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Two-particle Berry phase mechanism for Dirac and Majorana Kramers pairs of corner modes
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We uncover an alternative two-particle Berry phase mechanism to realize exotic corner modes in second-order
topological insulators (TIs) and topological superconductors (TSCs) with time-reversal symmetry. We show
that the nontrivial pseudospin textures of edge states in two different types of two-dimensional TIs give rise
to different two-particle geometric phases in the particle-hole and particle-particle channels, respectively, for
which the edge mass domain walls or intrinsic π junctions emerge across corners when an external magnetic
field or s-wave superconductivity is considered, hosting Dirac or Majorana corner modes. Remarkably, with
this mechanism we predict the Majorana Kramers pair of corner modes by directly coupling the edge of a
type-II time-reversal invariant TI to a uniform s-wave SC, in sharp contrast to previous proposals which rely on
unconventional SC pairing or a complex setting for a fine-tuned SC π junction. We find Au/GaAs(111) to be a
realistic material candidate for realizing such a Majorana Kramers pair of corner modes.
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Introduction. Topological phases have generated great
interest in the past decades [1–3]. Recently, higher-order
topological insulators (TIs) and topological superconductors
(TSCs) were proposed [4–10]. An nth-order TI (TSC) in
d dimension (dD) features topologically protected gapless
states on its (d − n)D boundary, but is gapped elsewhere.
For example, a 2D second-order topological insulator (SOTI)
hosts in-gap modes at the corners, while both its 2D bulk and
1D edges are gapped [11,12]. The physics of corner modes is
readily understood from the perspective of Dirac equations:
The original helical edge states of a 2D time-reversal (TR)
invariant TI are gapped by a sign-changing Dirac mass, lead-
ing to the corner modes at the mass domain walls [13–15].
The same picture applies to the case of 2D second-order
topological superconductors (SOTSCs).

While interest has grown rapidly in the higher-order topo-
logical phases, the experimental realization of such phases
in solid materials is rare, although various interesting the-
oretical schemes have been proposed [8,11,12,16–23]. In
comparison with higher-order topological insulators, realizing
superconducting counterparts is usually even more difficult
[24–32]. In particular, for second-order time-reversal (TR)
invariant TSCs which host Majorana Kramers pairs (MKPs)
of the corner modes, the existing proposals rely on either the
coupling of TI helical edge states to unconventional super-
conductivity [33,34] or complex settings for fine-tuned SC π

junctions [35–37]. The MKPs obey the symmetry-protected
non-Abelian statistics, manifesting a new type of non-Abelian
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anyon [38–44]. Although currently very scarce, the search
for experimental schemes to realize MKPs [45], is highly
significant and of broad interest.

