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We propose a spin transport induced by inertial motion. Our system is composed of two host media and a nar-
row vacuum gap in between. One of the hosts is sliding at a constant speed relative to the other. This mechanical
motion causes the Doppler effect, which shifts the density of states and the nonequilibrium distribution function
in the moving medium. Those shifts induce the difference in the distribution function between the two media,
and they result in tunneling spin current. The spin current is calculated from the Schwinger-Keldysh formalism
with a spin tunneling Hamiltonian. This scheme does not require temperature difference, voltage, or chemical

potential.
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Introduction. Transport is a universal phenomenon in
physics. Utilizing electron, neutron, and photon transports in
free space has provided high precision measurements such as
microscopy and spectroscopy, which have played important
roles not only in physics but also in materials science, chem-
istry, and biology. Precisely guiding those excitations in media
has enabled electrical and optical communications and infor-
mation storage. Recent advances in condensed-matter physics
have realized not only the transport of a single quantum but
also the manipulation of its properties.

In an emerging field called spintronics, manipulation of
the spin angular momenta of electrons has been conducted in
various ways. For example, spin tunneling transport at the in-
terface between a normal metal and a ferromagnetic insulator
can be driven by microwave irradiation on the ferromagnetic
side. This type of spin transport is known as the spin pumping
effect [1-5]. We proposed that visible light could also be used
to drive spin transport at metallic interfaces [6—8]. There is
another popular way to drive the spin tunneling making use of
the temperature difference between two media, i.e., the spin
Seebeck effect [9-12]. In these schemes, the differences in the
nonequilibrium distributions between the two media drove the
spin transports.

Another interesting direction in spintronics is to use a
mechanical degree of freedom for spin manipulation. Since
spin is a kind of angular momenta, it can be manipulated
by mechanical rotation in accordance with the angular mo-
mentum conservation. Indeed, Barnett, Einstein, and de Haas
showed experimentally that rigid-body rotation interacts with
a magnetic moment originating from the spin angular mo-
menta of electrons [13,14]. The mechanical manipulation of
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spin is demonstrated in a variety of systems, including mi-
cromechanical systems [15—18], microfluid systems [19-21],
atomic nuclei [22,23], and quark-gluon plasma [24]. These
effects can be comprehensively understood as consequences
of spin-rotation coupling [25,26].

Although there are various studies on spin transport and
manipulation by mechanical motion as reviewed in Ref. [27],
there is no study on spin tunneling transport driven by me-
chanical motion.

In this work, we show that spin tunneling transport be-
tween two media can be induced by inertial motion. Our
proposal is closely related to noncontact friction [28-31].
There are various theoretical works describing translational-
type [32-38] and rotational-type [39—41] noncontact friction.
From the source point of view, Langevin-type equations have
been used to describe the frictional force in fluctuating fields
[28-30,32,36]. On the other hand, from the field point of
view, the spectral shift induced by motion plays a vital role
[33-35,37]. The spectral shifts produce the photon momen-
tum flux between two objects and hence the friction. In other
words, the mechanical motion empowers the linear momenta
to be transferred from one to the other. Here, we consider spin
transfer between relatively moving media instead of linear
momentum transfer.

When relative motion is forced in a system, the system
becomes inhomogeneous, i.e., driven into a nonequilibrium
state. We can tell one medium from the other, and there
is no longer symmetry in the direction normal to the sur-
faces. This symmetry breaking induced by the nonuniformly
forced motion provides a possibility of current generation in
the direction. To take the inhomogeneity into consideration,
we utilize the nonequilibrium (Schwinger-Keldysh) Green’s
function, and we perturbatively evaluate the effects of relative
motion, e.g., spin currents.
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FIG. 1. The schematic image of the setup considered in this
study. A very narrow gap separates two media hosting magnons. The
right medium is moving in the —x direction at a constant velocity
v while the left medium stands still. Due to the Doppler effect, the
dispersion relation of the magnon in the right medium observed in
the laboratory frame is shifted.

We consider two media separated by a very narrow gap
(Fig. 1).

Each medium hosts a magnon and is described by the
following Hamiltonian within the Holstein-Primakoff approx-
imation [42]:

Hy = Eo+ Y _ hxblby., (1
k

where E| is the classical ground-state energy of the medium,
wy is the magnon dispersion relation, and we have introduced
bosonic creation and annihilation operators.

The two media are interacting via the following tunneling
Hamiltonian:

Hi = ) Hebgeb}, +Hec., ()
k

where H. is a coupling strength, and the subscripts L and
R specify the medium. Although we assume for the sake of
simplicity that the coupling strength H., is constant in this
study, it could be dependent on the wave number k.

