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Gapless excitations in non-Abelian Kitaev spin liquids with line defects

Lucas R. D. Freitas1 and Rodrigo G. Pereira 1,2

1Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
2International Institute of Physics, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil

(Received 11 August 2021; revised 3 November 2021; accepted 22 December 2021; published 6 January 2022)

We show that line defects in a non-Abelian Kitaev spin liquid harbor gapless one-dimensional Majorana modes
if the interaction across the defect falls below a critical value. Treating the weak interaction at the line defect
within a mean-field approximation, we determine the critical interaction strength as a function of the external
magnetic field. In the gapless regime, we use the low-energy effective field theory to calculate the spin-lattice
relaxation rate for a nuclear spin near the defect and find a cubic temperature dependence that agrees with
experiments in the Kitaev material α-RuCl3.
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Introduction.—The Kitaev honeycomb model [1] provides
a prominent example of a quantum spin liquid [2–4] in which
spins fractionalize into emergent Majorana fermions. In the
presence of a magnetic field, the phase diagram of the model
includes a non-Abelian phase characterized by gapped bulk
excitations and chiral edge states [1]. The observation that
an extended Kitaev model can be realized in strongly spin-
orbit-coupled Mott insulators [5–7] led to the discovery of
candidate materials, including the iridates [8–10] and α-RuCl3

[11–14]. In the latter, the suppression of long-range zigzag
order above a critical value of an in-plane magnetic field [15]
has been interpreted in terms of a field-induced gapped spin
liquid, with supporting evidence from thermal Hall [16,17]
and specific heat measurements [18].

The inevitable presence of defects in real materials both
complicates and enriches the physics of Kitaev spin liq-
uids [19–25]. Quite generally, disorder tends to modify the
low-energy density of states in a way that may overshadow
universal properties predicted for the clean system. For in-
stance, single vacancies and magnetic impurities can bind
vortices of the Z2 gauge field and Majorana zero modes
[19,20]. A finite density of vacancies and bond randomness
can account for the divergent low-energy density of states in
H3LiIr2O6 [10,21].

In this work, we investigate line defects, such as dis-
locations and grain boundaries [26], in the non-Abelian
Kitaev spin liquid. Such one-dimensional (1D) defects can
be engineered in monolayers of 2D materials [27] and their
orientation depends on strain [28]. In bulk crystals, partial
dislocations naturally appear bordering stacking faults [26],
which are ubiquitous in α-RuCl3 due to the weak van der
Waals bonding between layers [29–31]. Dislocations in the
gapped Abelian phase of the anisotropic Kitaev model were
studied in Refs. [32,33].

We model the 1D defect as a line of weaker exchange
bonds as shown in Fig. 1(a). For defect interaction J̃ = 0,
the system reduces to two decoupled Kitaev spin liquids with
zigzag edges. In the non-Abelian phase, the decoupled edges

harbor gapless chiral Majorana modes. Aasen et al. [34] noted
that there is a critical value of the interaction below which
these 1D modes remain gapless. The reason is that the leading
interaction between emergent Majorana fermions across the
interface is irrelevant in the renormalization group sense. In
addition to the effective field theory, the problem of seam-
ing two Kitaev spin liquids was analyzed in Ref. [34] by
analogy with 1D lattice models that exhibit a transition in
the same universality class [35]. Here we start from the Ki-
taev model and calculate the spectrum using a self-consistent
mean-field approximation for the interaction along the defect.
Our approach reveals that the critical coupling stems from a
competition between this interaction and the Zeeman coupling
for the dangling-bond spins.

