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Glassy quantum dynamics of disordered Ising spins
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We study the out-of-equilibrium dynamics of the quantum Ising model with power-law interactions and
positional disorder. For arbitrary dimension d and interaction range α � d we analytically find a stretched-
exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch power
β = d/α in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system
sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main
mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a
loss of single-spin purity which signifies the buildup of entanglement. The emergence of glassy dynamics in
the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched-
exponential law is explained by a scale-invariant distribution of timescales, to both integrable and nonintegrable
quantum systems.
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Statistical mechanics provides a well-established frame-
work for describing the macroscopic properties of matter in
thermal equilibrium. In contrast, no general theoretical frame-
work exists for describing dynamics out of equilibrium. Of
particular interest are extremely slow relaxation processes
observed in disordered materials such as spin glasses [1,2].
Phenomenologically, relaxation in these systems can be de-
scribed by a stretched-exponential law exp[−(γ τ )β] with
decay rate γ and stretch power β [3]. Despite the widespread
success of this heuristic description, a derivation of the
stretched-exponential law starting from first principles in a
microscopic model has been achieved for few systems only,
in particular amorphous solids [2] and spin glasses [2,4]. By
generalizing three prototypical models, Klafter and Shlesinger
conjectured that a scale-invariant distribution of relaxation
times is the unifying basis of stretched-exponential relaxation
phenomena [5].

Recently, glassy dynamics has been found to emerge also
in disordered quantum systems. Subexponential relaxation
dynamics was observed in experiments with nitrogen-vacancy
centers in diamond [6–8] and in many-body localized systems
under the influence of dissipation [9]. These studies involve
open quantum systems where dissipation arising from cou-
pling to an external bath explains the slow relaxation. In the
generic fluctuator model [6], each particle is coupled to a local
bath resulting in an average over different decay rates and thus
a stretched-exponential decay law. Recently, glassy relaxation
was also found in a closed quantum system governed by
purely unitary dynamics [10]. In the absence of dissipation,
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the question arises whether and how glassy dynamics in iso-
lated quantum systems is related to the degree of disorder and
to the buildup of entanglement.

Understanding the dynamics of strongly interacting disor-
dered quantum many-body systems is notoriously difficult due
to the lack of applicable theoretical approaches. The absence
of a small parameter in the model impedes the use of pertur-
bative methods, and the exponential complexity of quantum
many-body problems generally limits numerical simulations
to very small system sizes. A paradigmatic exception is the
quantum Ising model, where analytical solutions are available
even for the disordered case [11,12]. This model is diag-
onal in a product-state basis but, if prepared initially in a
superposition of different eigenstates, features intrinsically
quantum properties, namely dephasing between its eigenstate
components leading to relaxation and the buildup of entangle-
ment. Previous studies addressed the buildup of correlations
[13], decoherence [14], the effect of long-range interactions
[15–17], and the decay of the Ramsey contrast [18,19].

Here, we introduce a generalized approach to obtain
stretched-exponential relaxation of the transversal magnetiza-
tion and purity in the quantum Ising model extending earlier
studies of special cases [15,19]. Analytical results are pro-
vided for arbitrary dimensionality and power-law interactions,
applicable to multiple experimental settings, e.g., in NMR
[20], quantum information [21,22], trapped ions [23], and
Rydberg atoms [10,24]. The analytic solution for the mag-
netization and purity of the microscopic model allows one
to differentiate dephasing between disordered coherent pairs
from genuine many-body effects. Furthermore, finding glassy
dynamics in the quantum Ising model with a scale-invariant
distribution of interactions constitutes a generalization of the
Klafter-Shlesinger conjecture [5] to the quantum realm.
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We consider N spin-1/2 particles, whose dynamics are
governed by the Ising model (h̄ = 1)

HIsing =
∑
i<k

Jik σ̂
i
z ⊗ σ̂ k

z , (1)

where σ̂ i,k
α (α = {x, y, z}) are the Pauli operators acting on

spin i and k and Jik describes the interaction between them. We
consider isotropic power-law interactions Jik = Cα/|ri − rk|α
with particle positions ri, realized by a variety of quan-
tum simulation platforms, such as polar molecules (α = 3)
[25,26], Rydberg atoms (α = 3, 6) [10,27–29], or trapped ions
(0 � α < 3) [23,30] (see Ref. [13] for a more complete list).
For the initial state |ψ0〉 = |→〉⊗N , we are interested in the re-
laxation of the ensemble-averaged transversal magnetization
〈ŝx〉 = N−1 ∑

i〈σ̂ i
x〉/2, where the overline denotes the ensem-

ble average and 〈· · ·〉 the quantum mechanical expectation
value. Here, |→〉 is the σ̂x eigenstate with σ̂x |→〉 = |→〉.

