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Dissipation of moving vortices in thin films
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Moving vortices in thin superconducting films are considered within the time-dependent London description.
The dissipation due to out-of-core normal excitations for two vortices moving together turns out to have a
minimum for the separation vector a parallel to the velocity and equal to am ≈ 2.2�, where � is the Pearl
length. The minimum entropy production suggests that moving vortices should have a tendency to form chains
along the velocity with a period of the order am.
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Introduction. Problems of vortex dynamics in supercon-
ductors have recently come back to the community attention
because new and more accurate experimental techniques be-
come available. Vortex velocities well above the speed of
sound are now attainable along with more sensitive methods
of measuring field distributions [1–3].

Moving vortices, pushed by the Lorentz force due to ap-
plied transport current, dissipate energy replenished by the
current source. In this situation, the heat transfer should be
taken into account [2], to mention one of the complications.
One of the facts attracting attention is that moving vortices
tend to form chains extended along the velocity [1,4]. The
chains have periods a � ξ , the vortex core size so that the
linear London approach may provide useful insights notwith-
standing the London inability to treat the vortex core physics.

In this Letter, we study the dissipation W due to out-of-
core quasiparticles in thin films and find that for a pair of
vortices W (a) has a minimum at a finite separation a oriented
along the pair velocity v (see Ref. [5]). The value of this
separation is am ≈ 2.2� with the Pearl length � = 2λ2/d (λ
is the penetration depth of the film material, and d is the film
thickness). According to the principle of minimum entropy
production (or minimum dissipation) in stationary processes
[7] the system of moving vortices should have a tendency
to form chains along the velocity in which vortices sit at the
dissipation minima.

Within the general approach to slow relaxation processes,
one relates the time derivative of whatever quantity is relax-
ing, say �, to the variational derivative of the free-energy
functional F (�), see e.g., Ref. [8],

−χ
∂�

∂t
= δF

δ�
, (1)

where χ is the proper relaxation time. The quantity of interest
in our case is the vortex field distribution h(r, t ) away of the
vortex core where the London approach holds and the energy

(magnetic + kinetic) is F = ∫
d2r[h2 + λ2(curl h)2]/8π [9],

−χ
∂h
∂t

= δF
δh

. (2)

This yields

−χ
∂h
∂t

= 1

4π
(h − λ2∇2h), (3)

which reduces to the common London equation in equilib-
rium.

The relaxation constant χ is obtained by comparison with
the time-dependent London equation [10], which at distances
larger relative to the core size is obtained assuming that the
current consists of the normal and superconducting parts,

J = σE − 2e2|�|2
mc

(
A + φ0

2π
∇θ

)
, (4)

where A is the vector potential, � is the order parameter, θ is
the phase, φ0 is the flux quantum, E is the electric field, and
σ is the conductivity associated with normal excitations. At
these distances, |�| is a constant and acting on Eq. (4) by curl
one obtains [10]

h − λ2∇2h + τ
∂h
∂t

= φ0ẑ
∑

ν

δ(r − rν ), (5)

where rν (t ) is the position of the νth vortex that may depend
on time t , ẑ is the direction of vortices. The relaxation time,

τ = 4πσλ2/c2. (6)

Comparing this with Eq. (3) one has χ = 4πτ . In fact, the
time-dependent Ginzburg-Landau equations can be obtained
in a similar manner [8].

Thin films. Let the film of thickness d be on the xy
plane. Integration of Eq. (5) over the film thickness gives
for the z component of the field for a Pearl vortex moving
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with velocity v,

2π�

c
curlzg + hz + τ

∂hz

∂t
= φ0δ(r − vt ). (7)

Here, g is the sheet current density related to the tangential
field components at the upper film face by 2πg/c = ẑ × h;
� = 2λ2/d is the Pearl length. With the help of div h = 0 this
equation is transformed to

hz − �
∂hz

∂z
+ τ

∂hz

∂t
= φ0δ(r − vt ). (8)

As was stressed by de Gennes [9] and Pearl [11], the prob-
lem of a vortex in a thin film is reduced to that of the stray field
distribution in free space subject to the boundary condition (8)
at the film surface. Since outside the film curl h = div h = 0,
one can introduce a scalar potential for the outside field,

h = ∇ϕ, ∇2ϕ = 0. (9)

The general form of the potential satisfying the Laplace equa-
tion and vanishing at z → ∞ is

ϕ(r, z) =
∫

d2k
4π2

ϕ(k)eik·r−kz, (10)

that is checked by direct differentiation. Here, k = (kx, ky),
r = (x, y), and ϕ(k) is the two-dimensional (2D) Fourier
transform of ϕ(r, z = 0).