Below the critical coupling, the gapless Majorana modes
along the line defect can dominate the low-energy behavior of
local response functions. To illustrate this point, we calculate
the spin-lattice relaxation rate 1/T1 within the effective field
theory. We find 1/T1 ∝ T 3 at low temperatures, in clear con-
trast with the exponential dependence expected for a gapped
spin liquid. Remarkably, the cubic temperature dependence
matches the result of the nuclear magnetic resonance (NMR)
experiment in Ref. [36]. We then propose that the contribution
from gapless 1D modes in samples with a low but finite den-
sity of line defects might explain the discrepancy with other
NMR experiments that observed a spin gap inside the putative
Kitaev spin liquid phase [37–39].

Microscopic model.—Our starting point is the spin-1/2
Kitaev honeycomb model in a magnetic field [1]:

H = −
∑
〈 j,k〉γ

Jjkσ
γ

j σ
γ

k − h ·
∑

j

σ j . (1)

Here σ j is the vector of Pauli operators at site j. The Kitaev
coupling on nearest-neighbor bonds of type γ = x, y, z takes
the value Jjk = J in the bulk and Jjk = J̃ � J for the z bonds
along the line defect, see Fig. 1(a). The nearest-neighbor vec-
tors are ex = (− 1
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FIG. 1. Kitaev honeycomb model with a line defect. Black and
white circles represent the sublattices. Nearest-neighbor x-, y-, and
z-bonds are colored in red, green, and blue, respectively. (a) The
coupling J̃ along the defect is represented by dashed lines. The
vectors ex,y,z indicate the bond directions in the plane. (b) In α-RuCl3,
the Cartesian axes with unit vectors x̂, ŷ, and ẑ are defined by the
vertices of the ligand octahedra. The magnetic field forms an angle θ

with ẑ.

where we set the lattice parameter to unity. The components
of the magnetic-field h = hxx̂ + hyŷ + hzẑ are defined with
respect to the axes fixed by the edge-sharing octahedra struc-
ture of α-RuCl3 [40,41]; see Fig. 1(b). Note that the z axis is
perpendicular to the z bond. Importantly, even a small increase
in the bond length across the defect can significantly suppress
the Kitaev coupling [42]. Since the weaker coupling is the
mechanism behind the persistence of gapless 1D modes, we
consider an infinite line defect without specifying its detailed
properties, e.g., the Burgers vector of dislocations [32]. For
simplicity, we neglect interactions beyond the pure Kitaev
model [7,43], which can renormalize the critical coupling dis-
cussed in the following but do not change qualitative features
of the transition or the temperature dependence of T −1

1 .
For h = 0, the Kitaev model is solved by the representation

σ
γ
j = ibγ

j c j , where bγ
j and c j are Majorana fermions [1]. To

restrict to the physical spin-1/2 Hilbert space, one imposes
the local constraint bx

jb
y
jb

z
jc j = 1 for all sites. There is one

conserved quantity for each hexagonal plaquette p given by
Wp = ∏

〈 j,k〉∈∂ p u jk , where u jk = ı̇bγ
j bγ

k acts as a Z2 gauge
field on the 〈 j, k〉γ bond with site j in sublattice A (black
circles in Fig. 1) and site k in sublattice B (white circles).

To make progress analytically, we follow Ref. [1] and
replace the Zeeman coupling in the bulk by a three-spin inter-
action generated by perturbation theory in the magnetic field.
This approach is justified by a projection onto the low-energy
sector where Wp = 1 ∀p, which contains the exact ground
state for h = 0. In this sector, we can set ujk = 1, freezing
out all bγ fermions in the bulk. Moreover, the three-spin
interaction effectively gaps out the spectrum of c fermions
with a topologically nontrivial mass, which is the main effect
of time-reversal symmetry breaking that we wish to capture
with our model to describe the non-Abelian spin liquid phase.
On the other hand, for J̃ = 0, the bz fermions associated with
the broken z bonds, see Fig. 1(a), couple only to the c fermions
through the Zeeman term proportional to hz. In fact, for J̃ = 0,
there is no energy cost for changing Wp on plaquettes along the
line defect. On defect sites we can still integrate out the bx,y

fermions, since these involve bonds with strong coupling J ,

but the bz fermions remain dynamic at low energies. For this
reason, we shall keep the projected Zeeman term on defect
sites. As noted in Ref. [1], without this term the bz fermions at
an edge would decouple from the rest of the system and form a
zero-energy flat band. The resulting Hamiltonian in the regime
|h|, J̃ � J is