The dynamics of Ising spins initialized in |ψ0〉 was de-
scribed analytically by Emch [11] and Radin [12] as

〈ŝx(τ )〉 = 1

2

∑
i

1

N
〈σ̂ i

x (τ )〉 = 1

2

∑
i

1

N

N∏
k �=i

cos(2Jikτ ), (2)

which shows that the ensemble average is determined by prod-
ucts of oscillations with frequencies given by the couplings
Jik between a given spin i and its neighbors k. From the
Emch-Radin solutions also follows 〈σ̂ i

y〉 = 〈σ̂ i
z 〉 = 0 such that

the analytical expression 〈σ̂ i
x (τ )〉 = ∏N

k �=i cos(2Jikτ ) already
fully determines the one-particle reduced density matrix ρ i =
[1 + 〈σ̂ i

x〉σ̂ i
x]/2 of spin i. Thus, the single-particle purity is

tr[(ρ i )2] = 1
2

[
1 + 〈

σ̂ i
x (τ )

〉2]
. (3)

Similar to the magnetization, we define the ensemble-
averaged single-particle purity as tr(ρ2) = 1

2 [1 + 〈σ̂x(τ )〉2],
where

〈σ̂x(τ )〉2 =
∑

i

1

N
〈σ̂ i

x (τ )〉2 =
∑

i

1

N

N∏
k �=i

cos2(2Jikτ ). (4)

The purity of a subsystem (here, a single spin) of a closed
quantum system 1/2 � tr[(ρ i )2] � 1 quantifies the entangle-
ment between the subsystem and its complement, and deter-
mines the second-order Rényi entropy S2 = − log{tr[(ρ i )2]}.
For our initial product state S2 = 0, as the single-particle
reduced state ρ i is pure, and the subsystem entropy takes its
maximal value S2 = log(2) in the late-time limit.

The Emch-Radin solutions hold for arbitrary choices of
the couplings Jik . Here, we consider disorder in the cou-
plings due to random spin positions drawn from a uniform
distribution within a d-dimensional sphere and power-law
interaction with exponent α � d . To illustrate the charac-
teristic dynamics emerging in this situation we show the
relaxation of the transversal magnetization in Fig. 1(a) for
a van der Waals interaction (α = 6) in d = 3 dimensions.
Time is scaled by the median nearest-neighbor (NN) inter-
action strength JNN [10]. The random positions lead to a
strongly disordered Jik distribution which causes oscillations
on a broad range of different timescales. Curves showing fast
oscillations correspond to spins interacting strongly with their

FIG. 1. (a) Magnetization decay for a uniform random spin
distribution in d = 3 with α = 6 for 1300 spins. The single-spin
magnetizations 〈ŝi

x (τ )〉 for 50 different spins are shown, featuring
the oscillatory behavior predicted by Eq. (2). The line color encodes
the nearest-neighbor (NN) interaction strength and is thus a measure
for the onset and fastest frequency of each oscillation. Its median JNN

is furthermore used as the unit for the relaxation time. Additionally,
the ensemble-averaged decay is plotted (red dashed line), showing
monotonous subexponential relaxation, which is well captured by a
stretched-exponential function predicted analytically in the large N
limit (black line). Remaining deviations from the analytical solution
can be attributed to the finite system size used for the simulation.
(b) Histograms showing the frequency of occurrence of single-spin
magnetization values at different times. The fluctuations relax on a
slower timescale than the mean value, which is directly connected to
the decay of the purity. (c) Single-spin purities and ensemble average,
analogous to (a).

nearest neighbors. Due to disorder, these oscillations between
coherent pairs lose their phase correlations. Consequently,
the ensemble-averaged magnetization (red dashed line) shows
smooth subexponential decay closely following the analytical
solution in the thermodynamic limit N → ∞ (black curve)
derived below, which is a stretched-exponential function.

