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We propose a “Floquet engineering” formalism to systematically design a periodic driving protocol in order to
stroboscopically realize the desired system starting from a given static Hamiltonian. The formalism is applicable
to interacting and noninteracting quantum systems which have an underlying closed Lie algebraic structure.
Unlike previous attempts at Floquet engineering, our method produces the desired Floquet Hamiltonian at any
driving frequency and is not restricted to the fast or slow driving regimes. The approach is based on Wei-Norman
ansatz, which was originally proposed to construct a time-evolution operator for any arbitrary driving. Here,
we apply this ansatz to the micromotion dynamics, defined within one period of the driving, and engineer the
functional form and operators of the driving protocol by fixing the gauge of the micromotion. To illustrate our
idea, we use a two-band system or the systems consisting of two sublattices as a testbed. Particularly, we focus
on engineering the cross-stitched lattice model that has been a paradigmatic flat-band model.
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Introduction. Floquet formalism [1] has been instrumen-
tal to study the dynamic evolution of a system subjected to
a periodic driving. The dynamics is decomposed into two
parts a time-periodic part describing the micromotion of the
system within a period, and an effective stroboscopic part
governed by a static “Floquet Hamiltonian.” The problem of
reverse engineering the driving protocol in order to obtain a
desired Floquet Hamiltonian stroboscopically from a given
simple static Hamiltonian is known as Floquet engineering.
It has garnered a lot of attention over the past several years
and has been applied in different experimental paradigms
[2–6]. Floquet engineered solid-state materials have been dis-
cussed extensively to develop “quantum matter on demand”
by controlling post-semiconductor materials [7–9] and sev-
eral exotic properties like unconventional superconductivity
[10,11], topologically nontrivial band structures [12], etc.
have been realized. Moreover, the effect of periodic driving
has been studied on a variety of timely solid-state systems
such as Luttinger liquid [13], superconducting circuit [14],
bilayer graphene [15], and strongly correlated electrons (Mott
materials) [16].

Most of these studies investigated the effect of periodic
driving, using a square-wave or sinusoidal protocol, on a
given system in either the high [17–21] or low [22,23] driving
frequency regime. However, a systematic theory of designing
a driving protocol such that the desired Floquet Hamiltonian
obtained exactly at any driving frequency is still missing in
the literature.

In this Letter, we propose to bridge this gap by formulat-
ing a theory of Floquet engineering for a class of systems
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whose Hamiltonians have any closed Lie algebraic structure.
Our formalism is based on the Wei-Norman ansatz, which
was originally proposed to obtain the dynamics for any time-
dependent system [24,25]. Since the form of the long-time
evolution part is already known from Floquet theory, we mas-
sage the Wei-Norman ansatz to the micromotion part of the
dynamics.

The requirement of a Lie algebraic structure is not a draw-
back, but Hamiltonians of several important classes of solid
state systems obey this structure. Hamiltonians for noninter-
acting two-band systems in any dimension follow the SU(2)
algebra [26]. Even interacting one- (two-) dimensional mod-
els of unconventional chiral p-wave superconductors at the
mean-field level [27,33–35] or Weyl semimetals [36] belong
to the SU(2) class. Three-band systems like the kagome and
Lieb lattice obey SU(3) algebra [27]. Furthermore, high-Tc

superconductors that can be modeled by a half-filled Hubbard
Hamiltonian have an underlying SO(4) symmetry. The Bethe
ansatz solution of these models show that its elementary ex-
citation can be separated into two fundamental excitations:
spinons and holons/antiholons, which reflects that the orig-
inal SO(4) symmetry can be separated into SU(2) ⊗ SU(2)
symmetry [37,38]. Another direct example of the importance
of the Lie algebraic structure is a strongly interacting system
described by a Tomonaga-Luttinger liquid that obeys SU(1,1)
algebraic structure and has been studied under periodic driv-
ing [39].

Our formalism can not only be used to control the dy-
namics of these systems in presence of driving but could
also help design the full driving protocol to realize these
complex Hamiltonians stroboscopically using simple static
Hamiltonians [27]. We first outline our general formalism and
then illustrate the main idea by designing a driving protocol
to realize the cross-stitched lattice, an interesting two-band
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system with one band dispersive and another flat, from a static
site Hamiltonian [40,41].