Heff = H0 − J̃
∑
j∈�1

σ z
j σ

z
j+ez

− hz

∑
j∈�1∪�2

σ z
j , (2)

where H0 = −J
∑

〈 j,k〉γ σ
γ

j σ
γ

k − κ
∑

〈 j,k〉α,〈k,l〉β σ α
j σ

γ

k σ
β

l con-
tains the standard bulk interactions [1] and �1 and �2

refer to the lines of defect sites in A and B sublattices, re-
spectively. The coupling constant of the three-spin interaction
is related to the magnetic field by κ ∝ hxhyhz/J2. Once we
fix u jk = 1 in the bulk, H0 becomes a quadratic Hamiltonian
for the c fermions with nearest- and next-nearest-neighbor
couplings. In terms of Majorana fermions, we obtain

Heff = H0 − J̃
∑
j∈�1

bz
jb

z
j+ez

c jc j+ez
− ı̇hz

∑
j∈�1∪�2

bz
jc j . (3)

Mean-field theory.—The model in Eq. (3) is not exactly
solvable when both J̃ and hz are nonzero. While the Zee-
man term is quadratic, the hybridization of bz and c spoils
the conservation of ı̇bz

jb
z
k on defect bonds. Here we use

a Majorana mean-field approximation for the quartic term.
Similar approaches have been shown to capture phase tran-
sitions driven by integrability-breaking bulk interactions in
the extended Kitaev model [44,45]. We adopt the mean-field
parameters χb = 〈ı̇bz

jb
z
j+ez

〉 and χc = 〈ı̇c jc j+ez 〉 for j ∈ �1.
Performing a mean-field decoupling of the interaction V =
J̃

∑
j∈�1

(ı̇bz
jb

z
j+ez

)(ı̇c jc j+ez
), we obtain

VMF = J̃
∑
j∈�1

(
ı̇χcbz

jb
z
j+ez

+ ı̇χbc jc j+ez − χbχc
)
. (4)

The replacement of V by VMF in Eq. (3) yields the mean-field
Hamiltonian HMF.

We diagonalize the mean-field Hamiltonian numerically
on a finite system with periodic boundary conditions. The
geometry can be viewed as a torus with length Lx in the
direction parallel to the line defect, along which the model has
translational invariance, and containing Ly sites in the trans-
verse direction. Representing a site by a pair of coordinates
j = (x, y), we define the Fourier-transformed fermions

dq,y = 1√
2Lx

Lx∑
x=1

e−iqxdx,y, y = 0, . . . , Ly + 1, (5)

where dx,y = cx,y for y = 1, . . . , Ly, dx,0 = bz
x,1 and dx,Ly+1 =

bz
x,Ly

. In this notation, y = 1 and y = Ly correspond to lines �1

and �2, respectively. The mean-field Hamiltonian is quadratic
in the complex fermions dq,y and can be cast in the form

HMF =
∑

0<q�π

∑
y,y′

ı̇Ay,y′ (q)d†
q,ydq,y′ . (6)

Thus the problem reduces to diagonalizing the Hermitean
matrix ı̇A(q) of dimension Ly + 2 whose components are
given in the Supplemental Material [46]. The normal modes
are given by γ †

q,n = ∑
y Uy,n(q)d†

q,y, where the unitary matrix
U (q) depends on χb and χc.
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FIG. 2. Energy gap for the Majorana modes bound to the line
defect as a function of the modified coupling J̃ . Here we fix the
magnetic field along the [111] direction with |h| = 0.8J . The dashed
line indicates the critical coupling J̃c. The inset shows the spectrum
below and above J̃c. The green lines refer to defect modes and the
continuum to gapped bulk modes.