Figure 1(b) shows the frequency of occurrence of single-
spin magnetizations at fixed evolution times, showing a
bimodal distribution at intermediate times. For JNNτ = 10,
the ensemble-averaged value nearly reached its equilibrium,
while still showing large fluctuations around the mean value.
These fluctuations are directly connected to the purity [cf.
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Eq. (4)] showing already that the decay of magnetization and
purity happen on different timescales. In this particular case,
the timescales differ by a factor of 2, where in general this
factor depends on α/d and can become large as discussed
below. Figure 1(c) shows the ensemble-averaged purity along
with the purity of individual spins. Similar to Fig. 1(a), the
purity of individual spins shows oscillations. Following the
same argument that explains the full relaxation of magneti-
zation, the dephasing of these oscillations would result in an
average purity of 0.75. Instead, the ensemble-averaged purity
relaxes to its minimum value of 0.5, which accounts for an
irreversible buildup of entanglement with the whole ensemble.
We again find a smooth stretched-exponential curve in the
ensemble average.

To derive an analytical expression for Eq. (2) in the limit of
N → ∞, the ensemble average can be replaced by an average
over all possible configurations of placing the surrounding
spins of a reference spin [18,19] thus leading to a scale-
invariant distribution of interaction strengths. Without loss of
generality, we fix the position of the reference spin at r1 = 0
and choose a finite spherical integration volume V in which
N ′ atoms are placed. We will later take the limit N ′ → ∞
keeping the density n = N ′/V constant. Therefore, Eq. (2)
transforms into the integral form

〈ŝx(τ )〉 = 1

2

∫
V

dr2 · · · drN ′P(r2 · · · rN ′ )
N ′∏

k=2

cos(2J1kτ ). (5)

The spin positions are chosen independently following
a homogeneous distribution over the volume V , i.e.,
P(r2 · · · rN ′ ) = ∏

k p(rk ) with p(rk ) = 1/V . Thus, the integral
in Eq. (5) factorizes into a product of identical integrals

〈ŝx(τ )〉 = 1

2

[
1

V

∫
V

dr cos(2Jrτ )

]N ′−1

, (6)

where Jr = Cα/|r|α .
We now introduce a lower distance cutoff rb on the integra-

tion volume [31]. Note that imposing an exclusion distance
rb between any pair of atoms violates the assumption of in-
dependent atom positions and scale-invariant distributions of
interactions. For our analytical calculations this inconsistency
is irrelevant as we will send rb to zero eventually. We show
below that our results also describe the dynamics well for a
finite exclusion radius as long as rb is much smaller than the
average nearest-neighbor distance in the ensemble.

Defining r0 as the radius of the spherical integration vol-
ume V and carrying out the angular part of the integration we
obtain

〈ŝx(τ )〉 = 1

2

[
d

rd
0 − rd

b

∫ r0

rb

dr rd−1 cos
(

2
Cα

rα
τ
)]N ′−1

. (7)

We now evaluate this expression in the limits rb → 0 and
r0, N ′ → ∞ for arbitrary d and α � d , thus generalizing
previous results. The scale invariance of the system now be-
comes obvious as Eq. (7) is invariant under a rescaling of
space (r → λr) and time (τ → λατ ). The main result of our

derivation

〈ŝx(τ )〉 = 1

2
exp

[
−κd,α�

(
α − d

α

)
sin

(
π

α − d

2α

)
τ d/α

]

(8)

is a stretched exponential 〈ŝx(τ )〉 = exp[−(γmτ )βm ]/2 with
decay rate γm = [κd,α�( α−d

α
) sin(π α−d

2α
)]α/d and stretch

power βm = d
α

[for details, see Supplemental Material
(SM) [32] containing Ref. [33]]. Here, the index m
stands for magnetization and we have introduced κd,α =
πd/2n(2Cα )d/α/�(d/2 + 1). Since βm � 1 our result shows
that the characteristic subexponential relaxation typically ob-
served in glassy systems appears in the out-of-equilibrium
unitary dynamics under the Ising Hamiltonian. In the
case α = d Eq. (8) simplifies to a pure exponential de-
cay 〈ŝx(τ )〉α=d = exp(−πκd,ατ/2)/2 where we used that
limα−d→0[�( α−d

α
) sin(π α−d

2α
)] = π/2. Note, that the deriva-

tion of a stretched exponential remains valid even for a broad
class of anisotropic interactions, whose anisotropy yields a
change only in the rate γ , whereas β remains unchanged (see
SM [32]).

