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Nonsymmorphic symmetry and field-driven odd-parity pairing in CeRh2As2
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Recently, evidence has emerged for a field-induced even- to odd-parity superconducting phase transition in
CeRh2As2 [S. Khim et al., Science 373, 1012 (2021)]. Here we argue that the P4/nmm nonsymmorphic crystal
structure of CeRh2As2 plays a key role in enabling this transition by ensuring large spin-orbit interactions near
the Brillouin zone boundaries, which naturally leads to the required near-degeneracy of the even- and odd-parity
channels. We further comment on the relevance of our theory to FeSe, which crystallizes in the same structure.
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Introduction. The discovery of a transition between two
distinct superconducting phases at high magnetic fields in
CeRh2As2 [1] has generated great interest [2–6]. Due to
the immense upper critical field, this has been widely inter-
preted as a transition between even- and odd-parity pairing
states. Creating odd-parity superconductors is a central goal of
quantum materials science as they can host nontrivial topolog-
ical phenomena [7]. The putative field-induced transition in
CeRh2As2 offers a straightforward route to a bulk odd-parity
state. As such, it is of great importance to clarify the physics
responsible for its remarkable phase diagram.

The even- to odd-parity transition is enabled by a Rashba-
like spin-orbit coupling (SOC) that exists on an inversion (I)
symmetry breaking sublattice of atoms. I symmetry trans-
forms one sublattice to the other, with opposite signs for SOC,
ensuring the Hamiltonian satisfies a global I symmetry. How-
ever, the even- to odd-parity transition is also suppressed by
hopping between the two sublattices, and so the SOC should
be larger than this inter-sublattice hopping for this transition
to occur. It is unclear if this condition can be realized in bulk
crystals: Indeed, a relatively strong Rashba-like spin texture
has been observed in bilayer cuprate Bi2212 [8], but there is
no evidence of a field-induced odd-parity state. Since super-
conductors with this sublattice structure are not uncommon,
the rarity of the field-induced transition suggests that addi-
tional physics is necessary to explain the phase diagram of
CeRh2As2.

Here we show that the nonsymmorphic (NS) structure of
CeRh2As2 allows the Rashba-like SOC to be larger than the
inter-sublattice hopping, providing an explanation for why
this transition is observed. In particular, we show that the
NS structure ensures that the SOC energy scale is asymptot-
ically larger than that of the inter-sublattice hopping near the
Brillouin zone edges. Provided that a Fermi surface with suffi-
ciently large density of states (DOS) exists near the zone edge,
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the field-induced even- to odd-parity transition can appear at
the relatively high temperature seen in CeRh2As2.

This Letter is organized as follows: First a general ar-
gument is given that on the Brillouin zone edge arbitrary
superpositions of Kramers-degenerate states have the same
spin polarization direction, in contrast to Kramers-degenerate
states at the Brillouin zone center. This remarkable feature
reflects the dominance of SOC near the zone edges. We con-
firm this by examining a k · p theory valid near the zone
edge and contrasting it with one valid near the zone center.
This explicitly reveals that the SOC is asymptotically smaller
than the inter-sublattice hopping near the zone center, but
is asymptotically larger near the zone edge. Considering su-
perconductivity originating from an intra-sublattice pairing
instability, the dominance of the SOC at the zone edge allows
us to qualitatively reproduce the magnetic field–temperature
phase diagram of CeRh2As2, provided that the contribution to
the DOS from the Fermi surfaces near the zone edges is suffi-
ciently large. Density functional calculations for CeRh2As2

reveal that this can be the case if electron correlations are
included. Finally, since our analysis shows that exotic physics
due to strong SOC can be expected generically in NS su-
perconductors, we discuss an application of our theory to
NS FeSe.