In this Letter, we propose a fundamental mechanism by
introducing an alternative concept of a two-particle Berry
phase to characterize and realize topological corner modes in
second-order topological phases. We show that two different
scenarios of Berry phases arise from the pseudospin textures
of edge states [46] in two different types of 2D TIs, leading
to sign changes in the gap that opens at the edge and across
corners when an external magnetic field or superconductivity
is applied. In the SOTI phase, the mass domain wall emerges
and originates from the two-particle Berry phase of a particle-
hole channel, leading to the transition from a quantum spin
Hall (QSH) to SOTI phase by applying a uniform in-plane
magnetic field. In the SOTSC phase, intrinsic π junctions
emerge at the corners, resulting from the two-particle Berry
phases of the particle-particle channel (Cooper pair), giving
rise to MKPs of the corner modes with TR symmetry. Re-
markably, with this mechanism we predict that the MKPs can
be realized by directly superposing a type-II TI on a uniform
s-wave SC, in sharp contrast to previous proposals [33–37].
This prediction updates a traditional viewpoint that, due to the
TR symmetry, a uniform s-wave proximate SC can induce a
uniform pairing order without a node in and thus fully gaps
out the helical edge states of a TI (see, e.g., Refs. [47,48]). Our
finding shows that for a broad class of the quantum spin Hall
insulators, the intrinsic π junction emerges across the corners
when the edge is coupled to a uniform s-wave SC, leading
to MKPs of the corner modes. We show the QSH insulator
Au/GaAs(111) thin film [49,50] is a 2D material candidate
for the realization of MKPs, and further provide a generic
guideline in the search for such SOTSC phases.
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FIG. 1. Boundary pseudospin textures of TIs crossing corner B. (a) Schematic plot of the adjacent edges in real space. (b) Pseudospin
trajectories for |χ↑〉 (red solid lines) and |χ↓〉 (blue solid lines) wind oppositely in intrinsic space. The straight red (blue) arrows denote the
pseudospin vectors for |χ↑〉 (|χ↓〉). (c) The joint trajectory for |χ↑〉 and |χ↓〉 can be viewed as a closed loop in intrinsic space, which enables
a well-defined two-state Berry phase in the PH channel γph, leading to the Dirac corner modes. (d) The conclusion in (c) also applies to the
situation where pseudospin trajectories are nonclosed and can be connected by the continuation trajectories (dashed lines). (e) and (g) The
winding of pseudospin trajectories within both spin sectors is in the same direction. The straight black arrows represent the coinciding of
pseudospin vectors for |χ↑〉 and |χ↓〉.The two-state Berry phase in the PP channel γpp is of importance since the joint trajectories for |χ↑p〉 and
|χ↓p〉 are closed, guaranteeing the appearance of MKPs. This result can be extended to nonclosed cases (f) and (h).

The generic edge theory. We start with a generic edge
theory of the geometric phase mechanism for the corner
modes. The theory is extended from a previous result that
the chiral edge state in a class of quantum anomalous Hall
(QAH) insulators exhibits topological (pseudo)spin texture
in real space, with the pseudospin polarization of each edge
state winding one big circle along the closed 1D boundary in
the presence of chiral symmetry [46,51]. Such a pseudospin
texture defines a π -Berry phase on the boundary. For a TR
invariant TI formed by two copies of QAH insulators with
opposite Chern numbers, its helical edge states form Kramers
pairs of the time-reversal symmetry (TRS) T = isyK, with
sy being the spin operator and K the complex conjugate.
The pseudospin polarizations of spin-up (|χ↑〉) and spin-
down (|χ↓〉) edge states are given by 〈σ↑〉 = 〈χ↑|s0σ|χ↑〉 and
〈σ↓〉 = 〈χ↓|s0σ|χ↓〉, where the pseudospin operators σ denote
the orbital (or sublattice) degree of freedom. When traveling
from one edge to a neighboring edge across a corner point B
in real space [Fig. 1(a)], the pseudospin direction (〈σ↑,↓〉) of a
single state in general does not trace a closed loop. However,
a two-state Berry phase can be defined when the pseudospin
polarizations are inverted across the corner for both spin-up
and spin-down sectors. Two basic cases corresponding to two
fundamental types of TIs are of particular interest and are
studied below.

First, the pseudospin trajectories of the two spin sec-
tors wind oppositely, e.g., (〈σ↑x〉, 〈σ↑y〉) = (〈σ↓x〉,−〈σ↓y〉)
[Fig. 1(b)], so the joint pseudospin trajectory of the spin-
up particle and spin-down hole is closed in intrinsic space
[Fig. 1(c)]. The case where TR symmetry reverses only real
spin but not pseudospin bases belongs to this scenario. We

define the two-state Berry phase in the particle-hole (PH)
channel as

γph =
∫ θ (II)

θ (I)
dθ〈χ↑(θ )| ⊗ 〈χ↓(θ )|(−i∂θ )|χ↑(θ )〉 ⊗ |χ↓(θ )〉.