Remarkably, the stretch power β = d/α is the same as
for the Förster direct-transfer model with parallel channels
discussed by Klafter and Shlesinger [5]. This classical model
features the same spatial distribution and power-law interac-
tion but relies on exponential relaxation, instead of coherently
interacting spins showing microscopic oscillatory behavior.

Beyond classical models, genuine quantum effects occur
in the quantum Ising model. Therefore, we focus on the
ensemble-averaged purity which describes the buildup of en-
tanglement [cf. Eq. (4)]. As for the magnetization, one can
convert the ensemble average of the term 〈σ̂x(τ )〉2 into an
integral over atom positions in the asymptotic large N limit,
resulting in

〈σ̂x(τ )〉2 =
[

d

rd
0 − rd

b

∫ r0

rb

dr rd−1 cos2
(

2
Cα

rα
τ
)]N ′−1

=
[

1

2
+ d

rd
0 − rd

b

∫ r0

rb

dr
rd−1

2
cos

(
4

Cα

rα
τ
)]N ′−1

,

(9)

where the identity cos2(x) = 1/2 + cos(2x)/2 is used. The in-
tegral now has the same shape as the one for the magnetization
(7) with a global prefactor of 1/2 and twice the frequency
Cα → 2Cα . We can thus use the same approach to obtain

tr(ρ2) = 1
2 {1 + exp[−(γpτ )βp]} (10)

for the relaxation of the ensemble-averaged single-particle
purity with γp = 21−α/dγm and βp = βm = d/α. This formal-
ism can be extended to all higher moments 〈σ̂x(τ )〉 j with
j ∈ N shown in SM [32]. Note that the decay rate of the
purity is generally smaller than that of the magnetization by a
factor γp/γm = 21−α/d � 1. The slower decay of purity is vis-
ible in the fluctuations of the single-spin magnetizations [cf.
Fig. 1(b)] that are still present when the mean magnetization
has already decayed. This separation of timescales gets large
in the case of α 
 d .
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We numerically investigate whether glassy dynamics per-
sist for systems with finite exclusion radius rb and finite
system size N . We evaluate Eqs. (2) and (4) for d = 1, 2, 3,
α = d, . . . , 10, and random atom positions. We average the
results over Ns random realizations to decrease statistical
fluctuations from random sampling and fit the averaged re-
laxation curves with a general stretched-exponential function
described by f (τ ) = A exp[−(γ τ )β] and we compare the re-
sulting β to the analytical solution d/α derived previously of
the thermodynamic limit.

The exclusion radius rb is incorporated in the process of
generating random position samples by rejecting atoms that
are closer than rb to one of their neighbors. This process is
equivalent to the random sequential absorption (RSA) model
of randomly placing nonoverlapping spheres [34,35]. The
packing density can be quantified by the ratio x = Nrd

b /rd
0 ,

where a small value of x corresponds to strong disorder,
i.e., uncorrelated atom positions, while large x implies more
densely packed and thus more regularly spaced, less disor-
dered spins. We note that in experiments with Rydberg atoms
x is tunable over a wide range [10].

The dependence of β on x is shown in Fig. 2(a) for both
magnetization and purity in the case of a van der Waals
interaction α = 6 and d = 3 for a system size of N = 100
and Ns = 200 samples. In the sufficiently disordered regime
(x � 0.01) β reaches a constant value (dashed lines), which
shows that the description by glassy dynamics obtained in
the limit rb → 0 are robust with respect to finite exclusion
radius. In this regime the blockade radius is sufficiently small,
such that the system can be considered as effectively scale
invariant. Similar results are obtained in all studied cases of
dimension and interaction range.