Nonsymmorphic symmetry and spin texture. In contrast to
Kramers-degenerate band states at the Brillouin zone cen-
ter, the NS structure of CeRh2As2 implies that the twofold
Kramers-degenerate band states at the zone edge exhibit
the same spin polarization direction. To show this, we con-
sider the set of symmetries that keep momenta lying in
the zone-center plane kc = (0, ky, kz ) and the zone-edge
plane ke = (π, ky, kz ) unchanged. These include Mx, a mirror
reflection through the x̂ direction; T Ĩ , where T is time-
reversal symmetry and Ĩ = {I| 1

2 , 1
2 , 0}; and their product

T ĨMx. Since (T Ĩ )2 = −1, these states exhibit a twofold
Kramers degeneracy denoted as |kν=e,c,±〉 ≡ |ν,±〉. These
twofold-degenerate eigenstates are also eigenstates of Mx,
and since M2

x = −1, Mx|ν,±〉 = eν,±|ν,±〉, where the eν,±
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are purely imaginary. From the nonsymmorphicity and the
general result that T commutes with spatial symmetries, we
find T ĨMx = {E |100}MxT Ĩ , where {E |100} is an in-plane
translation vector. Importantly, {E |100} becomes 1 for kx =
0, and −1 for kx = π . Hence, for the zone-center plane
Mx(T Ĩ|c,±〉) = −ec,±(T Ĩ|c,±〉), while for the zone-edge
plane Mx(T Ĩ|e,±〉) = ee,±(T Ĩ|e,±〉). We thus conclude that
Kramers-degenerate partners at the zone-center plane have
opposite eigenvalues with respect to Mx, while those at the
zone boundary have the same eigenvalue with respect to Mx.

Since the spin operators Sy and Sz are odd under Mx, they
will have nonzero matrix elements at the zone-center plane,
but all their matrix elements are zero at the zone-edge plane
[9]. That is, at the zone edges, all eigenstates have their spins
polarized along the ±x̂ direction. A similar argument can be
made for the k = (kx, π, kz ) plane, where we find that the
states are polarized along the ±ŷ direction. This implies that
the states in the zone-edge plane cannot couple to a c-axis
field, while those in the zone-center plane can. As seen below,
it is this key difference that enhances the c-axis Pauli-limiting
fields and stabilizes a field-induced even- to odd-parity tran-
sition for Fermi surfaces near the zone edges relative to those
near the zone center.

k · p theories. To quantify the difference between zone-
center and zone-edge Fermi surfaces on superconductivity, we
construct k · p theories valid near the � point and the M-A
Dirac line. (Our results for the M-A Dirac line hold more
generally for Fermi surfaces near the zone edge.) For the �

point, it suffices to take the small-k limit of the tight-binding
theory presented in Ref. [1]. To develop the k · p theory near
the M-A Dirac line [10] we use the representations as given on
the Bilbao crystallographic server [11].

In both k · p theories the Hamiltonian has the structure

H0 = ε00,kτ0σ0 + εx0,kτxσ0 + εy0,kτyσ0

+ εzx,kτzσx + εzy,kτzσy + εzz,kτzσz. (1)

The τi Pauli matrices encode the sublattice basis composed of
two states that are transformed into each other under inversion
(e.g., a Ce site basis). The σi Pauli matrices encode the spin
basis. The first line of Eq. (1) describes spin-independent
intra- and inter-sublattice hopping processes, whereas the sec-
ond line includes the SOC terms. I symmetry is given by
the operator τxσ0 at the �, M, and A points. Consequently,
ε00,k and εx0,k are even in momentum k, while the other
coefficients are odd. Equation (1) has the same form as a min-
imal Hamiltonian for a locally noncentrosymmetric material
[12–16]. The Hamiltonian possesses two doubly degenerate
eigenvalues ε00,k ± ε̃k, where

ε̃k =
√

ε2
x0,k + ε2

y0,k + ε2
zx,k + ε2

zy,k + ε2
zz,k. (2)

It is convenient to label the two degenerate states in each
band by a pseudospin index. Our choice of pseudospin basis
is presented in the Supplemental Material (SM) [17].

In Table I we give the momentum dependence of the co-
efficients εμν,k. Along the M-A line we expand radially from
the line, i.e., k = (π, π, kz ) + (kx, ky, 0), and expand in kx and
ky. We do not give the form of ε00,k since this term does not
play an essential role in the physics, and also only keep the

TABLE I. Form of the nontrivial terms in Eq. (1) near the � point
and along the M-A Dirac line. The expansion coefficients m(e)

i j are
functions of kz, with the (e) and (o) superscripts indicating that these
are nonvanishing or vanishing at the M and A points. The last row
gives α̃2

k , characterizing the ratio of the SOC to the inter-sublattice
hopping, and the limiting values as k → 0.

