two fermion layers. For the
rotor layer, we define a quantum rotor model (QRM) on
the same square lattice with a Hamiltonian Ĥqr = U

2

∑
i L̂2

i −
tb

∑
〈i, j〉 cos(θ̂i − θ̂ j ), where L̂i and θ̂i are the angular momen-

tum and polar angle of the rotor at site i, respectively. In the
simulations, we set tb = 1 and use the ratio of U/tb to tune
the system through the QCP. Without fermions, the phase
diagram of the rotor model is well known [32]. It contains two
phases: paramagnetic and ferromagnetic. At finite tempera-
tures, the ferromagnetic phase shows quasi-long-range order
and the thermal phase transition is Berezinskii-Kosterlitz-
Thouless (BKT) type. At T = 0, the ferromagnetic order
becomes long range and the quantum phase transition belongs
to the (2 + 1)d XY universality class, which occurs at a QCP
at (U/tb)c = 4.25(2) [32]. The last term of the Hamiltonian
Ĥint couples a fermion spin ferromagnetically to a quantum
rotor at the same site:

Ĥint = −K

2

∑
i

ĉ†
i σĉi · θ̂i, (1)

where σ represents fermion spin, and θ̂i = (cos θi, sin θi ). As
we noted above, this coupling term breaks the spin symmetry
for, separately, the fermions and the rotors, replacing it with
a rotation symmetry of the total spin (rotors + fermions). We
set the coupling strength to K = 1. We denote this model the
XY-spin-fermion model.

In a recent study [35], we used a similar model with
K = 4 to study the superconducting properties of this model,

FIG. 1. Model and phase diagram. (a) The lattice model. The
two identical layers of fermions (λ = 1, 2) with nearest-neighbor
and next-nearest-neighbor hoppings t1 = 1 and t2 = 0.2 couple to the
quantum rotor model in the middle layer with on-site coupling K =
1. As one tunes the rotors towards QCP, the entire system develops
nFL behavior. (b) T − U phase diagram. The QCP is located at Uc =
4.30(3), and when U < Uc the system acquires ferromagnetic (quasi)
long-range order below the TBKT boundary, which extrapolates to
Uc, as denoted by the black solid line, with the finite temperature
transition points determined in SM [40]. Panels near the top part of
(b) show the Fermi surfaces, obtained from the dynamical Green’s
function G(k, τ = β/2) of 12 × 12 size lattice with β = 1/T = 24,
which correspond to the I(U = 4.0), II(U = 4.3), and III(U = 4.5)
regions of the phase diagram. In the ferromagnetic phase, the Fermi
surface splits. In the vicinity of the QCP, an nFL phase emerges due
to strong quantum critical fluctuations, and the Fermi surface smears
out. In the disordered region, the Fermi surface is close to that of the
free system (see SM [40]).
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and found a pseudogap region and a superconducting dome
around the QCP. While interesting on their own, these phe-
nomena preempts the nonsuperconducting quantum-critical
behavior of the system. In this work, we suppress super-
conductivity by utilizing a smaller value of K , driving the
superconducting phase to unreachably low temperatures. This
allows us to closely study the normal-state critical properties
in the vicinity of the QCP, and reveal a wealth of interesting
features.

We plot the phase diagram of this model in Fig. 1(b). Simi-
lar to the QRM, the XY-spin-fermion system also exhibits two
phases, paramagnetic and ferromagnetic, although the QCP
now moves from Uc = 4.25(2) of the QRM to Uc = 4.30(3)
here. More importantly, the presence of fermionic degrees of
freedom has crucial impact on the quantum criticality, altering
the dynamical exponent of the rotor propagator. In return,
coupling to soft rotor tends to make the fermions incoherent,
with non-Fermi liquid self-energy.

III. RESULTS AND ANALYSIS

To study the scaling behavior of critical fluctuation,
we measure the dynamic susceptibility of quantum ro-
tors, χ (q,�n) = 1