Next we study the effect of finite N in the strongly dis-
ordered regime (x � 1). Figure 2(b) shows the deviation of
the fitted β from the analytical result d/α as a function of N .
Analogous plots for α = 6 in d = 1 and d = 2 dimensions are
shown in the SM [32]. We observe an algebraic decrease of the
error for both magnetization and purity. A power-law fit ∝N−p

shows good agreement. The point at N = 1300 corresponds to
the data shown in Figs. 1(a) and 1(c), where the comparison
to the analytical solution matches nearly perfectly.

We systematically extract the exponent p describing the
scaling of the error with N for various d and α (see SM
[32] for the choice of parameters N and Ns). The range of
particle numbers is chosen such that the deviation from the
analytical solution does not fall below ∼1%. This value cor-
responds to the size of statistical fluctuations due to finite
disorder averaging giving a lower bound on the observable
deviation. In particular the 1D case converges already for
small N , therefore we need to increase the samples Ns to
reduce statistical fluctuations. The results, shown in Fig. 2(c),
indicate that the finite-size scaling behavior is independent of
α, but convergence is slower for increasing d . In all cases,
an algebraic convergence to the analytical result is obtained,
showing the robustness of our analytical results with respect
to finite-size effects.

Our analytical and numerical studies show that the far-
from-equilibrium dynamics of the quantum Ising model
exhibits glassy behavior. In addition to the global magnetiza-
tion, we investigated the single-spin purity, which quantifies

FIG. 2. (a) Fit parameter β as a function of the disorder parame-
ter x = Nrd

b /rd
0 for the magnetization (blue dots) and purity (green

dots) for N = 100 and Ns = 200 for the case of α = 6 in d = 3.
At strong disorder (x � 0.01) β becomes independent of x. Dashed
lines show the averages within this regime. Error bars describe the
parameter uncertainty of β obtained from the fit. (b) Deviation of the
fitted β from the analytical solution d/α = 0.5 as a function of N .
We average β over five different blockade radii within the strongly
disordered regime. The error bars correspond to the standard error
of the mean of the latter, which is the dominant uncertainty [cf. (a)].
Dashed lines are power-law fits. (c) Fitted power-law exponent p for
all simulated cases d = 1, 2, 3 and α = d, . . . , 10. The red circle
highlights the points corresponding to the data shown in (b). See
Supplemental Material for the choice of parameters N and Ns.

entanglement between local spins and their environment. Es-
pecially for a short interaction range α 
 d , the timescales
between magnetization and purity differ largely. This dis-
crepancy is due to differences in the involved relaxation
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mechanisms. For qualitatively explaining the decay of the
global magnetization it is sufficient to consider the interac-
tion of spins with their nearest neighbors. Due to disorder,
these coherent pair dynamics oscillate at different frequencies
resulting in dephasing and hence a loss of global magnetiza-
tion. In contrast, the full relaxation of single-spin purity is
a genuine many-body effect, which is eventually due to the
irreversible dephasing between many-body eigenstates.

Similar to known classical models showing glassy dy-
namics, the quantum Ising model features a scale-invariant
distribution of timescales. Therefore, our findings extend the
conclusion of Ref. [5], that scale invariance is sufficient to
explain the emergence of a stretched-exponential law, to the
quantum realm. This argument is not limited to observables
such as the magnetization with a classical analog, but also
applies to the single spin purity, a genuine quantum property,
which shows the same stretched-exponential relaxation. An
interesting direction for future research is the investigation
of the dynamics of entanglement entropy beyond single-spin
subsystems. This includes entanglement scaling with subsys-
tem size [36,37] in view of constraints on the spreading of
correlations [38–41].

In conclusion, stretched-exponential relaxation is found in
classical models as well as in open quantum systems and,
as we have shown, also in the quantum Ising model pro-

totypical for isolated integrable quantum systems. Despite
the vastly different underlying physics, all of these systems
feature scale-invariant distributions of timescales. Thus, the
analytical results presented here are in line with the conclusion
of Ref. [5], extending the sufficiency of scale invariance for
the emergence of glassy dynamics to quantum systems. Based
on recent numerical investigations of a more general family of
Heisenberg Hamiltonians, where glassy dynamics is observed
for almost any anisotropy parameter [42], as well as experi-
mental findings [10], we expect the conjecture to hold even for
nonintegrable quantum systems if scale invariance is given.