As performed in Ref. [10], one applies the 2D Fourier
transform to Eq. (8) to obtain a linear differential equation for
hzk(t ), the solution of which is

hzk = −kϕk = φ0e−ik·vt

1 + �k − ik · vτ
. (11)

For two vortices separated by a, the right-hand side of
Eqs. (7) and (8) is

φ0[δ(r − vt ) + δ(r − a − vt )], (12)

so that we obtain for the field,

hzk = φ0e−ik·vt (1 + e−ik·a)

1 + �k − ik · vτ
. (13)

Electric field and dissipation for slow motion. This field
is found from quasistationary Maxwell equations curl E =
−∂t h/c and div E = 0 [8,12], which yield in 2D Fourier
space,

Exk = −ky

kx
Eyk = − iky

ck2

∂hzk

∂t
. (14)

For a pair of vortices separated by a, we have

∂hzk

∂t
= −i

φ0(k · v) (1 + e−ik·a)

1 + �k − ik · vτ
e−ik·vt . (15)

We are interested in motion with constant velocity v = vx̂ so
that we can evaluate the fields at t = 0, i.e., the factor e−ik·vt

can be omitted. Then, Eqs. (14) and (15) yield

Exk = φ0v

c

kykx(1 + e−ika)

k2(1 + �k)
,

Eyk = −φ0v

c

k2
x (1 + e−ika)

k2(1 + �k)
. (16)

Since the prefactor here contains v, in linear approximation in
velocity, the term ik · vτ in denominators can be discarded for
slow motion.

The dissipation power follows:

W = σd
∫

d2r E2 = σd
∫

d2k
4π2

(|Exk|2 + |Eyk|2)

= φ2
0v

2σd

2π2c2

∫
d2k k2

x (1 + cos ka)

k2(1 + k�)2
. (17)

We now go to dimensionless q = �k,

W
W0

=
∫

d2q q2
x (1 + cos qR)

q2(1 + q)2
= W1 + W2, (18)

where W0 = φ2
0v

2σd/2π2c2�2 and R = a/�. The first con-
tribution,

W1 =
∫

d2qq2
x

q2(1 + q)2
= π ln

1

eξ
, (19)

where the upper limit of the divergent integral over q is taken
as 1/ξ to avoid the vortex core (ξ here is the dimensionless
core size). The second contribution is

W2 =
∫

d2qq2
x cos qR

q2(1 + q)2

=
∫ ∞

0

dq q

(1 + q)2

∫ 2π

0
dφ cos2 φ cos[qR cos(φ − α)],

(20)

with φ being the azimuth of q and α is the angle between
R = a/� and X . After substitution β = φ − α, the angular
integral takes the form

∫ 2π

0
dβ cos2(β + α) cos(qR cos β )

= 2π

(
J1(qR)

qR
− J2(qR) cos2 α

)
, (21)

where J1,2 are Bessel functions of the first kind. The inte-
gration over q can be performed analytically resulting in a
cumbersome combination of Bessel and hypergeometric func-
tions. We avoid this by performng this integration numerically.
The contours of W2(X,Y ) = const are shown in Fig. 1; con-
tours of the total dissipation W = const are, in fact, the same
because W1 is a coordinate-independent constant.

A surprising feature of this plot is the two minima at the
X axis situated symmetrically relative to the origin (v is along
X ). One of these minima is shown in Fig. 2 where W2(X, 0)
is plotted to indicate the minimum position at Xm ≈ 2.2. To
see a clear picture of the dissipation W (a) = W2(a) + const,
we also show the three-dimensional (3D) version of the same
result in Fig. 3.

For an arbitrary velocity, one has to keep the term ikxvτ

in denominators of electric-field components (16). One then
obtains

W
W0

=
∫

d2q q2
x (1 + cos qR)

q2[(1 + q)2 + q2
x S2]

. (22)
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FIG. 1. Contours of constant dissipation W2(X,Y ) for a pair of
vortices; one at the origin and the other at (X,Y ) = (ax, ay )/� mov-
ing with the same velocity along the X axis.

