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Double-charge quantum island in the quasiballistic regime
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Quantum Hall edge channels can be combined with metallic regions to fractionalize electrons and form
correlated impurity models. We study a minimal device that has been experimentally achieved quite recently,
with two floating islands connected to three edge channels via quantum point contacts in the integer quantum
Hall regime. At high transparency of the quantum point contacts, we establish a mapping to the boundary
sine-Gordon model and thereby reveal the nature of the quantum critical point. We deduce from this mapping
universal expressions for the conductance and noise, in agreement with the experimental findings, and discuss
the competition between Kondo-like screening of each individual island and the cooperative transfer of electrons
between them. We further predict that the device operated at finite voltage bias produces fractional charges
e∗ = e/3 and propose a generalization to N islands with the fractional charge e∗ = e/(N + 1).
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I. INTRODUCTION

Models of quantum impurities embedded in fermionic en-
vironments entail a rich zoology of phase transitions with
non-Fermi liquid scaling [1–4]. These models underpin many
properties of correlated materials such as heavy fermions
[5]. They can also be realized in superconducting [6–8] or
semiconducting nanostructures with a versatile control on the
parameters driving the transitions. For example, the Kondo
screening of local spin degrees of freedom is routinely ob-
served in semiconducting quantum dots in two-dimensional
electron gases [9,10], carbon nanotubes [11], or nanowire
devices [12]. The screening of the impurity spin by a second
channel [13,14] is however difficult, but not impossible, to
achieve experimentally with quantum dots [15–18].

An alternative route for Kondo screening with more than
one channel is offered by the charge Kondo effect [19–24]. In
the charge version, two quasidegenerate and discrete charge
states of a metallic island are screened by the tunnel cou-
pling to a lead. It has been realized in an experiment [25–29]
coupling a micron-size floating island to the edge channels
of a two-dimensional electron gas tuned in the integer quan-
tum Hall regime. The transmission to the metallic island is
controlled by nearby quantum point contacts (QPC) play-
ing the role of tunnel junctions. Kondo scalings, crossovers,
and fixed points have thus been measured with unprece-
dented control and detail in the two- and three-channel
cases, together with the renormalization-group relevant chan-
nel asymmetries [25,27]. Interestingly, the gate-controlled
quantum point contacts can be tuned to be almost ballistic,
i.e., with a large transparency, in which case the tempera-
ture or voltage scalings no longer emulate a Kondo model
since many charge states are involved. Despite the absence
of a Kondo mapping in the quasiballistic limit, the zero-
temperature quantum critical point is continuously connected

to the one at small transparencies where Kondo scaling holds.
This continuity argument preserves the properties at zero en-
ergy: the fractional entropy, the leading temperature/voltage
scaling, and more generally the operator content of the zero-
temperature quantum critical point are the same regardless of
the transparencies. Only the temperature/voltage evolution of
observables, such as the differential conductance, are different
and depend on the transparencies, with a Kondo mapping
restricted to low transparency.

Recently, a two-site version of the charge Kondo effect
has been realized with two coupled metallic islands in a two-
dimensional electron gas in a GaAs/AlGaAs heterostructure,
and a novel zero-temperature quantum critical point has been
identified by comparing experimental data with numerical
renormalization group (NRG) calculations [30]. The competi-
tion between the screening of each individual island charge
and the mediated charge coupling between the two islands
may offer an insight on the competition between Kondo
screening and collective magnetic ordering in correlated ma-
terials. In the case of an exchange coupling between two spins,
the model has been coined as the two-impurity Kondo model
[31–34] and discussed generally in the context of quantum
dots [35–38].

In this paper we consider the geometry of this experiment
in the quasiballistic regime where each QPC is set close to
full transparency. We recover analytically the properties of
the zero-temperature quantum critical point observed exper-
imentally and in NRG calculations which, as argued above,
are universal in the sense that they do not depend on the
transparencies of the QPC. We find in particular the same
universality class as the weak tunneling between fractional
quantum Hall edge states at filling ν = 1/3 described by a
boundary sine-Gordon model [39–42]. This is readily under-
stood by considering the simplified case where only one QPC
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is weakly reflecting electrons, the other two QPC being com-
pletely open. The two open QPC in series define a dynamical
Coulomb blockade environment with impedance Rs = 2Rq

(Rq = h/e2 is the quantum unit of resistance) for the third,
a model that has a known mapping [28,43] to the physics of
quasiparticle tunneling in a fractional ν = 1/(1 + Rs/Rq) =
1/3 state, and predict a decreasing conductance as the tem-
perature is lowered. The same model further holds when all
three QPC weakly reflect.