We thank Adrian Braemer and Peter Kaposvari for help-
ful discussions. This work is supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy EXC2181/1-
390900948 (the Heidelberg STRUCTURES Excellence Clus-
ter), within the Collaborative Research Center SFB1225
(ISOQUANT) and the DFG Priority Program 1929 “GiRyd”
(DFG WE2661/12-1). We acknowledge support by the Eu-
ropean Commission FET flagship project PASQuanS (Grant
No. 817482) and by the Heidelberg Center for Quantum Dy-
namics. C.H. acknowledges funding from the Alexander von
Humboldt foundation and T.F. from a graduate scholarship of
the Heidelberg University (LGFG).

[1] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
[2] J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).
[3] R. Kohlrausch, Ann. Phys. 167, 56 (1854).
[4] C. De Dominicis, H. Orland, F. Lainée, and H. Orland, J. Phys.

Lett. 46, 463 (1985).
[5] J. Klafter and M. F. Shlesinger, Proc. Natl. Acad. Sci. USA 83,

848 (1986).
[6] J. Choi, S. Choi, G. Kucsko, P. C. Maurer, B. J. Shields,

H. Sumiya, S. Onoda, J. Isoya, E. Demler, F. Jelezko,
N. Y. Yao, and M. D. Lukin, Phys. Rev. Lett. 118, 093601
(2017).

[7] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou, R. Landig,
H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y. Yao,
and M. D. Lukin, Phys. Rev. Lett. 121, 023601 (2018).

[8] E. J. Davis, B. Ye, F. Machado, S. A. Meynell, T. Mittiga, W.
Schenken, M. Joos, B. Kobrin, Y. Lyu, D. Bluvstein, S. Choi, C.
Zu, A. C. B. Jayich, and N. Y. Yao, arXiv:2103.12742.

[9] B. Everest, I. Lesanovsky, J. P. Garrahan, and E. Levi, Phys.
Rev. B 95, 024310 (2017).

[10] A. Signoles, T. Franz, R. Ferracini Alves, M. Gärttner, S.
Whitlock, G. Zürn, and M. Weidemüller, Phys. Rev. X 11,
011011 (2021).

[11] G. G. Emch, J. Math. Phys. 7, 1198 (1966).
[12] C. Radin, J. Math. Phys. 11, 2945 (1970).
[13] K. R. A. Hazzard, M. van den Worm, M. Foss-Feig, S. R.

Manmana, E. G. Dalla Torre, T. Pfau, M. Kastner, and A. M.
Rey, Phys. Rev. A 90, 063622 (2014).

[14] M. Foss-Feig, K. R. A. Hazzard, J. J. Bollinger, and A. M. Rey,
Phys. Rev. A 87, 042101 (2013).

[15] E. B. Fel’dman and S. Lacelle, J. Chem. Phys. 104, 2000 (1996).
[16] M. Kastner, Phys. Rev. Lett. 106, 130601 (2011).

[17] M. van den Worm, B. C. Sawyer, J. J. Bollinger, and M.
Kastner, New J. Phys. 15, 083007 (2013).

[18] R. Mukherjee, T. C. Killian, and K. R. A. Hazzard, Phys. Rev.
A 94, 053422 (2016).

[19] C. Sommer, G. Pupillo, N. Takei, S. Takeda, A. Tanaka, K.
Ohmori, and C. Genes, Phys. Rev. A 94, 053607 (2016).

[20] W. Wu, B. Ellman, T. F. Rosenbaum, G. Aeppli, and D. H.
Reich, Phys. Rev. Lett. 67, 2076 (1991).

[21] R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H.
Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang,
E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, T.
Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld et al., Science
361, 162 (2018).

[22] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[23] J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. Wang, J. K.
Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature
(London) 484, 489 (2012).

[24] H. Labuhn, D. Barredo, S. Ravets, S. D. Léséleuc, T. Macrì, T.
Lahaye, and A. Browaeys, Nature (London) 534, 667 (2016).

[25] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521
(2013).

[26] K. R. Hazzard, B. Gadway, M. Foss-Feig, B. Yan, S. A. Moses,
J. P. Covey, N. Y. Yao, M. D. Lukin, J. Ye, D. S. Jin, and A. M.
Rey, Phys. Rev. Lett. 113, 195302 (2014).