(1)

Here, θ (I,II) stands for the normal direction of edge I and II,
and the spin-down hole state |χ↓〉 is obtained by charge conju-
gation K on |χ↓〉, equivalent to flipping a ket into a bra state.
Applying a uniform in-plane Zeeman field (M · s)σ0 breaks
the TRS and introduces the mass term Hmass [52] to the edge
Dirac Hamiltonian Hedge = vk‖sz [12]. The matrix element
〈χ↑|(M · s)σ0|χ↓〉 resembles a particle-hole excitation gap on
the edge, and when turning from edge I to edge II across the
corner point B, the mass term is related by [52]

〈χ (II)
↑ |(M · s)σ0|χ (II)

↓ 〉 = e−iγph〈χ (I)
↑ |(M · s)σ0|χ (I)

↓ 〉. (2)

Consequently, for γph = ±π a mass domain wall is obtained
across the corner, giving zero-energy corner modes. This re-
sult can be extended to the more generic configuration where
the pseudospin polarization of each spin sector is not fully
inverted across the corner [Fig. 1(d)]. In this case we consider
a continuation [shown in the dashed line of Fig. 1(d)] to
connect them so that the two-state pseudospin trajectory is
still closed and a two-state π -Berry phase results. As long as
no node of mass is obtained on the continuation trajectories,
the mass domain wall must be obtained across the corner.
We note that the π -Berry phase and zero-energy mode for
the insulating phase necessitate protection by a chiral-like
symmetry [52], which anticommutes with all terms in the
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Hamiltonian. When this symmetry is broken, the pseudospin
texture will not be fully in plane and the Berry phase is no
longer strictly quantized to π (even with closed pseudospin
trajectories via continuation), hence not guaranteeing a full
sign reversion of the edge mass term. In this case the corner
mode has finite energy but may still be within the gap if the
Berry phase is close to the π value.

The second even more nontrivial case that we unveil is the
two-state Berry phase in the particle-particle (PP) channel,
which corresponds to realizing MKPs of the corner modes in
SOTSCs when the edge is proximately coupled to a uniform
s-wave SC. The case that TR symmetry reverses both real
spin and pseudospin bases belongs to this scenario. Partic-
ularly, when the pseudospins of both spin sectors wind in
the same direction across the corner, e.g., (〈σ↑x〉, 〈σ↑y〉) =
±(〈σ↓x〉, 〈σ↓y〉) [Figs. 1(e) and 1(g)], the two-state Berry
phase in the PH channel vanishes, but is nontrivial in the PP
channel,

γpp =
∫ θ (II)

θ (I)
dθ〈χ↑p(θ )| ⊗ 〈χ↓p(θ )|

× (−i∂θ )|χ↑p(θ )〉 ⊗ |χ↓p(θ )〉. (3)

For the edge Hamiltonian Hedge = ivk‖τysz, the SC pair-
ing term induced in the edge states reads Hmass =
〈χ↑p|	sτysyσ0|χ↓h〉τysy, where τy represents the particle-hole
degree of freedom, and subscript p/h denotes the Nambu
particle/hole sector. This matrix element gives the SC gap
function in the edge and obeys [52]〈

χ
(II)
↑p

∣∣	sτysyσ0

∣∣χ (II)
↓h

〉 = e−iγpp
〈
χ

(I)
↑p

∣∣	sτysyσ0

∣∣χ (I)
↓h

〉
. (4)

In this case, a mass domain wall (an intrinsic π junction)
is obtained when γpp = ±π and harbors at each corner a
MKP, which obeys symmetry-protected non-Abelian statis-
tics [38–44]. With the particle-hole symmetry being always
present in superconductors, the MKPs of the zero corner
modes are protected by time-reversal symmetry, without the
necessity of a chiral-like symmetry in the insulators. We em-
phasize that in this realization we directly superpose TI on
a uniform and conventional s-wave SC, in sharp contrast to
previous proposals of realizing MKPs of the corner modes
[33–37]. Again, this result does not require the pseudospin to
be fully inverted across the corner, as long as no node exists
for the pairing order on the auxiliary trajectories [dashed lines
in Figs. 1(f) and 1(h)].