Formalism. The Hamiltonian of a generic periodically
driven quantum system reads

H (t ) = H0 + V (t ), V (t + T ) = V (t ), (1)

where H0 and V (t ) are the static Hamiltonian and the driving
potential with time-period T , respectively. The corresponding
time-dependent Schrödinger equation (TDSE) is

i
dU (t )

dt
= H (t )U (t ), (h̄ = 1). (2)

The operator U (t ) is the unitary time-evolution operator. Ac-
cording to the Floquet theorem, the solution of the TDSE can
always be expressed as

U (t ) = P(t ) e−iH eff t , (3)

where the micromotion operator P(t + T ) = P(t ) describes
the dynamics of the system within one period [t, t + T ]
and H eff is a static Hamiltonian that governs the long-time
dynamics of the system. The initial condition U (0) = 1 im-
poses the condition P(0) = 1, whereas the time-periodicity
gives P(nT ) = 1 for every n ∈ Z+ (positive integers). Conse-
quently, we have U (nT ) = e−iH eff nT = [e−iH eff T ]n = [U (T )]n.
If the dynamics of the system is observed stroboscopically at
t = nT , then it is governed by the effective static Hamiltonian
H eff .

Obtaining the analytic quantum evolution for any Hamil-
tonian is highly nontrivial and hence we restrict ourselves
to those Hamiltonians whose operators form a closed Lie
algebra, i.e.,

H0 = h01 +
N∑

α=1

hαAα = h01 + h · A, (4)

V (t ) = f0(t )1 +
N∑

β=1

fβ (t )Aβ = f0(t )1 + f (t ) · A, (5)

where · denotes the standard scalar product. Above, h0 and
h (column vector with elements hα and dimension N) are
time-independent parameters, whereas f0(t ) and f (t ) are
time-dependent functions due to the external field. The col-
umn vector of the linear operators A = {Aα} forms a finite
N-dimensional simple Lie algebra LN , which satisfies

[Aα, Aβ ] =
N∑

γ=1

�
γ

αβAγ , (6)

where �’s are the structure constants of the algebra LN . From
the Floquet engineering perspective, the underlying Lie alge-
braic structure will be exploited to design a driving scheme
{ f0(t ), f (t )} to achieve a desired effective Hamiltonian H eff

for a given initial static Hamiltonian H0.
The Wei-Norman ansatz [24,25], i.e., expressing the full

evolution operator as a product of exponentials, has been
successfully applied to solve the TDSE for a driven quantum
system. In our case, since we are particularly interested in
Floquet engineering wherein H eff is known, the natural choice

is to apply the ansatz to the micromotion operator,

P(t ) = e−im0(t )

(
N∏

α=1

e−imα (t )Aα

)
. (7)

The initial condition and the time-periodic property of
P(t ) imposes following conditions: m0(nT ) = 2νnπ and
e−imα (nT )Aα = 1 for all α = 1, . . . , N , n = 0, 1, 2, . . . , and any
integer ν. Besides, we have a gauge freedom to choose any
time-dependent functional form of mα (t ). Using the above
form of P(t ), if we substitute U (t ) in the TDSE [Eq. (2)], we
get the relations between the driving protocols { f0(t ), f (t )}
and the functions {m0(t ), m(t )} as

[h0 + f0(t )] + [h + f (t )] · A

= ṁ0(t ) + ζ(m, ṁ) · A + P(t ) H eff P†(t ). (8)

Here, the components of the column vector ζ are linear func-
tions of ṁ(t ) = {dmα (t )/dt} and nonlinear functions of m(t ).
Therefore, we can always express ζ(m, ṁ) = M1(t ) · ṁ,
where M1(t ) is a N × N matrix whose elements are nonlinear
functions of m. This nonlinearity is decided by the underlying
Lie algebra. Consider the general form H eff = heff

0 1 + heff ·
A, the last term on the right hand side of Eq. (8) can also be
represented in terms of the operators A as

P(t ) H eff P†(t ) = heff
0 1 + ξ(m, heff ) · A. (9)

The vector ξ(m, heff ) is a linear function of heff , but a non-
linear function of m(t ), i.e., ξ(m, heff ) = M2(t ) · heff where
M2(t ), similar to M1(t ), is a matrix whose elements are
nonlinear functions of m. Using Eqs. (8) and (9) and equating
the coefficients of the operators, we get

h0 + f0(t ) = ṁ0(t ) + heff
0 , (10)

h + f (t ) = M1(t ) · ṁ(t ) + M2(t ) · heff ,

where M1(nT ) = M2(nT ) = 1 for n = 0, 1, 2, . . . . The
gauge freedom in the micromotion operator makes M1(t )
and M2(t ) nonunique, but it can be fixed at any arbitrary
time t �= nT by choosing an appropriate gauge. According
to Wei-Norman, if LN is not a solvable algebra, the transfor-
mation matrices M1(t ) and M2(t ) could be ill-defined for
an arbitrary representation. Therefore, unless we find a repre-
sentation which is globally well-defined, we cannot apply the
Wei-Norman ansatz to design the driving protocol.