The dimensionless parameter,

S = v
2πσd

c2
(23)

is small even for vortex velocities exceeding the speed of
sound presently attainable [1–3] if one takes for the esti-
mate the conductivity σ of normal quasiparticles as equal
to the normal-state conductivity. Unfortunately, there is not
much experimental information about the T dependence of
σ . Theoretically, this question is still debated, e.g., Ref. [13]
discusses possible strong enhancement of σ due to inelastic
scattering.

We employ the fast Fourier transform (FFT) to evaluate the
integral (22). The position Xm of the minimum of W (X, 0) for
each S was obtained from the contour plot similar to Fig. 1,
which was sliced out of the 2D map obtained from the cosine
term of Eq. (22) via 2D FFT. The result is shown in Fig. 4.
Hence, for S � 0.2, which is the domain of our interest, the
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FIG. 2. W2(X, 0) vs X for the velocity along the X axis. S = 0.1,
and X is in units of �.

FIG. 3. The 3D plot of W2(X,Y ) for the velocity along the X
axis. (X,Y ) = (ax, ay )/�.

minimum is practically in the same place at Xm = xm/� ≈ 2.2
[5].

Discussion. Hence, the dissipation W of two vortices sep-
arated by R = (X,Y ) depends on the pair orientation relative
to the velocity v̂ and on the pair size R. The numerically eval-
uated dissipation W (X,Y ) is shown in Fig. 3. The dissipation
power has a minimum if the pair is oriented parallel to v and
the vortices are separated by am ≈ 2.2�.

The physical reason for this minimum can be traced to the
magnetic structure of a single moving vortex. It was shown in
Refs. [6,10] that the magnetic field is depleted in front of the
moving vortex and enhanced behind it due to induced currents
of normal excitations. If two vortices move so that one follows
the other and a ‖ v, in the space between them the depletion
of the second is compensated by the enhancement due to the
leader. The resulting magnetic-field variation in this space is
weaker than for a single vortex. Then the electric field induced
in this intervortex region E ∝ ∂t h ∝ (v · ∇h) is suppressed
along with the dissipation. Clearly, this simple argument does
not work if the pair orientation differs from a ‖ v.

As remarked in the Introduction, the dissipation of two
moving vortices has also been considered in our earlier work
[6], however, the minimum of it, the main result of the current
Letter, had not been found. A formal reason for this omission

FIG. 4. The minimum position Xm vs S.
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was that for the minimum to be visible, the divergent part
(19) had to be subtracted in advance. Instead, we have chosen
to evaluate the divergent double integral (17) “brute-force”
numerically, an uncontrollable procedure. Hence, the part of
Ref. [6] related to dissipation of two moving vortices is, in
fact, incorrect.

Moving vortices in Pb films were studied in Ref. [1].
The penetration depth of bulk Pb is λ ≈ 96 nm and the film
thickness d = 75 nm so that the Pearl length � ≈ 250 nm.
Vortices driven across the thin-film bridge by a transport
current are reported to form chains along the velocity with
spacing a depending on the distance from the bridge edge.
Since the driving current decreases with the distance x from
the edge, the vortex velocity depends on x as well. The team
[1] was able to estimate both v(x) and a(x).

According to our model, the pair of moving vortices dissi-
pates the least if it is oriented along the velocity and separated
by am ≈ 2.2�. One can expect the chain of vortices to have
a period of the order am. Taking the experimental estimate

of � we obtain am ≈ 540 nm. In the experiment [1] the
chain period varies from ≈1500 nm near the bridge edge
to ≈600 nm (for the set of data with the transport current
18.9 mA). Hence, the order of magnitude provided by our
model is correct. In other words, the idea that the chain period
is dictated by the minimum of dissipation agrees qualitatively
with observations.

From the data [1], close to the bridge edge the chain pe-
riod a ≈ 1.5 μm and the velocity v ≈ 16 km/s, i.e., the ratio
a/v ≈ 10−10 s. On the other hand,

am

v
= 2.2

�

v
= 4πσλ2

c2S
, (24)

where we replaced the velocity with S of Eq. (23). Tak-
ing for am/v the experimental ratio a/v ≈ 10−10 s and λ ≈
96 nm, we estimate the conductivity of normal excitations
σ ≈ (3 × 1019S) s−1. With S ∼ 10−2 this gives the Pb con-
ductivity that again suggests a qualitative relevance of our
model.
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