With the analytical description of the quantum critical
point, we retrieve many features discussed in Ref. [30] such
as: the residual fractional entropy, the scaling exponents close
to the triple points, and the shape of the conductance as a func-
tion of the plunger gate voltages. We also predict the emission
of fractional charges [44–48] e∗ = e/3 to be extracted from
shot noise measurements [49,50], despite being in the integer
quantum Hall regime [51–53].

The organization of paper is as follows. In Sec. II we dis-
cuss the Hamiltonian formulation of a two-site quantum island
in the language of bosonization. The effective Hamiltonian at
weak backscattering regime is addressed in Sec. III in terms
of a boundary sine-Gordon model. We outline the calculations
for charge current, noise, and the evolution of the triple points
in Sec. IV. In Sec. V we present details on the Bethe ansatz
solution for a two-site quantum island and discuss the compar-
ison of our results with the recent experiment [30]. Section VI
contains a brief outline on the generalization to the multisites
cases. We summarize our findings in Sec. VII. Mathematical
details of our calculations are deferred to the Appendixes.

II. NEARLY BALLISTIC MODEL

We consider the geometry realized in the experiment of
Ref. [30] and illustrated in Fig. 1. It comprises three pairs of
counterpropagating quantum Hall edges partially covered by
two metallic islands. The chiral edge states are best described
with bosonization [54,55] with the total Hamiltonian H =
H0 + HC + HBS. The Hamiltonian H0 governing the propaga-
tion of edge states writes

H0 = vF

4π

3∑
j=1

∫ ∞

−∞
dx[(∂xφ j,R )2 + (∂xφ j,L)2], (1)

where φ j,L/R represents the bosonic field corresponding to
the incoming/outgoing chiral fermions and vF stands for
the Fermi velocity. Hc describes the charging energy of the
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3

FIG. 1. Schematic representation of the two-site experiment in
Ref. [30]. A pair of quantum Hall edges connects two floating islands
charge controlled by nearby gate voltages. Two additional external
pairs of quantum Hall edge channels contact the island to source and
drain. In addition, three QPCs, represented by cross sign (×), on both
sides of each island tune the transmissions of electrons within the
different parts.

floating islands

HC = Ec
(
N̂2

1 + N̂2
2

)
, (2)

where for simplicity the island capacitances C are chosen
equal [56] and Ec = e2/2C. The number densities in the left
and right island N̂1/2 are expressed in terms of corresponding
gate voltages N1/2,g, controlled by plunger gates, and charge
densities ρ j,α = 1

2π
∂xφ j,α such that

N̂1/2 =
∫ ∞

0
dx[ρ1/2,R(x) − ρ1/2,L(x)]

+
∫ 0

−∞
dx[ρ2/3,R(x) − ρ2/3,L(x)] − N1/2,g. (3)

The above expressions can be simplified as

N̂1/2 = 1

2π
(−δφ1/2 + δφ2/3 − 2πN1/2,g), (4)

where we introduce new symbols

δφ j ≡ φ j,R − φ j,L. (5)

Replacing the finite portions of quantum Hall edges beneath
the islands as semi-infinite lines is a standard description first
introduced in Refs. [21,22]. It is justified in the experiments
by the very long dwell time of electrons in the metallic islands
due to the strong mismatch between high metallic density of
states and few outgoing edge channels [57]. In contrast, we
assume that the two middle chiral edges are fully covered by
the left and right islands and neglect the fact that there is some
region of space where they are uncovered. It works as long
as this uncovered region has a size corresponding to energies
well above all other energy scales.

In addition to H0 and HC, the Hamiltonian also has a part
describing the weak reflection of the three interspaced QPCs,

HBS =
3∑

j=1

D|r j |
π

cos δφ j, (6)

nonlinear in the bosonic fields, |r j | are the amplitudes of the
corresponding dimensionless reflection coefficients. D is a
high-energy scale, or bandwidth, introduced in the bosoniza-
tion framework. It is necessary at an intermediate step in
the formalism but eventually disappears from all practical
observable.