Spin current induced by inertial motion. Let us consider
the change of the spin on the left medium in the interaction
picture. We can obtain

ad .
o2 DS = = ) 2He Il OB (1), (3)
k k

where §; = § — bzkbu( is the z component of the spin in the
left medium, and (- - - ) denotes the average with respect to the
full Hamiltonian. Let us define the spin current flowing into
the left medium at t = ¢y,

(I (1)) = = Y 2He Im(bpi(ty — 0)b], (1)), (4)
k

We shall omit ), in the following where relevant.
Using the formal perturbative expansion [43], we can eval-
uate the spin current up to the second order in the coupling
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FIG. 2. Schwinger-Keldysh contour composed of forward and
backward branches Cy.

strength Hy,

2H

2
(Iy(01)) = == Re /C (Teb} (17 bri(2))o

x (Tebre(t7 bl (12))od12, ®)

where (---)o is the average with respect to the unperturbed
Hamiltonian, and 7¢ is the time-ordering operator on the
Schwinger-Keldysh contour composed of a forward branch
C, and a backward one C_ (see Fig. 2). Note that t* denotes
time on the forward and backward branches.

Here, we introduce the nonequilibrium Green’s function,

1 T
Xt 1) = E(chk(fl)bk(fz))o, (6)
whose lesser and greater components read
< + - —i F
Xen = Xe(t] 1) = 7<bk(t2)bk(tl))01 @)
—i B
Xean o= Xty 655) = 7<bk(tl)b;{(12)>0o (8)

We can write the chronologically ordered and antichronolog-
ically ordered components in terms of the lesser and greater
components [(7),(8)],

XkJrfE =00 — fz)kalz +0(t —1 )Xk<;12, 9

Xz =0 — 02X + 0t — 1) X1 (10)

where 6 denotes the Heaviside unit step function.
Splitting the contour C into the forward and backwards
parts, we can write the real-time representation,

(Ls(t1)) - <
= —Re (XRm;c;IZXLk;Zl + XRk;lZXI?;c;Zl)dtZa (11

2hHZ
where we have defined the retarded and advanced compo-
nents,
—1 .
Xeiz = -0 = )b, ) = X = Xz,
(12)

+i ¢
00 = b1, b )0 = X — X
(13)

A
X2 *=

which is merely the dynamical (magnetic) susceptibility of the
medium. Note that the square brackets denotes the commuta-
tion relation here, i.e., [6,0] = @0 — o0 e.

In the steady state, Green’s functions depend only on the
time difference, e.g.,

1 —iw(ti—t
Xl??lzz E/X/?Ze t1=1) g4, (14)
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Thus, working on the frequency domain, we can simplify the
integral (11) in the steady state,

(1) = 4HE Z/Aﬁ(k w)do, (15)
k>0
ik, @) = RIm )} Tm xp Sny. (16)

Here, we have symmetrized the integrand with respect to the
wave number, AjP¥(k, w) = jP¥k, w) + j*(—k, w), and we
defined the distribution difference between the two media,
dny = ny(wry) — ny(wgy), where ny, denotes the Bose distri-
bution function, and wy,gy is the magnon dispersion in the left
(right) medium. Note that we have used the Kadanoff-Baym
ansatz, i.e., x,;, = 2iny(wy) Im X;?Z, in order to get Eq. (15).

That is the formula we use to evaluate the spin current flow-
ing between the two media. The integrand A j*(k, w) is com-
posed of (i) the products of magnon spectra Im szw Im X%‘(w
and (ii) the distribution difference ény. This implies that large
spectral overlap and large population differences between the
two media drive large spin currents.

In our setup, the inertial motion of the right medium is
the key to generate a finite population difference. To consider
the effects of inertial motion, we shall define the physical
quantities in the comoving frame and go back to the laboratory
frame. In the nonrelativistic regime (Jv/c| < 1), the Lorentz
boost can be safely approximated by the Galilean boost, which
we use to go back to the laboratory frame,

r—>t,
X —> X — VL.

a7
Applying the Galilean boost to a function ¥ (x), we have

V(x) = / Vi P dk dw, (18)

(271 Q)

(277)2 / Veorue ™ dkdo.  (19)

This implies that the Galilean boost (17) induces the Doppler
effect, i.e., the spectra and hence the dispersion relations in
moving media are shifted (w; — w; — vk).

In our case, the spectrum and the distribution function of
magnons in the right medium are shifted,

R R
Im X e, = I XRp o (20)
np(wgr) — np(wre — vk).