The mean-field parameters must be determined by self-
consistency of the approximation. We obtain the self-
consistency equations by calculating χb and χc as expectation
values in the mean-field ground state, expressed in terms of
the matrix elements Uy,n(q). To account for the magnetic-
field dependence of κ , we set κ = hxhyhz/J2. In addition, we
parametrize the field direction by polar and azimuthal angles
θ and φ with respect to the axes in Fig. 1(b). The mean-field
parameters are then real functions of J̃/J , |h|/J , θ and φ.

Our numerical results confirm that the mean-field parame-
ters vanish below a critical coupling J̃c > 0. In this case, the
two sides of the line defect remain decoupled and the spec-
trum exhibits chiral Majorana modes with linear dispersion
near q = 0. For J̃ > J̃c, we find that both χb and χc become
nonzero with a continuous transition, in contrast with the
first-order transition obtained by a variational analysis of the
continuum model in Ref. [34]. As a check of our approach,
we observe that χb → 1 in the limit |hz|/J̃ → 0, as expected
since ibz

jb
z
k in Eq. (3) become conserved Z2 operators when

we neglect the Zeeman coupling. For nonzero χb and χc,
the Majorana fermions on different sides hybridize and the
1D mode acquires a gap d . Figure 2 shows the gap for a
magnetic field along the [111] direction. Interestingly, for a
wide range of J̃ > J̃c the gap d remains much smaller than
the bulk gap b = 6

√
3κ .

While the gap goes smoothly to zero at the transition, we
can determine the critical point precisely by expanding the
self-consistency equations for small values of the mean-field
parameters. To first order in χb and χc, the equations take
the form χ = J̃�χ , where χ = (χb, χc)t and � is a 2 × 2
matrix easily computed in terms of the unitary matrix U (0)(q)
that diagonalizes the mean-field Hamiltonian for χb = χc = 0
[46]. Requiring a nontrivial solution to the linear equation
with J̃ → J̃c, we obtain J̃c = 2(tr �)−1[−w + √

w(w + 1)]
with w = (tr �)2/(4| det �|). The dependence of J̃c on the
magnetic field is shown in Fig. 3. For fixed field direction,
we observe a power-law behavior J̃c ∼ |h|β with exponent
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FIG. 3. Critical value of the interaction at the line defect as a
function of the magnetic field. The field is fixed along the [111]
direction (θ = tan−1

√
2 and φ = π/4). Inset: Critical coupling as

a function of θ for fixed |h| = 0.5J and φ = π/4.

β ≈ 3. Moreover, the critical coupling varies with the field
direction through the dependence on κ in the bulk and hz at
the line defect. Like the bulk gap, J̃c vanishes when any of the
components hx, hy, or hz go to zero. We have verified that the
critical coupling also remains finite for in-plane fields, except
for the special directions in which the bulk gap closes [46].

Low-energy effective theory.—For weak-coupling J̃ < J̃c,
the low-energy sector is described by two chiral Majorana
fermions, each associated with one side of the line defect. To
derive the effective field theory, we expand the matrix A(q)
in Eq. (6) to first order in q. The bound state wave functions
decay exponentially with the distance from the defect and
can be determined exactly for q → 0. Solving the eigenvalue
equation with dispersion εR/L (q) = ±vq for the chiral modes,
we find an analytical expression for the velocity [46]

v = |κ|h2
z

J2 + h2
z /3

. (7)

Note that the velocity vanishes when hz → 0 or κ → 0.
The low-energy Hamiltonian is effectively 1D:

Hlow =
∑
q>0

vq(γ †
qRγqR − γ

†
qLγqL ), (8)

where γqα , with α = R, L, are the annihilation operators for
right and left movers. In the continuum limit, the chiral Majo-
rana fermions are γα (x) = √

2/Lx
∑

q>0(eiqxγqα + e−iqxγ †
qα ).