� point M-A Dirac line

εx0,k gx0 m(e)
x0 kxky

εy0,k gy0kz m(o)
y0 kxky

εzx,k gzxky m(e)
zx ky

εzy,k −gzxkx −m(e)
zx kx

εzz,k gzzkzkxky(k2
x − k2

y ) m(o)
zz kxky(k2

x − k2
y )

α̃2
k

g2
zx (k2

x +k2
y )

g2
x0

→ 0
m(e)2

zx (k2
x +k2

y )

(m(e)2
x0 +m(o)2

y0 )k2
x k2

y
→ ∞

lowest nonzero power of kν in the coefficient of each τiσ j

matrix. The k · p theories reveal several remarkable features
of the electronic structure: (i) The εzz,k SOC is parametrically
smaller than the Rashba-like SOC terms εzx,k and εzy,k (and
will henceforth be ignored). (ii) Near the M-A Dirac line when
kx = 0, only the coefficient of τzσx is nonzero, a consequence
of the NS spin texture presented above. (iii) The NS symmetry
requires that all coefficients vanish at the M-A Dirac line, and
hence the energy bands are fourfold degenerate here.

Importantly, the Rashba SOC terms vanish asymptotically
more slowly than the inter-sublattice hopping as the M-A
Dirac line is approached. This is reflected in the divergence
of the ratio α̃k = √

(ε2
zx,k + ε2

zy,k)/(ε2
x0,k + ε2

y0,k) as one ap-
proaches the Dirac line. In contrast, only the inter-sublattice
hopping εx0,k can be nonzero at the � point, which implies
that the ratio α̃k vanishes at the zone center. As we shall see,
α̃k plays a key role in our theory.

Zeeman response. We include a Zeeman field by adding
the term HZ = gμBτ0 �σ · �H to the Hamiltonian Eq. (1). Ex-
pressed in the band-pseudospin basis, HZ typically has both
interband and intraband components. The former are not im-
portant in the ε̃k � gμ| �H | limit; in contrast, the latter lifts the
pseudospin degeneracy, acting like an effective pseudospin
Zeeman field, which we obtain by projecting τ0 �σ onto the
pseudospin basis, τ0σμ → �γ μ

k · �s. For our choice of pseu-
dospin basis, Zeeman fields parallel (perpendicular) to the c
axis produce pseudospin fields that are also parallel (perpen-
dicular) to the c axis; explicit expressions for the effective g
factors �γ μ

k are given in the SM [17]. Moreover, the magnitude
of �γ μ

k is basis-independent and given by

∣∣�γ μ

k

∣∣2 = ε̂2
x0,k + ε̂2

y0,k + ε̂2
zμ,k, (3)

where ε̂μν,k = εμν,k/ε̃k. For a c-axis field, the pseudospin
splitting is controlled by the ratio α̃k as |�γ z

k | = (1 + α̃2
k )−1/2.

Our k · p theory therefore shows that the pseudospin splitting
is maximal near the � point, but vanishes as we approach the
M-A Dirac line. This reflects the in-plane spin polarization
of the band states near the zone edge required by the NS
symmetry as discussed above, and implies that the effective
g factor vanishes on the zone boundary (|�γ z

k | = 0).
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Superconductivity. In the standard scenario for the field-
induced transition in locally I-symmetry broken supercon-
ductors [18–21], the dominant interaction pairs electrons on
the same sublattice in a spin singlet. Since the sublattices
are swapped by I , this generates both even- and odd-parity
states, corresponding to equal and opposite signs of the pair-
ing potential on each sublattice, respectively. We refer to these
two possibilities as the uniform and staggered states. The sign
difference can be readily encoded in the τ dependence of the
pairing potential, which for the uniform (staggered) state is
fk
τ0iσy ( fk
τziσy), where fk is an even-parity form factor.

In the pseudospin basis, the uniform and staggered pairing
potentials are


 fkτ0iσy → 
 fkisy, (4)


 fkτziσy → ±(ε̂zx,ksx + ε̂zy,ksy)
 fkisy. (5)

The odd-parity staggered state is transformed into a he-
lical pseudospin-triplet state, with reduced gap magnitude√

ε̂2
zx,k + ε̂2

zy,k|
 fk| and opposite sign in each band. The re-
duced gap magnitude of the staggered state is due to interband
pairing, implying that this state has a lower transition temper-
ature (Tc) than the uniform state. In the weak-coupling limit
the Tc of the staggered state is determined by an effective cou-
pling constant which is smaller than that of the uniform state
by 〈ε̂2

zx,k + ε̂2
zy,k〉FS = 〈α̃2

k/(1 + α̃2
k )〉FS, where the average is

taken over the Fermi surface [22]. Due to the exponential
sensitivity of Tc on the coupling constant, the ratio α̃k must
be larger than unity for Tc of the staggered and uniform states
to be comparable.