Application to SOTSCs. The edge two-particle Berry phase
theory provides an intuitive principle to realize SOTIs and
SOTSCs, while we leave the discussion on SOTIs based on
the first type of TI to the Supplemental Material [52], and
hereby focus on the more nontrivial prediction of MKPs
of the corner modes. As required, we consider a generic
type-II TI with two orbitals α and β transforming into each
other under TRS, and propose two minimal-model realiza-
tions with such a TI proximately coupled to an s-wave SC.
The Hamiltonian in the ψ = (ψ↑α, ψ↑β, ψ↓α, ψ↓β )T basis
is H1(2) = ∫

dk ψ†(k)HTI-1(2)ψ (k) + Hs-wave, with Hs-wave =∑
σ=α,β

∫
dk 	s[ψ↑σ (k)ψ↓σ (−k) + H.c.] being TR invari-

ant, and the low-energy band Hamiltonian

HTI-1(2) = (m − t |k|2)szσz + vkxs0(z)σx + vkys0(z)σy. (5)

FIG. 2. Pseudospin analysis for the first minimal model, with
parameters m = 2, t = 1, v = 1. (a) Illustration of the sample ge-
ometry and normal vector of edges. (b) Numerical results of the
pseudospin polarizations of the two spin sectors. (c) Trajectories
of pseudospin polarizations of spin-up particle (red solid line) and
spin-down particle (blue solid line) states traveling from edge AB
to BC, with valid continuation (dashed lines). Concatenating two
trajectories gives a complete winding which encircles the 2π solid
angle. (d) The distribution of the Dirac corner modes, and the energy
level plotted under magnetic SC pairing strength 	s = 0.2.

We consider a square-shape boundary, with the edges
terminating the lattice in a tilted way [Fig. 2(a)]. When
sgn m sgn t > 0, for an arbitrary sample edge with normal vec-
tor x̂⊥ = (cos θ, sin θ ), assuming a half-infinite sample area
x⊥ < 0, we can solve out the helical edge states,

|χ↑〉1,2 =
[

1
0

]
s

⊗
[

1√
2

− ieiθ√
2

]
σ

, |χ↓〉1,2 =
[

0
1

]
⊗

[
1√
2

± ieiθ√
2

]
σ

.

(6)

Thus the pseudospin polarizations for |χ↑,↓〉 are 〈σ↑〉1,2 =
(sin θ,− cos θ, 0), 〈σ↓〉1,2 = (∓ sin θ,± cos θ, 0) [Fig. 2(b)].
We put here the numerical results for the first model, which
is the case of the material candidate to be proposed later.
The trajectories of two pseudospin polarizations across corner
B (similar for other corners) are depicted as solid lines in
Fig. 2(c), with in-between paths untraveled. So we can make
a valid continuation [dashed lines in Fig. 2(c)] to concatenate
the two trajectories, rendering a two-particle π -Berry phase
in the PP channel. According to the generic theory, a mass
domain wall arises at the corner on the real trajectories if
applying an s-wave SC, as shown in the numerical results
in Fig. 2(d). Note that the model has mirror symmetries. In
particular, the mirror-x symmetry M̂x = isxσyτz relates the
edges AB and BC, forcing a SC π junction at intersection
corner B, consistent with the Berry phase mechanism [52].
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FIG. 3. The material realization of SOTSC and its pseudospin analysis. (a)
√

3 × √
3R30◦ trigonal superlattice of Au/GaAs(111) surface.

(b) Schematic plot of the QSH/s-wave SC heterostructure with MKPs of the corner modes. (c) Numerical results of the pseudospin
polarizations. (d) Boundary pseudospin textures of the second type of QSH phase across corner B. Red and blue arcs are the real trajectories of
pseudospin polarizations while dashed lines denote the continuation trajectories. (e) The distribution of MKPs and the energy levels. (c) and
(e) are obtained with parameters εs = 0.74 eV, εp = 0 eV, tssσ = −0.04 eV, tspσ = 0.04 eV, tppσ = 0.18 eV, tppπ = 0.005 eV, λ = 0.06 eV,
μ = 0.555 eV, 	s = 0.05 eV.