We can then write

Hlow = 1

4

∫
dx [ γR(−ı̇v∂x )γR + γL(ı̇v∂x )γL ]. (9)

Next, we calculate the representation of the spin operator
in the low-energy theory in terms of the chiral Majorana
fermions. For the geometry in Fig. 1(a), only the σ z

j compo-
nent for sites j near the line defect has a nonzero projection
onto the gapless modes. Expanding c j and bz

j on a defect site
in terms of the normal modes to first order in q, we obtain

Sz
j = 1

2
σ z

j ∼ Sz
α (x) = iαs

2
γα (x)∂xγα (x), (10)
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where s = J2|κ|hz/(J2 + h2
z /3)2 and we select α = R, L =

+,− according to the chiral mode whose wave function lies
on the same side as site j. The representation in Eq. (10)
could be argued on symmetry grounds [34]. We stress
that, in contrast with the usual parton representation using
complex Abrikosov fermions S j = 1

2 f †
a σab fb [2,47], the Ma-

jorana fermion representation requires a spatial derivative,
which increases the scaling dimension of the operator in
Eq. (10).

The projection of the quartic term in Eq. (3) onto the
gapless modes yields V ∼ g

∫
dx γR∂xγRγL∂xγL with g ∼ J̃s2.

This irrelevant interaction is the leading perturbation to
the low-energy fixed-point Hamiltonian [34,35]. Crucially,
the mass term imγRγL is forbidden, as local operators must
be bilinears of the emergent Majorana fermions on the same
side of the line defect. As long as v > 0, the transition oc-
curs at a finite critical coupling, spontaneously breaking the
Z2 × Z2 symmetry of independently flipping the signs of
γR and γL. Beyond the mean-field level, the critical point
is described by the tricritical Ising conformal field theory
[35].

NMR response.—The effective field theory allows us to cal-
culate the spin-lattice relaxation rate at low temperatures for a
nuclear spin adjacent to the line defect. When restricted to the
contribution from the gapless 1D mode, the linear response
formula for T −1

1 becomes [48,49]

1

T1
= γ 2

N

2Lx

∑
q

|Ahf(q)|2S(q, ω0), (11)

where γN is the nuclear gyromagnetic ratio for 35Cl NMR in
α-RuCl3 [36–39], Ahf(q) is the hyperfine coupling form fac-
tor, ω0 = γN |h| is the Larmor nuclear resonance frequency,
and

S(q, ω0) =
∫

dxdt eı̇(ω0t−qx)〈S̃+
α (x, t )S̃−

α (0, 0)〉 (12)

is the transverse dynamical spin structure factor at temper-
ature T for either value of α. Here S̃±(x, t ) = S̃x(x, t ) ±
iS̃y(x, t ) are time-evolved ladder operators that perform spin
flips with respect to magnetic-field axis. On the other hand,
the spin components Sγ were originally defined with respect
to the axes in Fig. 1(b). Rotating the coordinate system, we
obtain

S̃± = − Sz sin θ + Sx(cos θ cos φ ∓ ı̇ sin φ)

+ Sy(cos θ cos φ ± ı̇ sin φ). (13)

Since only the Sz operator has a nonzero projection
onto the gapless modes, we have 〈S̃+

α (x, t )S̃−
α (0, 0)〉 =

〈Sz
α (x, t )Sz

α (0, 0)〉 sin2 θ , with Sz
α (x) given by Eq. (10).