III. CHARGE AVERAGE AND THE SINE-GORDON MODEL

In the absence of backscattering at the QPC, |r j | = 0,
the Coulomb blockade induced by the charging energy term
HC is entirely suppressed as the flow of electrons becomes
continuous and there is no charge granularity. Electrons are
continuously entering the island regions before being evenly
distributed among the output channels. In the bosonization
language, this uninterrupted flow of electrons is described
by the quadratic Hamiltonian H0 + HC with plasmonic exci-
tations traveling along the chiral edges and scattered at the
entrances of the island [58,59]. It is also represented by an
equivalent quantum circuit connecting transmission lines with
impedance Rq by capacitors C [53].
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Following Refs. [53,60,61], we use Heisenberg equa-
tions of motion to discuss the scattering of plasmonic modes.
Their explicit form is detailed in Appendix A together with
their solution. Solving these equations, we find the following
expression for the bosonic modes δφ j :⎛

⎝δφ1

δφ2

δφ3

⎞
⎠ = M

⎛
⎝δφ0

A
δφ0

B
δφ0

C

⎞
⎠+ 2π

3

⎛
⎝−2N1,g − N2,g

N1,g − N2,g

N1,g + 2N2,g

⎞
⎠. (7)

The 3 × 3 scattering matrix M is given in Appendix A.
Equation (7) is written in terms of three incoming fields
δφ0

A, δφ0
B, δφ0

C . These three fields are themselves linear
combinations of the incoming fields δφ0

1 , δφ0
2 , δφ0

3 in the
three quantum Hall regions. They have standard commuta-
tion relations [φ0

α,R/L(t ), φ0
α,R/L(t ′)] = −iπsgn(t − t ′), with

α = A, B,C, and, as incoming fields, they originate from a
thermalized source with the mean occupancy

〈
δφ0

α (ω)δφ0
α (ω′)

〉 = 4π2

ω′ nB

(
h̄ω′

kBT

)
δ(ω + ω′), (8)

involving the Bose distribution nB(x) = (ex − 1)−1 with tem-
perature T .

For energies well below the charging energy ωτc � 1, the
scattering matrix takes a simple form

lim
ωτc�1

M = − 1√
3

⎛
⎝1 0 0

1 0 0
1 0 0

⎞
⎠ (9)

discarding effectively the two fields δφ0
B, δφ0

C in Eq. (7). These
two fields are thus identified as charge modes that are gapped
by the electrostatic charging energy on the two islands. Quite
generally we expect that a series of N capacitive islands would
induce a set of N gapped bosonic modes. Hence, we are
left with a single gapless mode δφ0

A at low energy that will
determine the transport properties throughout the device.

We now include the reflections of the QPCs given by
Eq. (6). In the interaction picture we replace the fields in
Eq. (6) using Eq. (7). At low energy (<Ec), it is further
justified [62] to average HBS(t ) over the gapped fields δφ0

B and
δφ0

C . For instance, the first term writes

cos δφ1 = 1

2
e− 1

2 〈δφ2
1 (t )〉HE

[
ei[

δφ0
A√
3

+ 2π
3 (2N1,g+N2,g )]+H.c.

]
, (10)

where the average 〈〉HE only contains the δφ0
B/C fields. We

leave the details of the average calculation to Appendix B and
quote only the final result,

HBS = |r| D1/3 E2/3
c cos

(
δφ0

A√
3

+ �

)
, (11)

where the effective reflection coefficient r involves a coherent
sum over the reflections at the three different QPCs,

r ≡ (3eγ /π )2/3

π
√

3
(|r1|e 2π i

3 (2N1,g+N2,g )+
√

3|r2|e− 2π i
3 (N1,g−N2,g )

+ |r3|e− 2π i
3 (N1,g+2N2,g ) ) = |r|ei�. (12)

δφ0
A is the only chargeless mode, corresponding to a specific

plasmonic motion that is not influenced by the charging en-
ergy of the islands. It survives alone for energies below Ec

and the effective low-energy Hamiltonian that emerges after
charge averaging is

Heff = vF

4π

∫ ∞

−∞
dx
[(

∂xφ
0
A,R

)2 + (∂xφ
0
A,L

)2]

+ |r| D1/3 E2/3
c cos

(
δφ0

A√
3

+ �

)
, (13)

whereas the current operator at the right output of the device
reads

Î ≡ Î3(t ) = − e

2π
∂tδφ3(t ) = e

2π

1√
3
∂tδφ

0
A(t ), (14)

where the gapped fields δφ0
B/C do not contribute to the av-

erage or the long-time (zero-frequency) fluctuations of the
current. Remarkably, the model is a boundary sine-Gordon
model, similar to an impurity [39] in a one-dimensional elec-
tron liquid with the Tomonaga-Luttinger parameter K = 1/3
or the weak quasiparticle tunneling between two edges of a
fractional quantum Hall state [40–42] at filling ν = 1/3.

Given a set of QPC transmissions, triple points are defined
by specific values of the left and right gate voltages for which
the coherent sum in Eq. (12) vanishes, r = 0. At those points,
backscattering processes interfere destructively and a uninter-
rupted noiseless flow of electron is recovered with maximum
conductance. In this case, the effective Hamiltonian (13) is in
fact quadratic and readily solvable.