The projection onto the pseudospin basis reveals the es-
sential physics of the field-induced transition. Since the same
interaction mediates pairing in both channels, the generically
smaller gap opened by the staggered state implies that it has
the lower Tc at zero field. However, whereas the uniform
state is Pauli limited (albeit with an enhanced upper critical
field due to the reduced effective g factor [15]), the staggered
state is not Pauli limited for a c-axis field, since the effective
pseudospin Zeeman field is perpendicular to the �d-vector of
the pseudospin triplet state. Thus, a field-induced transition
occurs when a c-axis field suppresses the uniform state below
the Tc of the staggered state.

The key parameter that underlies both the Tc of the stag-
gered state and the response of the uniform state to c-axis
fields is α̃k. Crucially, our k · p analysis shows that α̃k strongly
varies across the Brillouin zone in CeRh2As2 due to the NS
crystal symmetry. In particular, although it vanishes upon
approaching the � point, α̃k diverges toward the M-A Dirac
line due to the vanishing inter-sublattice terms, as indicated in
Table I. Remarkably, the NS symmetry-enforced spin polar-
ization of the band states at the Brillouin zone edge implies
that α̃k diverges on these planes. Thus, large values of α̃k are
generically expected for Fermi surfaces sufficiently near the
zone edge. In CeRh2As2, the field-induced transition occurs
at Tc,t ≈ 0.7Tc,0, where Tc,0 is the zero-field transition temper-
ature, implying that α̃k ≈ 3.5 at the Fermi energy. Our theory
shows that such ratios are possible if states near the Brillouin
zone edge make a significant contribution to the DOS at the
Fermi energy. Previous theoretical studies of CeRh2As2 have
assumed Fermi surfaces near the � point, where the enhance-

(a) (b)

FIG. 1. (a) Phase diagram for NM = 0.9N0: The blue line gives
the upper critical field of the uniform state, and the red dashed line
gives the boundary of the staggered state. The staggered state is re-
alized in the shaded region. (b) The dependence of the upper critical
field of the uniform state (Hmax, black solid line) and the critical
field (Ht , blue dashed line) and temperature (Tc,t , red dot-dashed
line) at which the field-induced transition occurs as a function of
the contribution of the density of states at the M point to the total
density of states. The field strengths are expressed in terms of the
Pauli-limiting field HP ≈ 1.25kBTc,0.

ment of α̃k due to the NS symmetry is not apparent [4–6]; as in
similar treatments of symmorphic lattices [18–21], these the-
ories require an unexpectedly large SOC strength to explain
the field-induced transition.

It is instructive to contrast our results with previous results
in I-symmetric 2D Ising superconductors [23–25] and a toy
model of a 1D NS zigzag chain [26]. In the Ising systems, a
symmetry-required divergence of the ratio α̃k occurs for band
representations with angular momentum jz = ±3/2 at certain
points in the 2D Brillouin zone, which strongly enhances the
Pauli-limit field for in-plane fields. Our result is more general,
however, as the divergent α̃k occurs on a 2D manifold of the
3D Brillouin zone, and holds for all band representations. In
the zigzag chain, the stability of an odd-parity state similar to
that discussed here is found to be enhanced when the 1D FS is
near the zone edge [26]. Although the corresponding ratio α̃k

does take a maximum at the zone edge, it does not diverge as
in our model. Consequently, the NS spin texture mechanism
we examine is a more general route to enhancing the effect
of SOC.

Two-pocket model. While Fermi surfaces near the zone
edge favor a field-induced transition, it is likely that they will
appear together with other Fermi surfaces near the zone center
where the parameter α̃k is small. To examine the sensitivity
of our theory to the presence of these additional Fermi sur-
faces, we consider a model of CeRh2As2 with two cylindrical
Fermi pockets centered on the �-Z and M-A Dirac lines,
fixing |�γ z

k | = 0.9 and 0.1|k̂x k̂y| on the two Fermi surfaces,
corresponding to small and large values of α̃k, respectively.
The momentum dependence of the effective g factor near
the M-A Dirac line reflects the NS symmetry-enforced spin
texture at the zone boundary. Assuming an intra-sublattice
pairing interaction, we use standard techniques to construct
the field-temperature phase diagram; see the SM for details
[17]. For simplicity we assume an s-wave form factor, i.e.,
fk = 1, but our results are robust to other choices.