We calculate T −1
1 using Green’s functions for noninter-

acting Majorana fermions described by the Hamiltonian in
Eq. (9). The experimentally relevant regime with T ∼ 1 K
and ω0 ∼ 10 MHz is ω0 � T , where we set h̄ = kB = 1. In
this regime, the dynamical structure factor can be written
as S(q, ω0) ≈ −(2T/ω0)Imχ ret (q, ω0), where χ ret (q, ω0) is
the retarded dynamical susceptibility for the Sz

α (x) operator.
The latter can be calculated by analytical continuation of the

Matsubara correlation function [46]. We find

1

T1
≈ π2s2γ 2

N

6v4
|Ahf(0)|2 sin2 θ T 3. (14)

This result is valid for T � v, since v sets the high-energy
cutoff of the effective field theory when the lattice parameter
is set to unity. Note that the temperature window shrinks to
zero for κ → 0.

A cubic temperature dependence in the spin-lattice re-
laxation rate has been observed experimentally [36] and
interpreted as evidence for a gapless spin liquid in α-RuCl3.
Indeed, T −1

1 ∼ T 3 is expected for a generic Kitaev spin liq-
uid with a massless Dirac spectrum [50], possible when the
magnetic field points along the particular directions in which
κ = 0. However, the results of Ref. [36] showed a cubic tem-
perature dependence over a broad field range, independent of
orientation. For magnetic fields above 12 T, the spin-lattice
relaxation rate decays faster with decreasing temperature. The
deviation from the T 3 behavior at high fields indicates a sup-
pression of the mechanism responsible for the gapless modes,
as expected when the material enters the trivial polarized
phase. Meanwhile, other measurements of 1/T1 in α-RuCl3

favor a picture of fully gapped spin excitations [38,39].
Here we suggest that the apparently gapless behavior may

have its origin in 1D modes bound to line defects. Importantly,
the effective field theory shows that the robustness of these
gapless modes is a universal property of the non-Abelian
Kitaev spin liquid. While the realistic spin model for α-RuCl3

must include Heisenberg and off-diagonal exchange interac-
tions [7] neglected in Eq. (1), our main conclusions do not
depend on microscopic details. As long as the perturbations
to the Kitaev model do not destroy the topological order, they
can only renormalize the prefactor of 1/T1 in Eq. (14). The T 3

dependence only relies on the existence of chiral Majorana
modes with linear dispersion. In fact, the exponent can be
traced back to the scaling dimension of the spin operator in
Eq. (10). By contrast, for a 1D system of complex fermions
described by Luttinger liquid theory, the small-q contribution
to the spin-lattice relaxation rate scales as T −1

1 ∼ T [49,51].
Thus our result does not follow from a usual density-of-states
factor but is connected with the Majorana fermion nature
of the elementary excitations. We note that other types of
defects in the Kitaev spin liquid, such as site dilution, can also
give rise to a power-law dependence in T −1

1 but with lower
exponents [25].

Our results also reveal a characteristic dependence on the
magnetic-field direction. However, the geometric factor sin2 θ

holds only for a line defect running between zigzag edges.
For more general geometries, different spin components may
have projections onto the chiral Majorana modes, modify-
ing this geometric factor. For randomly oriented line defects,
the angular dependence averages out, which is consistent
with the experiment of Ref. [36]. An alternative explanation,
put forward in Ref. [52], is that the intermediate phase of
α-RuCl3 might be described by a U(1) spin liquid whose gap
remains small, below the measurement temperature, for arbi-
trary field directions. While the nature of this phase is under
scrutiny again [53], our proposal highlights the role of line
defects when unraveling the properties of Kitaev materials. To
distinguish between different scenarios for the gapless behav-
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ior, it would be interesting to single out the contribution from
line defects by controlling their density and orientation [28] in
different samples.

Conclusions.— We showed that gapless Majorana modes
bound to line defects can survive in the bulk of non-Abelian
Kitaev spin liquids, with clear signatures in low-energy prop-
erties. As an example, we showed that these modes give rise to
a cubic temperature dependence of the spin-lattice relaxation
rate, offering an explanation for the experimental findings of

Ref. [36]. The critical value of the interaction below which the
1D modes remain gapless can be tuned by the magnitude and
orientation of the external magnetic field.
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