IV. CURRENT, NOISE, AND TRIPLE POINTS

We consider a source-drain geometry where we apply a
voltage on the edge channel 1 and measure the current Î ≡ Î3

in channel 3. Solving the Heisenberg equations, we obtain that
the input field δφ0

1 (t ) is essentially shifted by the number of
emitted temporal wave packets eV t/h̄ during the time interval
t , which translates into a shift of eV t/

√
3h̄ for δφ0

A(t ), and an
average current I = 〈Î〉,

I = e

2π
√

3
∂t

(〈
δφ0

A(t )
〉+ eV t√

3h̄

)

= e2V

3h
+ e

2π

∂t
〈
δφ0

A(t )
〉

√
3

. (15)

At the triple point r = 0, the Hamiltonian Eq. (13) is quadratic
so that 〈δφ0

A(t )〉 = 0, yielding from Eq. (15) the maximum
conductance G = I/V = Gmax = e2/3h as also predicted
from NRG calculations [30] in the weak tunneling/strong
backscattering regime. This conductance can be interpreted as
the series addition of three quantum resistances Rq, each QPC
being effectively ballistic. The triple point corresponds in fact
to the quantum critical point identified in the experiment and
NRG calculations of Ref. [30].

Away from the triple point, r 
= 0, the nonlinear cosine
term in Eq. (13) shifts the average bosonic field 〈δφ0

A(t )〉 to a
nonzero value such that conductance becomes nonlinear and
departs from e2/3h. This perturbation drives the system away
from the quantum critical point and the conductance decreases
with decreasing voltage/temperature towards a low-energy
fixed point with zero conductance.
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A. Fractional charges at weak reflection

At intermediate energies, the reflection term in Eq. (13)
can be treated by perturbation theory. We use the interaction
picture where the time-dependent fields follow from the free
part of the Hamiltonian Eq. (13), i.e., for r = 0. The Heisen-
berg current then expands to second order in the reflexion
coefficient as Î = Î0 + Î1 + Î2, where

Î0 = Î3(t ) = e

2π

1√
3
∂tδφ

0
A(t ),

Î1 = i

h̄

∫ t

−∞
dt ′[HBS(t ′), Î3(t )],

Î2 = − 1

h̄2

∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′[HBS(t ′′), [HBS(t ′), Î3(t )]], (16)

with 〈Î0〉 = e2V/3h. After taking the quantum average at zero
temperature and finite bias voltage, we obtain the leading
terms for the current

I = 1

3

e2V

h

[
1 − |r|2

(
E c

eV

)4/3
π2

(2/3)

]
, (17)

with E c = 31/4Ec, and the shot noise

S = e

9

e2V

h
|r|2
(

E c

eV

)4/3
π2

(2/3)
. (18)

The Fano factor for the reflected current is then

F = S

I (|r| = 0) − I
= 1

3
, (19)

corresponding to the backscattering of fractional charges e∗ =
e/3. Equation (17) can be written in a more suggestive form

I = 1

3

e2V

h

[
1 − a

(
kBT∗
eV

)4/3
]
, (20)

with the coefficient a = (
√

π/6)[( 1
3 )/( 5

6 )], by introducing
the temperature scale [63]

T∗ = b
|r|3/2E c

kB
, (21)

with b = [3
√

3π(5/6)]3/4. Equation (20), valid in the pertur-
bative regime eV � kBT∗, gives the onset of the crossover to
the low-voltage regime. While T∗ itself is a nonuniversal scale
depending on microscopic details (e.g., high-energy details of
the electronic dispersion relation, irrelevant processes, etc.),
the current is found to be a universal function of eV/kBT∗
and T/T∗. The full crossover function of I (eV/kBT∗, T/T∗)
is determined from the Bethe ansatz solution of the sine-
Gordon model defined by Eq. (13), as later discussed in
Sec. V A.