[27] A. P. Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges,
S. Whitlock, and M. Weidemüller, Phys. Rev. Lett. 120, 063601
(2018).

[28] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.
Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang,

L020201-5

https://doi.org/10.1103/RevModPhys.58.801
https://doi.org/10.1088/0034-4885/59/9/003
https://doi.org/10.1002/andp.18541670103
https://doi.org/10.1051/jphyslet:019850046011046300
https://doi.org/10.1073/pnas.83.4.848
https://doi.org/10.1103/PhysRevLett.118.093601
https://doi.org/10.1103/PhysRevLett.121.023601
http://arxiv.org/abs/arXiv:2103.12742
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1103/PhysRevX.11.011011
https://doi.org/10.1063/1.1705023
https://doi.org/10.1063/1.1665079
https://doi.org/10.1103/PhysRevA.90.063622
https://doi.org/10.1103/PhysRevA.87.042101
https://doi.org/10.1063/1.470956
https://doi.org/10.1103/PhysRevLett.106.130601
https://doi.org/10.1088/1367-2630/15/8/083007
https://doi.org/10.1103/PhysRevA.94.053422
https://doi.org/10.1103/PhysRevA.94.053607
https://doi.org/10.1103/PhysRevLett.67.2076
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature12483
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1103/PhysRevLett.120.063601


P. SCHULTZEN et al. PHYSICAL REVIEW B 105, L020201 (2022)

T. Lahaye, A. M. Läuchli, and A. Browaeys, Nature (London)
595, 233 (2021).

[29] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini,
A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho,
S. Choi, S. Sachdev, M. Greiner, V. Vuletic, and M. D. Lukin,
Nature (London) 595, 227 (2021).

[30] C. Monroe, W. C. Campbell, L. M. Duan, Z. X. Gong, A. V.
Gorshkov, P. Hess, R. Islam, K. Kim, N. Linke, G. Pagano,
P. Richerme, C. Senko, and N. Y. Yao, Rev. Mod. Phys. 93,
025001 (2021).

[31] This is motivated physically: Arbitrarily closely spaced spins
would have an arbitrarily large interaction strength requiring
a high-energy cutoff. Also, in experimental realizations with
Rydberg atoms, a natural lower distance cutoff is given by the
dipole blockade radius [43].

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.105.L020201 for details on analytical cal-
culations, numerical parameters, and further plots.

[33] R. J. Mathar, arXiv:1211.3963.
[34] Z. Adamczyk and P. Weroński, J. Chem. Phys. 105, 5562

(1996).

[35] E. L. Hinrichsen, J. Feder, and T. Jøssang, Phys. Rev. A 41,
4199 (1990).

[36] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod.
Phys. 91, 021001 (2019).

[37] M. P. Hertzberg and F. Wilczek, Phys. Rev. Lett. 106, 050404
(2011).

[38] E. H. Lieb and D. W. Robinson, Commun. Math. Phys. 28, 251
(1972).

[39] Z.-X. Gong, M. Foss-Feig, S. Michalakis, and A. V. Gorshkov,
Phys. Rev. Lett. 113, 030602 (2014).

[40] M. Foss-Feig, Z.-X. Gong, C. W. Clark, and A. V. Gorshkov,
Phys. Rev. Lett. 114, 157201 (2015).

[41] M. B. Hastings and T. Koma, Commun. Math. Phys. 265, 781
(2006).

[42] P. Schultzen, T. Franz, C. Hainaut, S. Geier, A. Salzinger,
A. Tebben, G. Zürn, M. Gärttner, and M. Weidemüller,
arXiv:2107.13314.

[43] D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010).

Correction: The surname of the eighth author appeared incor-
rectly due to a conversion error and has been fixed.

L020201-6

https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1103/RevModPhys.93.025001
http://link.aps.org/supplemental/10.1103/PhysRevB.105.L020201
http://arxiv.org/abs/arXiv:1211.3963
https://doi.org/10.1063/1.472409
https://doi.org/10.1103/PhysRevA.41.4199
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.106.050404
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRevLett.113.030602
https://doi.org/10.1103/PhysRevLett.114.157201
https://doi.org/10.1007/s00220-006-0030-4
http://arxiv.org/abs/arXiv:2107.13314
https://doi.org/10.1364/JOSAB.27.00A208