Our Lie algebraic Floquet engineering protocol can be
applied to any system having an underlying finite dimensional
closed algebra. We now apply this formalism to an arbitrary
two-bands system that naturally follows the SU(2) algebra.
Here we are particularly focusing on this algebra because a
large class of interacting and noninteracting systems obey this
symmetry [26,27,33–35,42–44]. In principle, this formalism
can also be applied to multiband systems, but the complexity
of the problem increases with the number of bands (see sup-
plementary [27] for the three-band case).

Two-bands systems. In the momentum space (k-space), the
Hamiltonian of the periodically driven two-band systems can
be written in terms of the Nambu spinors �k = (ak, bk)T as

H (t ) =
∑

k

�
†
k Hk(t )�k, (11)
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where Hk(t ) = Hk0 + Vk(t ) and Vk(t + T ) = Vk(t ). The com-
ponents of the Nambu spinors ak(a†

k) and bk(b†
k) are

respectively representing the annihilation (creation) opera-
tors corresponding to the valence and conduction bands. The
time-independent part Hk0 and the time-periodic Vk(t ) can be
expressed in general as

Hk0 = hk01 + hk · S,

Vk(t ) = fk0(t )1 + f k(t ) · S. (12)

The operators 2S = σ follow SU(2) algebra, where the com-
ponents of σ are the Pauli matrices. This finite dimensional
algebra facilitates the application of the Wei-Norman formal-
ism to study the dynamics of two-band systems.

The unsolvable SU(2) algebra has two well-known rep-
resentations: XY Z representation with SXYZ = (Sx, Sy, Sz )T

and ±Z representation with S±Z = (S+, S−, Sz )T, where S± =
(Sx ± iSy). For an arbitrary choice of A, e.g., A = SXYZ, it
is not guaranteed that the time-dependent functions mα (t )
appearing in the micromotion operator, Eq. (7), are smooth
continuous functions for all time t [24,25]. However, follow-
ing Ref. [45], we later show that the (±Z ) representation
gives a globally well-defined M1(t ) matrix. Therefore, for
the two-bands case, Wei-Norman ansatz along with a proper
choice of representation S ≡ S±Z can be applied to design a
driving scheme, with arbitrary driving frequency, to achieve
the desired effective Hamiltonian from a static Hamiltonian.

Floquet engineering protocol. We now provide the basic
steps to Floquet engineer a two-band system, where the de-
sired stroboscopic Hamiltonian is H eff

k = heff
k01 + heff

k · S. The
protocol is divided into three essential steps.

(1) Wei-Norman ansatz. Use Uk(t ) = Pk(t )e−iH eff
k t via Flo-

quet theorem, and apply the Wei-Norman ansatz to construct
the micromotion operator

Pk(t ) = e−imk0 e−imk+S+e−imk−S−e−imkzSz . (13)

The function mk0 is real, but the other functions (mk±, mkz ) are
complex. The explicit time-dependence of the functions m has
been suppressed for notational simplicity. Also note that, the
last three terms of the above expression are not individually
unitary, but their product is unitary which imposes

Im[mkz] = ln(1 + |mk+|2),

mk− = m∗
k+

1 + |mk+|2 . (14)

The above condition reduces the seven independent parame-
ters (real mk0 and real and imaginary parts of mk±,z) to four.
We choose (mk0, mk+, m∗

k+, mR
kz ), where mR

kz = Re[mkz], as
the independent variables and the micromotion operator reads

Pk(t ) = e−imk0√
1 + |mk+|2

(
e− i

2 mR
kz −imk+e

i
2 mR

kz

−im∗
k+e− i

2 mR
kz e

i
2 mR

kz

)
.