B. Triple points

The temperature T∗ from Eq. (21) sets the energy scale for
the crossover between the high and low temperature or bias
voltage limits. It is governed by the effective reflection coef-
ficient r and therefore vanishes at the triple points where the
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FIG. 2. Triple points r = 0 represented in the plane of gate volt-
ages for increasing |r2|/|r1| at |r1| = |r3| considering only a single
unit cell. The two triple points originate from N1,g = (1 − 2N2,g)/2
at |r2|/|r1| = 0 and move towards each other as |r2|/|r1| is increased
until they annihilate at |r2|/|r1| = 2/

√
3. Triple points no longer

exists above this critical value. Enlarged gate voltages show the
periodic repetition of triple points as seen from the plot in the inset
drawn for |r3| = |r2| = |r1| by varying gates voltages N1/2,g from 0
to 4.

conductance is e2/3h, independent of the temperature or bias
voltage. Figure 2 maps out the positions of the triple points for
the symmetric configuration |r1| = |r3| as |r2|/|r1| evolves.
The triple points form a periodic lattice with two sites per
unit cell when the left and right gate voltages are varied. They
only exist for |r2|/|r1| < 2

√
3. For |r2|/|r1| > 2

√
3, the triple

points disappear: the electron-mediated coupling between the
two islands becomes too weak and the two islands couple
preferentially to the source and drain leads which suppresses
transport at low energy. In the asymmetric case |r1| 
= |r3|,
triple points only exist within upper and lower threshold of
|r2|/|r1| determined by the ratio |r3|/|r1|,

|r2|
|r1|
∣∣∣∣
lower

=
⎧⎨
⎩

|r3 |
|r1 | −1√

3
,

|r3|
|r1| � 1,

1− |r3 |
|r1 |√
3

,
|r3|
|r1| < 1,

(22)

|r2|
|r1|
∣∣∣∣
upper

=
|r3|
|r1| + 1

√
3

. (23)

Beyond these thresholds, pair of triple points eventually meet
and disappear. The positions of triple points in the plane
defined by gate voltages is depicted in Fig. 3. From Fig. 2 it
is seen that the evolution of triple point with varying |r2|/|r1|
for the symmetrical configuration is entirely on the diagonal
plane (N1,g, N2,g) = (Ng, Ng) such that

N1,g = 1

2π
arccos

[
−

√
3 |r2|

|r1|
2

]
= N2,g = Ng. (24)
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FIG. 3. Triple points r/|r1| = 0 movement in the plane of gate
voltages for increasing |r2|/|r1| for the asymmetrical configuration
with 2|r1| = |r3|. The inset shows the periodic pattern of triple points
with enlarged gate voltages for |r2| = |r1| and |r3| = 2|r1|.

Then the expansion of Eq. (12) around the triple points in the
symmetric case writes

∣∣∣∣ r

|r1|
∣∣∣∣
2

= 4π2

(
(3eγ /π )2/3

π
√

3

)2{
(δN1)2 + (δN2)2

+
[

2 − 3

( |r2|
|r1|
)2]

δN1 δN2

}
, (25)

where we define two small parameters δN1/2 = Ng,1/2 − Ng.
Equation (25) draws an ellipse squashed along the N1,g = N2,g

direction, or a circle for the special case |r2|/|r1| = √
2/3. The

two triple points are in fact symmetrically positioned with
respect to the central configuration of gate voltages N1,g =
N2,g = 1/2. Along the line N1,g = N2,g, r thus develops a
double well form with zeros at the triple points and a local
maximum at the center N1,g = N2,g = 1/2.

V. CROSSOVER FUNCTION

A. Bethe ansatz solution

The boundary sine-Gordon model of Eq. (13), together
with the definition of the current observable Eq. (14) and the
coupling to the bias voltage described by the time-dependent
shift in the boson of Eq. (15) defines the canonical out-of-
equilibrium boundary sine-Gordon model. This model also
faithfully describes the the tunneling between ν = 1/3 frac-
tional quantum Hall states, or between Luttinger liquids with
parameter K = 1

3 , and in this context it has been shown that
it allows for an exact out-of-equilibrium solution using Bethe
ansatz [41,42]. The main features of the Bethe ansatz solution
are summarized in Appendix C. It is characterized by a single
temperature (energy) scale T∗ entering all universal functions
for physical observables such as the current, the noise, etc.
Quite generally, T∗ depends on a combination of the sine-
Gordon coupling constant r and the ultraviolet cutoff of the

0.01 0.05 0.1 0.5 1 5 10

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Universal linear conductance (in the unit of G0 = e2/3h)
as a function of the temperature ratio T/T∗. The solid (red) line
shows the conductance obtained from the thermodynamic Bethe
ansatz (see Appendix C). The low- and high-temperature asymp-
totes of the conductance given in Eq. (28) are illustrated by black
dashed lines. The blue dotted line corresponds to the NRG results
extracted from Ref. [30] and applicable for a weak transmission of
the QPC. There is very good agreement with the Bethe ansatz for
moderate and high temperatures and the two curves differ at low
temperature.

model. In our case, it is readily obtained by matching the
Bethe ansatz high-voltage eV � kBT∗ expansion of the cur-
rent with its microscopic perturbative evaluation in Eq. (17).
The resulting expression for the temperature scale T∗ has been
anticipated and given in Eq. (21). As expected, the different
powers of D cancel out and the intermediate cutoff energy D
finally drops out from the expression of T∗, and thus of all
observables.