In Fig. 1(a), we present a phase diagram which qualita-
tively agrees with that observed in CeRh2As2. Since we only
consider the Zeeman effect, the upper critical field of the
staggered state is infinite, and so the rightmost boundary of the
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FIG. 2. (a) Bands including 4 f electron correlations through a
renormalized band structure approach with Ce 4 f weight represented
by orange dots. (b) Fermi surface for (a). The color bar represents the
Fermi velocity magnitude. (c) x-component spin density distribution
of the doubly degenerate bands at a point on zone edge marked
by the pink circle in (b). Red/blue represents positive/negative spin
density.

staggered state is vertical; including orbital effects will give a
finite upper critical field [2], but does not qualitatively alter
our theory. Figure 1(a) was found by setting the M-A pocket
DOS at 90% of the total DOS. In Fig. 1(b) we examine the
consequences of varying this M-A pocket DOS for the upper
critical field of the uniform state, and the field strength and
temperature at which the transition into the staggered state
occurs. The field-induced transition is strongly enhanced as
the contribution of the M-A pocket to the DOS increases,
with the even- and odd-parity states near-degenerate when
this is the only Fermi surface. Importantly, the field-induced
transition occurs at an observable temperature Tc,t > 0.1Tc,0

if the M-A pocket makes up at least half of the DOS.
DFT results. DFT calculations and analysis were car-

ried out to explore the possibility that the Fermi surface of
CeRh2As2 contains regions near the zone edge and to verify
that the states at the zone edge exhibit the spin polarization
found above. As shown in the SM [17], the Fermi surface
(shown in Fig. S1a) predicted by the DFT bands consists of
four pockets about the A point that do not intersect the zone
edge, and portions about the �-Z line, representing ∼53% of
the DOS, in agreement with [6]. This Fermi surface is unlikely
to be consistent with the observed odd-parity state.

The experimental heat jump at the superconducting tran-
sition temperature suggest fermion masses a factor 100–1000
larger than the bare electron mass, implying that the Ce 4 f
electrons are itinerant. The standard DFT results are incon-
sistent with this enhanced effective mass. To address this,
we have employed a renormalized band structure approach
similar to that pioneered by Zwicknagl [27,28]. Figure 2(a)
shows the resulting band structure; the corresponding Fermi
surface, Fig. 2(b), has a DOS 10 times larger than standard
DFT and agrees with that found in Ref. [29]. Moreover, the
pockets at the zone boundary account for 80% of the total
DOS, consistent with the observed odd-parity state. In the SM,
we show that with different choices of renormalizations, the
DOS can be further increased (with similar Fermi surfaces),
and also explore the effects on the band structure from several
other scenarios within DFT. Figure 2(c) shows the Sx spin
density arising from a Kramers pair on the zone boundary;
the integrated spin density around each atom is nonvanishing
only for Sx and is opposite on the two sublattices, in agreement
with the symmetry-based arguments presented above.

Discussion and conclusions. Our key result is that the NS
P4/nmm structure of CeRh2As2 enables the SOC structure
required to stabilize an odd-parity superconducting state un-
der field and to enhance the critical field along the c axis.
It is natural to ask if there exist other materials with the
same structure for which this is also the case. Remarkably,
there exist experimental results on superconducting FeSe, also
with a P4/nmm structure, that suggest similar considerations
apply. In particular, Knight shift measurements indicate that
there is no change in the spin susceptibility upon entering the
superconducting state for the field applied along the c axis
[30,31]. This could be explained by a nearly vanishing g factor
for a c-axis Zeeman field due to strong SOC. This implies that
the Zeeman coupling only produces a van Vleck–like spin sus-
ceptibility which is largely unchanged by superconductivity
[18]. In addition, there exists evidence for an unexplained c-
axis field-induced superconducting phase transition for fields
much larger than the Pauli-limiting field [32]. The possibility
that this transition corresponds to a transition from an even- to
odd-parity phase is currently under investigation.
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