(2) Transformation matrices. Consider heff
k =

{heff
k−, heff

k+, heff
kz } in (±Z ) representation. Substituting Uk (t ) in

the TDSE and using Eq. (10), we obtain M1 and M2 for a

given k as

Mk1 = 1

1 + |mk+|2

⎛
⎝ 1 0 imk+

0 1 −im∗
k+

im∗
k+ −imk+ 1 − |mk+|2

⎞
⎠, (15)

Mk2 = 1

1 + |mk+|2

⎛
⎜⎝

e−imR
kz −iqkmk+ imk+

iq∗
km∗

k+ eimR
kz −im∗

k+
−2q∗

k −2qk 1 − |mk+|2

⎞
⎟⎠,

with qk = imk+eimR
kz . The above form ensures that these matri-

ces are identity at t = nT for n = 0, 1, 2, . . . .
(3) Driving protocol. For the Floquet engineering proto-

col, a bare minimal Hamiltonian is considered as the initial
static Hamiltonian H0. For example, here we set h = 0, i.e.
H0 = h01. Therefore, using the previous two steps, the driving
functions are

h0 + fk0(t ) = ṁk0 + heff
k0 ,

f k(t ) = Mk1 · ṁk + Mk2 · heff
k .

(16)

The transformation matrices are well-defined at all times t
(implicit dependence in mk) and not just stroboscopically [see
from Eq. (15)]. Moreover, the globally well-defined Mk ∀k
ensures the driving protocol is well-defined for all times. It is
worth emphasizing our Floquet engineering protocol is exact
in the driving frequency ω and does not require frequency-
based perturbative expansions that lead to nonconvergent
series [17,18,20,21].

Guiding principle to fix the gauge of the micromotion
operator. The gauge for the micromotion is fixed by choos-
ing {mk0, mk} satisfying the boundary conditions at t = nT :
e−imk01 = e−imk+S± = e−imkzSz = 1,∀n. This can be achieved
in various ways and here we illustrate a physically motivated
gauge choice. We first consider the natural choice of a sep-
arable form in which each mk(t ) is a product of momentum
and time-dependent functions, such that {mk0(t ), mk(t )} =
{φk0μ0(t ), φk+μ+(t ), φ∗

k+μ∗
+(t ), φR

kzμ
R
z (t )}. Furthermore, we

set φR
kz = 1 and φk+ = eik suggesting that intra sublattice

hopping is suppressed during the micromotion and only inter
sublattice hopping is allowed. Consequently, Eq. (16) simpli-
fies as

fk0(t ) = φk0μ̇0(t ) + heff
k0 ,

f k(t ) = M̃k1 · μ̇k(t ) + M̃k2 · heff
k , (17)

where

M̃k1 = 1

1 + |μ+(t )|2

⎛
⎜⎝

eik 0 iμ+(t )eik

0 e−ik iμ∗
+(t )e−ik

iμ∗
+(t ) −iμ+(t ) 1 − |μ+(t )|2

⎞
⎟⎠,

and Mk2 → M̃k2, defined in Eq. (15), with mR
kz →

μR
z (t ) and mk+ → μ+(t )eik. We now set μ0(t ) = a0 sin(ωt ),

μ+(t ) = a+eiθ sin(ωt ), and μR
z (t ) = pωt where p is any inte-

ger. This choice respects the boundary conditions and ensures
the frequency of all the time-dependent functions equals ω =
2π/T . The real amplitudes {a0, a+}, the phase factor eiθ , and
the integer p are arbitrary that depend on the physical system
as shown below with a specific example. For any arbitrary
values of the parameters a0, a+, θ , and p, the matrices M̃k1
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FIG. 1. (a) Band diagram of the cross-stitch lattice for α = 1.0
and � = 2.0. (b) Fourier coefficients of the envelope function for
a2

+ = 2.0.

and M̃k2 are globally well-defined which ensures the validity
of the Wei-Norman ansatz for all k and t .

Application. We now apply our Floquet engineering pro-
tocol to realize the cross-stitch lattice Hamiltonian H eff

k ,
which is a two-band system whose one band is dispersionless
(flat) and the other is dispersive [40,41]. In the momen-
tum space, our target Hamiltonian is H eff

k = heff
k0 1 + heff

k (S+ +
S−), where heff

k0 = −2α cos(k) and heff
k = −(2α cos(k) + �).

The energy of the flat band is � and the dispersive band is
−4α cos(k) − � [see Fig. 1(a)].