L2

∫
dτ

∑
i j ei�nτ−iqri j 〈θi(τ )θj(0)〉 at Uc =

4.30(3) and low temperatures, where �n = 2nπT is the
bosonic Matsubara frequency. At small �n and q, we find
the momentum dependence of χ−1 to scale with q2 (see
Supplemental Material (SM) [40]) as expected. However,
in the frequency dependence, we observe a completely dif-
ferent behavior from the prediction of Hertz-Millis-Moriya
theory. For a system with a conserved OP, it is well known
that the Landau damping takes a singular form of �n√

|q|2+�2
n

,

and the q = 0 susceptibility exhibits a discontinuity at zero
frequency, i.e., lim�n→0[χ−1(q = 0,�n) − χ−1(q = 0,�n =
0)] is finite. This form is the base for z = 3 dynamical critical
exponent in the Hertz-Millis-Moriya theory, which has been
observed in QMC studies of the Ising QCP [31]. In contrast,
our simulation exhibits no such singularity. Instead, as shown
Fig. 2, which contains two representative QMC results for
q = (0, 0) and (4π/L, 0), χ−1(q,�n) are smooth function of
�n without any discontinuity. This absence of singularity and
discontinuity is our key observation, in direct contrast to the
Hertz-Millis-Moriya theory as well as numerical results in the
Ising-spin-fermion model [31]. Detailed data analysis reveals
that within numerical uncertainty, χ−1(0,�n) − χ−1(0, 0)
scales linearly with �n at low frequency (the fit in Fig. 2),
and thus the scaling behavior of the dynamic susceptibility
indicates that z = 2, analogous to an itinerant QCP in which
an order breaks the translational symmetry (e.g., antiferro-
magnetic QCPs) [37,41].

We argue that this discrepancy is due to the nonconserva-
tion of the OP in the XY-spin-fermion model. At one-loop
level, the correction to a bosonic propagator comes from a
polarization bubble of free fermions, and the result is the
classic Landau damping ∝ �n√

v2
F |q|2+�2

n

. For free fermions, the

Landau damping arises whether or not the OP is conserved.
Thus, at weak enough coupling, a discontinuity exists even
for a nonconserved OP, as seen in, e.g., simulations of nematic
QCPs [42]. For a conserved OP, this form holds at all orders

FIG. 2. Inverse bosonic susceptibility versus frequency at the
QCP with q = (0, 0) and (4π/L, 0). log-log plot for QMC data
and fit the data in the range of log(�n) < 0 by the black line.
a1 = 1.14 ± 0.2, b1 = −1.53 ± 0.1 are fitting parameters and a1 is
very close to 1, which means the linear behavior at the small range
0 < �n < 1.

in perturbation theory due to a Ward identity [23,27,43,44].
However, as we mentioned, in our XY-spin-fermion model,
neither σ x nor σ y component of the fermion spin is con-
served. In this situation, vertex and self-energy corrections
to fermion polarization due to spin-spin coupling to rotors

replace 1/

√
v2

F |q|2 + �2
n by a constant �0, giving rise to

damping ∝ �n/�0 + corrections [26,27]. This changes the
dynamical critical exponent to z = 2.

The change in z has an important consequence for the
non-Fermi liquid fermion self-energy, which now must scale
as ω1/2, in analogy to that for fermions at the hot spots of an
antiferromagnetic QCP [16,41]. We verify this in our QMC
data. Because simulations are performed at finite temperature
with discrete Matsubara frequencies, a thermal contribu-
tion (corresponding to processes with zero internal bosonic
Matsubara frequency) needs to be deducted from the fermion
self-energy, in order to expose the nFL behavior. Procedures
for this deduction of thermal background have been developed
in Refs. [36,37], which we follow here (see SM [40] for
details). In the temperature range of our QMC simulations
the fermionic self energy remains small, and the fermions
remain in a Fermi liquid state, so that the thermal contribution
to fermion self-energy can be computed within Fermi liquid
theory. It is

�(kF , ωn) = �T (ωn) + �Q(ωn) = α

ωn
+ �Q(ωn), (2)

where ωn is the Matsubara frequency and �T (�Q) is the
thermal (quantum) part of the self-energy. The thermal part
scales as �T ∝ 1/ωn, while the quantum part is the T = 0
fermion self-energy,

�Q = ḡσ (ωn)

(
ωn

ωc

)1/2

u

(
ωn

ωc

)
(3)
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FIG. 3. Fermion self-energy. (a) �(kF , ωn) from QMC at the
QCP, here kF is along the (π, π ) direction. The black line shows
the thermal contribution, which scales as α/ωn, α = 0.01705.
(b) The quantum part of fermionic self-energy at QCP (after subtract-
ing thermal contributions). The black line shows theory prediction of
the zero-temperature fermion self-energy [�Q(ωn)], and the dashed
line is its low-frequency asymptotic form of ω1/2.

with σ (ωn) being the sign function and

u(z)=
∫ ∞

0

dxdy

4π2

1

x2 + y

⎛
⎝ σ (y + 1)√

1+( y+1
x )2z2

− σ (y − 1)√
1 + ( y−1

x )2z2

⎞
⎠,

(4)

where the ωc = κυ2
f and u(z) → 1

2π
when z → 0. The value

of the coefficient ḡ is given in the SM [40]. At small ω, the
quantum part scales as �Q ∝ ω1/2.