Realistic materials. Now we propose the material realiza-
tion of the above SOTSC. We focus on the Au/GaAs(111)
thin film, which realizes a QSH phase in a triangular lat-
tice [Fig. 3(a)] based on first-principles calculation [50]. The
orbital components without SOC around the � point are
described by the sp2 basis (s, px + ipy, px − ipy), which cap-
tures the minimal model of the system. With SOC, two types
of QSH phases are supported, respectively corresponding to
s-p band inversion (the first type) and p-p gap opening (the
second type). In the following, we will study the second type
of QSH phase, whose effective Hamiltonian is obtained by
eliminating the bottom s orbital from the original sp2 orbitals
[50]. The Hamiltonian of the TI-SC heterostructure in the ψ =
(p↑+, p↑−, p↓+, p↓−)T basis is H = ∫

dk ψ†(k)Heffψ (k) +
Hs-wave, with Hs-wave = ∑

σ=+,−
∫

dk 	s[p↑σ (k)p↓σ (−k) +
H.c.] and

Heff (k) = a0s0σ0 + a′
0

(
k2

x + k2
y

)
s0σ0 + λszσz

+ ax
(
k2

x − k2
y

)
s0σx + aykxkys0σy. (7)

As required, here the TRS T ′′ = isyσxK reverses both spin
and orbitals [52], and the necessary pseudospin texture in the
generic theory is obtained. The pseudospin polarizations of an
arbitrary edge read 〈σ↑〉 = [a↑ cos 2θ, a↑ sin 2θ, (1 − a2

↑)1/2],
〈σ↓〉 = [a↓ cos 2θ, a↓ sin 2θ,−(1 − a2

↓)1/2]. It is easily veri-
fied that a↑ = a↓ < 0 [52], so the pseudospin texture turns
out to satisfy (〈σ↑x〉, 〈σ↑y〉 = 〈σ↓x〉, 〈σ↓y〉), which gives the
two-particle Berry phase in the PP channel γpp. We further
consider a rectangular sample proximate to the conventional
s-wave SC [Fig. 3(b)]. When traveling across the corner B, the

pseudospin trajectories [Fig. 3(c)] are depicted on the Bloch
sphere [Fig. 3(d)]. The real trajectories of the pseudospin
polarizations of |χ↑p〉 (red semicircle) and |χ↓p〉 (blue semi-
circle) can be connected by the continuation (dashed lines)
with no nodes of pairing order existing in the continuation
trajectories. Thus the two-particle π -Berry phase in the PP
channel is obtained. Consequently, an intrinsic SC π junc-
tion results with a Majorana Kramers pair at the corner B,
similar for the corners A, C, and D. The numerical results of
MKPs and the energy spectrum [Fig. 3(e)] confirm our predic-
tion. Also, an effective mirror symmetry M̂n̂ = −iτzszσz (n̂ =√

2
2 x̂ +

√
2

2 ŷ) of the low-energy Hamiltonian can relate all adja-
cent edges, forcing the emergence of SC π junctions on every
corner [52].

We note that our theory provides a generic guideline in
the search for realistic materials of SOTSCs with MKPs via
a uniform s-wave pairing and second type of TIs. In partic-
ular, in the type-II TI system the TRS reverses both the spin
part and the orbital degree of freedom. Consequently, the TIs
formed by p-p [53,54], p-d [55–57], and d-d [58,59] orbitals
satisfying this condition are candidates to realize SOTSCs
from uniform s-wave pairing.

Discussion and conclusion. We have uncovered a different
and fundamental mechanism by introducing another concept
of a two-particle edge Berry phase to characterize and realize
second-order TIs or TSCs. Unlike other basic mechanisms
such as the Wilson loop and topological multipole invariants
in the bulk, the boundary two-particle Berry phase mecha-
nism provides a fundamental and intuitive principle which
facilitates the discovery of high-order topological matter. As
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concrete examples of the application, we have predicted a
result that the Majorana Kramers pairs of corner modes are
realized by directly coupling a type-II TR invariant TI edge to
a uniform s-wave SC, which stands in sharp contrast to pre-
vious proposals. We further predicted the Au/GaAs(111) film
as a material candidate for the realization of the SOTSC, and
a generic class of candidate materials is also discussed. Our
prediction shall inspire further theoretical and experimental

studies, including also the extension of the present study to
higher dimensions.
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