We choose our initial bare static Hamiltonian Hk0 = hk01,
where hk0 = −2α cos(k), which describes two uncoupled sub-
lattices with each sublattice being a 1D chain with zero onsite
energy. The parameter α determines the nearest neighbor hop-
ping strength in each of the sublattices. The choice of the
simple static Hamiltonian reduces the complexity of the ex-
pressions and we obtain heff

k0 = 0 implying fk0(t ) = φk0μ̇0(t )
using Eq. (17). As mentioned earlier, the gauge can be fully set
with a physical model and hence in this case we have a free-
dom to set φ0(k) = 0 and θ = 0. Thus we have fk0(t ) = 0 ∀t
and the function μ+(t ) becomes real.

Using Eq. (17) and the relations fkx(t ) = 2 Re[ fk−(t )] and
fky(t ) = −2 Im[ fk−(t )], we obtain the driving functions in the
XY Z representation as

fkx(t ) = fe(t )
[
a+ω Cωt Ck + heff

k Cpωt − a+ pω Sωt Sk

+a2
+heff

k C2k+pωt S
2
ωt

]
,

fky(t ) = − fe(t )
[
a+ω Cωt Sk − heff

k Spωt + a+ pω Sωt Ck

+a2
+heff

k S2k+pωt S
2
ωt

]
,

fkz(t ) = fe(t )

[
pω

(
1 − a2

+
2

)
+ pωa2

+
2

C2ωt

+4a+heff
k Sk+pωt Sωt

]
, (18)

where fe(t ) = (1 + a2
+ S2

ωt )
−1, Cw = cos(w) and Sw =

sin(w). In the above expression, we have two free parameters:
a real parameter a+ and an integer p. We set these two param-
eters such that each of the driving function does not have any
static part. First, we set a2

+ = 2 which removes the first term
of the driving function fkz(t ). Next we set p = 3, which is
the minimal integer that ensures absence of any static term in
the driving protocols [46]. The above protocol in lattice space

FIG. 2. Density plot of the driving functions fkx (t ) [(a) and (d)],
fky(t ) [(b) and (e)], and fkz(t ) [(c) and (f)] are plotted as a function
of momentum k and time t for ω = 4 + 2� = 8 [(a)–(c)] and ω =
2� = 4 [(d)–(f)].

turns out to be local involving only the next-to-next nearest
neighbors, ensuring experimental feasibility (see Ref. [27]).

We consider two moderate (same order of the band gap)
cases of the driving frequency: ω = 4 + 2� = 8 and ω =
2� = 4. For these two cases, the Fourier coefficients are
shown in Fig. 1(b) as a function of the coefficient indices.
For both frequencies, the odd coefficients c2n+1 are zero and
the even coefficients c2n fall exponentially with n. Therefore
the envelope can be realized with high accuracy consider-
ing only a few even harmonics. Figure 2 illustrates all the
driving functions, given by Eq. (18), for driving frequency
ω = 4 + 2� = 8 [panels (a)–(c)] and ω = 2� = 4 [panels
(d)–(f)]. Clearly, these are not simple functions having sine
or cosine periodicity in time t as typically considered in the
literature.

Conclusion. We have introduced a Floquet engineering
protocol applicable to systems whose Hamiltonians have an
underlying Lie algebraic structure. A large number of phys-
ically relevant interacting and noninteracting models in any
dimension fall into this class of systems. In our formal-
ism, we have applied the Wei-Norman ansatz [25] to the
micromotion part of the Floquet dynamics, and from that,
we have prescribed how to design a driving protocol to
reach the desired system starting from a given simple static
Hamiltonian. We have explicitly solved the case of two-band
systems that obey the unsolvable SU(2) algebra and described
a guiding principle to fix the gauge of the micromotion oper-
ator. We then illustrate our idea by stroboscopically realizing
the cross-stitched model’s flat and dispersive band diagram
[40,41].

Our formulation does not rely on any perturbative ex-
pansions and is exact. The main idea is to provide a recipe
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to design a driving protocol on a simple static Hamiltonian
such that a desired stroboscopic Hamiltonian is obtained for
any driving frequency. Unlike previous works that rely on
a specific form of the driving (sine or cosine), the exact-
ness of our approach allows us to engineer the functional
form of the drive. Even though we tackled generic condensed
matter setup of systems having two-energy bands, our for-
malism can be easily adapted for any two-level system with
a driving protocol that is a generalization to those studied in
Refs. [47–49].

In principle, the formalism presented here can be applied
to multiband systems (see Ref. [27] for a discussion on
three-bands systems) to Floquet engineer technologically rel-
evant materials like higher-order topological insulator (HOTI)
[50–52] or reproduce Z2 lattice gauge theory in cold atom
setup [53].
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