It results that the nonlinear differential conductance ex-
hibits the scaling form

G(V, T ) = 1

3

e2

h
g

(
eV

kBT∗
,

T

T∗

)
, (26)

with g(x, y) a universal function. At zero temperature, an
analytical expression for g is derived from the Wiener-Hopf
technique [42]

g(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1 −
∞∑

n=1

(−1)n+1√π( n
3 )

3(n)( 1
2 − 2n

3 ) x− 4n
3 , x >

(
4
27

)1/4
,

∞∑
n=1

(−1)n+13
√

π(3n)
(n)( 1

2 +2n) x4n, x <
(

4
27

)1/4
,

(27)

and describes the universal crossover from low to high volt-
age. As already noticed [39,42,64–66], it exhibits a duality
between its low- and high-energy expansions. Interestingly,
the differential conductance is superballistic at large voltage
as it exceeds [42] the ballistic limit e2/(3h), before falling off
down to zero at vanishing bias. The corresponding trace is
shown in Fig. 8 in Appendix C. The thermodynamic Bethe
ansatz [41,42] provides the solution at finite temperature
and is detailed in Appendix C. Observables are then given
by universal functions of the temperature ratio T/T∗. The
resulting linear conductance is shown in Fig. 4. Its low-
and high-temperature asymptotic behaviors were derived in
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Ref. [67]:

g(0, y � 1) � 32

5
(2πy)4,

g(0, y � 1) � 1 −
√

π
(

1
3

)3
6
(

5
6

) 1

(6πy)4/3
. (28)

The universal function g(0, y) describes a monotonous
crossover between the high-temperature unitary conductance
e2/(3h) and the vanishing zero-temperature conductance. The
T 4 scaling at low temperature in Eq. (28) can be readily
understood from an inelastic cotunneling perspective [68–71].
The transfer of one electron from the left to the right leads
occurs via virtual processes where each island is excited
with an electron-hole pair. The phase space for each pair
is proportional to T 2 yielding an overall T 4 scaling for the
conductance. In the bosonization language, the operator re-
sponsible for the T 4 scaling is ei

√
3δθA , the dual to the cosine

backscattering term of Eq. (11), where δθA is the canonical
conjugate to the field δφA. It can also be written as

ei
√

3δθA = eiδθ1 eiδθ2 eiδθ3 . (29)

The vertex operator eiδθ1 corresponds to the transfer of one
electron across the first (left) QPC and can be fermionized
back as ψ

†
R,1ψL,1. The field ψL/R,1 annihilates an electron

on the left (right) side of the first QPC. Using similar
refermionization at each QPC, one obtains the leading irrel-
evant low-energy operator

ei
√

3δθA ∝ ψ
†
R,1ψL,1ψ

†
R,2ψL,2ψ

†
R,3ψL,3 (30)

corresponding indeed to the transfer of one electron across the
two-island structure together with electron-hole excitations in
both islands. The operator of Eq. (30) involves the fermionic
reservoirs around the three QPC symmetrically. This symme-
try originates in fact from the symmetric expression of δφA

in terms of δφ1,2,3 which is preserved along the integrable
crossover, yielding eventually the six operators in Eq. (30) and
the T 4 scaling.

The strict domain of validity of the universal conductance
shown in Fig. 4 is the scaling limit where the charging en-
ergy Ec is sent to infinity, the reflection coefficient r to zero
while the product r3/2Ec is kept finite. Outside this limit, but
still at large transparency, there are corrections that are small
with the ratio ∝ T/Ec, see Appendix D. The applicability
of this formula at low transparency is however not clear.
In the two-channel Kondo model, a single universal scaling
form for the conductance is found [25] in the vicinity of the
critical point, when destabilized by a small magnetic field or
channel anisotropy, describing a non-Fermi liquid to Fermi
liquid crossover. This scaling form has been solidly obtained
[13,33,34] for weak and large transparencies [22], confirmed
by NRG calculations, as well as with a description of the
critical point using the Emery-Kivelson approach [72–74].
Despite this strong universality in the two-channel Kondo
case, our model with two islands is different and the con-
ductance scaling seems to depend on the bare transparency
as further discussed in the next section when comparing our
findings with Ref. [30]. Let us already emphasize however
that the leading correction to the critical point, the high

temperature part of Fig. 4, is universal in the sense that it is
the same for all bare transparencies.