We plot the fermion self-energy obtained from the QMC
simulation at the QCP for the Fermi wave vector kF along the
diagonal direction (Fig. 3). Because �T = α/ωn and �Q ∝√

ωn, at low frequency, the self-energy is dominated by the
thermal part. In Fig. 3(a), indeed the low-frequency data ex-
hibits 1/ωn scaling (solid line), and the value of α can be
obtained via numerical fitting. In Fig. 3(b), we subtract the
thermal part, utilizing this numerical fitted α, and obtain �Q.
We also show the theoretical prediction for �Q [Eq. (3)],

which agrees nicely with the QMC data. We emphasize that
the data analysis only utilizes one fitting parameter (α), which
is determined using only low-frequency data points, while
good agreement is obtained for a large frequency window.
As mentioned early on, the quantum part is the fermion self-
energy at T = 0, and it scales as ω1/2 at low frequency, and
this �Q ∝ ω1/2 asymptotic form is shown as the dashed line
in Fig. 3(b).

IV. DISCUSSION

We showed numerically that the ferromagnetic fluctuations
have critical scaling z = 2 and linear in frequency damping,
giving rise to ω1/2

n fermionic self-energy. The deviation from
the expected z = 3 scaling and ω2/3

n self-energy, is because
Landau damping results from a delicate cancellation between
scattering processes with different numbers of collective exci-
tations, i.e., different loop order in a diagrammatic expansion
[38,43,45]. Such cancellations occur only for a conserved OP,
which in our system is the total spin, not separately the rotor
spin or the fermion spin. As a result, the damping term in
the rotor propagator is �n/�0. For a purely fermionic system
with a nonconserved OP (e.g., a nematic one), the dominant
contribution to �0 comes from thermally broadened fermions,
in which case �0 ≈ 2�T . Such behavior has been seen in
previous QMC studies [35,37]. In the present case, a finite
�0 likely arises from the noncancellation between scattering
processes involving different numbers of rotor propagators.
We note that the model studied in Ref. [35] with K = 4 and
the model studied here with K = 1 should in principle belong
to the same universality class. However, the huge difference
in energy scales between the models means we cannot con-
clusively connect the two phase diagrams, and we leave such
an investigation to a further systematic study.

On the experimental side, whether the OP is conserved
(Ising-like) or not (XY-like), depends on the structure (e.g.,
strength and sign) of the spin-orbit (SO) coupling. Thus, our
results indicate that SO couplings play a crucial role here
and dictate the scaling exponents of such QCPs, as well as
the associated non-Fermi liquids. In materials with strong
XY anisotropy, we expect, near a QCP, z = 2 and � ∝ ω1/2.

The values of critical exponent have direct impact on the
bosonic contribution to the specific heat. In two dimensions,
for QCPs with conserved OPs, critical fluctuations gener-
ates a sublinear specific heat CV ∝ T 2/3 (with z = 3) [15],
which dominates over the linear T contribution from the
fermions. For nonconserved OPs, because z = 2, this specific
heat scales as CV ∝ T (up to logarithmic corrections), same as
the fermion contribution. Thus, experimentally, these two uni-
versality classes can be distinguished. For three-dimensional
(3D) systems, this specific heat anomaly is CV ∝ T ln(1/T )
for QCPs with conserved OPs [11] and CV ∝ T 3/2 if the
OP is nonconserved. Notice that CV ∝ T 3/2 is a sublead-
ing correction to the fermion contributions of CV ∝ T , and
thus it can be easily distinguished from the CV ∝ T ln(1/T )
anomaly of the conserved case. In addition to specific heat,
critical fluctuations and non-Fermi-liquid behavior generate
other experimental signatures, such as transport, spectroscopy,
x-ray/neutron scatterings, magnetic resonance, etc. In QMC
simulations, these physical observables can all be measured,
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utilizing analytic continuations to convert imaginary time
and Matsubara frequencies to real time and frequencies
[35,46,47]. Such calculations will be performed in future
studies, which can provide important guidance and insights
for experimental studies in variety of quantum magnets, such
as UGe2 [4], URhGe [5], UCoGe [6], YbNi4P2 [7], and
CeRh6Ge4 [8,9].
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