When the two media are made of the same material, we
substitute

Im Xfiw =Im X;?:),
R R
Im gy, = IM X ks
Sny, = ny(wi) — np(wy — vk). 21

From the expression dny, we can immediately find that there
is no spin current if the right medium is not moving (v = 0).
In the following, we assume a simple parabolic dispersion
for the magnon, w; = DI? + wy, where wy = y B is the Zee-
man energy. The retarded component of the magnon Green’s
function can be given in the frequency domain,

1/h

R
= 22
Xkw w— i + il (22)

a
10 +0.06
5}
) 0.0
3
—0.06
0 +1
-1 0 +1
k [nm™!]

AjS(k
1o (© A7 (k) 2.0 x 10°
E 1.0 x 10°
=}
3
0 . 0.0 x 10°

0 02 04 06 08 1.0

k [nm™!]

FIG. 3. (a) The spectral overlap of magnons in left and right
media Im 7}, Im x7: . (b) Magnon distribution difference between
left and right media dny. (c) The integrand Aj}*(k, w) that yields
the tunneling spin current. We set the spectral broadening due to
impurities, etc. ' = 1 (meV) = 0.24 (THz), the velocity of the right
medium v =1 (ms™!), the static magnetic field B =1 (T), and
D = 532 (meV A?) in accordance with Ref. [44].

where I' is spectral broadening, for example, due to surface
roughness and impurity scattering.

Note that we can analyze the spin current in a frame
comoving with the right medium, and the result does not
contradict the calculation in the laboratory frame [43]. In
Fig. 3(c), the integrand A j$*(k, w) in the spin current formula
(15) is plotted. Since the Doppler shift Aw; = vk is smallest
when k = 0, the spectral overlap Im x} Im xp}, becomes
large in the low-frequency region [see Fig. 3(a)]. We can see
that the amount of the distribution difference §n; is large in
the low-wave-number region [see Fig. 3(b)]. This implies that
the dominant contribution to the steady-state spin current (/3*)
comes from that region and justifies introducing the cutoff
frequency and the wave number when evaluating the integral
(15) in numerics. Numerically integrating the spin current
formula (15), we can obtain Figs. 4 and 5. To obtain those
figures, we substituted a far smaller number into the coupling
strength than the magnon energy (Hex < hiwy < hiwy), and
thus we can safely adopt the perturbative evaluation of the
spin current.

We have plotted the spin current (/*) as a function of the
right medium velocity v for three different temperatures in
Fig. 4. As the velocity v is larger, the Doppler shift Aw = vk,
and hence the distribution difference én; increases. This is
why the spin current increases with the velocity of the right
medium. We can fit the spin current by a parabolic function.
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FIG. 4. Spin current at the steady state (/;*) as a function of
the velocity of the right medium v. Blue, gray, and red curves
are the spin currents at liquid helium, liquid nitrogen, and room
temperatures, [T = 4.15, 77, 300 (K)]. We set the coupling strength
H., = 1(GHz) ~ 50 (meV), which is far smaller compared with the
magnon frequency (i.e., Hex < fiwy). The other parameters are the
same as the previous figure. Each curve can be fitted by a parabolic
function (black dashed curve). This implies that the motion-induced
spin transfer is the second-order effect.

This reflects the fact that the leading term of the motion-
induced spin current is the second order, i.e., (I*) oc H2 .

In Fig. 5, we show the temperature dependence of the spin
current. The spin current can be linearly fitted (see the white
line in the figure) and is proportional to the temperature 7.

Conclusions. In this Letter, we proposed motion-induced
spin transfer between two media which host and can exchange
magnons. One of the two media is moving at a constant
velocity, and the inertial motion causes the Doppler effect.
This results in the spectral shift of the magnon spectrum
and distribution function in the moving medium. According
to our perturbative calculation within the Schwinger-Keldysh

0 100 200 300
T [K]

FIG. 5. Spin current at the steady state (/;*) as a function of tem-
perature 7. Since the spin current can be fitted by a linear function
(white dashed line), the motion-induced spin transfer is proportional
to the temperature T. We set v = 1 (ms~!) and other parameters the
same as the previous figures.

formalism, the difference in the magnon distribution between
the two media drives the spin transfer from the moving one to
the other.

As for the possibility of the experimental verification of our
proposal, we could use the state-of-the-art inverse spin Hall
measurement that was used, for example, in Ref. [19], which
can detect an electric signal of the order of 1 nV.

Our proposal will open a new door to spin manipulation by
inertial motion.
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