B. Comparison with Ref. [30]

The geometry of two connected quantum islands discussed
in this paper has been realized in the experiment of Ref. [30]
together with NRG calculations adapted to the limit of weakly
transparent QPC—the opposite limit is the focus of our work.
Nevertheless, as already mentioned in the Introduction, the
properties of the quantum critical point are expected to be
unique, independent of the bare QPC transmissions, and our
work can shed light on many findings of Ref. [30].

The main difference between our regime of high QPC
transparency and Ref. [30] is the absence of a Kondo scaling
region. For a weak QPC transparency, a Kondo resonance
forms progressively with decreasing temperature, yielding a
conductance that increases when temperature is lowered and
eventually saturates at a value G0 = e2

3h at the triple point.
The resonance is characterized by the Kondo temperature
scale TK . TK increases with the QPC transparency and the
Kondo effect thus disappears when the transparency exceeds
a threshold for which TK ∼ Ec. In the quasiballistic regime,
i.e., almost transparent, many charge states are occupied and
there is no Kondo effect. In summary, the conductance at large
transparency, shown in Fig. 4, is a monotonous and increasing
function of temperature, with the characteristic temperature
scale T ∗, whereas, in the weakly transparent case of Ref. [30],
the conductance also starts as an increasing function of T/T ∗
but then crosses over to a decreasing function of T/TK .

Interestingly, the nature of the relevant perturbation in
the vicinity of the quantum critical (triple) point does not
depend on the QPC bare transparency. We expect that the
∼(T/T∗)−4/3 correction of Eq. (28) is valid regardless of the
transparency and applies as well to the experiment of Ref. [30]
under the condition that T, T ∗ � TK , Ec. A similar discussion
with two temperature scales can be found in Refs. [13,14,33]
for the two-channel Kondo model slightly away from charge
degeneracy [25]. The T −4/3 scaling is in fact clearly observed
in the NRG data of Ref. [30]. This is shown in Fig. 4 where
the Bethe ansatz results coincides well with NRG from high
to moderate values of T/T∗. The weak transmission NRG data
depart at low T/T∗ from the quasiballistic Bethe ansatz results,
with a T 2 behavior as opposed to the T 4 low-temperature
scaling of the Bethe ansatz. This indicates that the low-energy
part of the crossover to the Fermi liquid fixed point depends on
the bare transmission in contrast with the two-channel Kondo
model.

All in all, our approach recovers other findings from
Ref. [30]. It identifies the nature of the quantum critical
point with its leading relevant perturbation: a boundary sine-
Gordon model with the Luttinger parameter K = 1/3. The
critical point is characterized [75] by the fractional residual
entropy �S = ln(

√
3), also observed in the NRG calculation

of Ref. [30]. Our approach also explains the value of the
critical exponents in the vicinity of the quantum critical point:
from Eqs. (21) and (25), T∗ varies as ∼δN3/2

g and ∼|r2|3/2,
in precise agreement with Ref. [30]. We also show in Ap-
pendix D that the temperature correction to the conductance
at the triple point scales as (T/Ec)2/3. This correction is
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FIG. 5. The finite temperature differential conductance (in the
unit of G0 = e2/3h) as a function of gate voltage N1,g = N2,g = Ng

for kBT/E c = 0.1 and reflection coefficients as specified in the plot.

expected to evolve as (T/TK )2/3 as the transmission is lowered
to the Kondo regime and the 2/3 exponent is also precisely in
agreement with the NRG calculations of Ref. [30].

Since T∗ depends explicitly on the left and right gate volt-
ages through Eqs. (21) and (12), we can evaluate the linear
conductance as a function of the gate voltage N1,g along the
symmetric line N1,g = N2,g for a fixed temperature T . The
result is shown in Figs. 5 and 6 for different values of |r2|,
illustrating the competition between the cooperative transport
through the two islands via their edge-state mediated coupling
on one hand and the current suppression of each individual
island due to the relevant QPC backscattering on the other
hand. The very same behavior for the conductance has been
measured and calculated via NRG in Ref. [30] (see their
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FIG. 6. Evolution of the differential conductance (in the unit
of e2/3h) in the plane defined by the gate voltages Ng,1/2 at
temperature kBT/E c = 0.001. The plots from (a) to (d) corre-
spond to the symmetrical configuration |r1| = |r3| = 0.1 with |r2| =
0.1, 0.08, 0.06, 0.04, respectively.

Fig. 2) in the weakly transparent regime, and interpreted as
a competition between Kondo screening of each individual
island and the antiferromagnetic inter-island binding. We note
that Fig. 5 was calculated in the quasiballistic regime of this
paper where the bare transparencies are very large, whereas
Fig. 2 of Ref. [30] was calculated and measured for interme-
diate bare transparencies resulting in a lower amplitude for the
conductance despite a very similar shape.

VI. GENERALIZATION TO MANY ISLANDS

The results presented above can be straightforwardly ex-
tended to more complex setups such as many quantum islands
connected in series by single channel QPCs. We consider as
an example the illustrative case of three islands depicted in
Fig. 7. In this case we express the four bosonic fields δφ j in
terms of the four incoming fields δφ0

α via a 4 × 4 scattering
matrix M. In the low-energy limit, M writes

lim
ωτc�1

M = 1

2

⎛
⎜⎝

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎠. (31)

This shows that, out of the four incoming fields, only one
δφ0

A is a gapless mode and the remaining three modes can be
integrated out to obtain effective Hamiltonian energies well
below the charging energy, similarly to the previous case of
two connected islands. The result of the averaging in the
absence of gate voltages gives

H ′
BS = r′D1/4E3/4

c cos

(
δφ0

A

2

)
, (32)

where the effective reflection coefficient writes

r′ =
√

2

π

(
eγ

π

)3/4

[(|r1| + |r4|)(17 − 2
√

2)
1

8
√

2

+ (17 − 2
√

2)−
1

8
√

2 (|r2| + |r3|)]. (33)

We find again a boundary sine-Gordon model where the
dimension of the relevant operator is 1/4. The subsequent
analysis takes the same form as for two islands and the trans-
port properties are calculated analogously. Computing the
current and the noise perturbatively for T � T ∗, where T ∗ ∼
|r′|8/5Ec/kB is the temperature scale generated by the bound-
ary term, we find the backscattering of fractional charges
e∗ = e/4.

We can readily generalize our setup to NQI islands con-
nected by interspaced individual QPCs. In that case, the theory
follows the same line, one obtains a single gapless bosonic
mode that survives at energies well below the charging energy.
The corresponding scattering matrix M of size (NQI + 1) ×
(NQI + 1) simplifies at low energy with a single nonvanish-
ing column with entries 1/

√
NQI. The resulting model for

3

3

FIG. 7. Three-sites quantum islands.

245418-7



KARKI, BOULAT, AND MORA PHYSICAL REVIEW B 105, 245418 (2022)

the quantum critical point and its leading relevant perturba-
tion is still a boundary sine-Gordon model with the operator
dimension ν = 1/(NQI + 1). Perturbative evaluations of the
current and noise give the backscattered fractional charge
e∗ = e/(NQI + 1).

VII. CONCLUSION

In light of a recent experiment [30], we investigate theo-
retically the quantum criticality associated with two floating
islands connected to three edge channels via quantum point
contacts in the integer quantum Hall regime. Assuming high
transparency of the quantum point contacts, we unveil the
nature of the quantum critical point by establishing an explicit
mapping to the boundary sine-Gordon model with Luttinger
parameter K = 1/3. From this mapping to the boundary sine-
Gordon model, we study the features of different observables
reported in the experiment [30]. We compute the residual
fractional entropy, and we also find that the critical exponents
for the conductance close to the triple points and the shape of
the conductance as a function of the plunger gate voltages are
in full agreement with experimental findings.

Our analytical description also demonstrates the competi-
tion between Kondo-like screening of each individual island
and the cooperative transfer of electrons between them via
the conductance measurements. In addition, we report the
emission of fractional charges e∗ = e/3 whose value can
be extracted from shot noise measurements. Our work also
sheds light towards extending the recent experiment to charge-
Kondo clusters. For multi (NQI)-sites quantum islands, we
show that the mapping to the boundary sine-Gordon model
still holds—with Luttinger parameter K = 1/(NQI + 1)—and
find a fractional charge emission e∗ = e/(NQI + 1).
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APPENDIX A: EQUATIONS OF MOTION
FOR BOSONIC FIELDS

With number density operators N̂1/2 presented in Eq. (4),
we arrive at the equation of motions for the bosonic fields (for
details see Ref. [53])

δφ1 = δφ0
1 − 1

iωτc
(−δφ1 + δφ2 − 2πN1,g),

δφ2 = δφ0
2 + 1

iωτc
[−δφ1 + 2δφ2 − δφ3 + 2π (N2,g − N1,g)],

δφ3 = δφ0
3 + 1

iωτc
(−δφ2 + δφ3 − 2πN2,g). (A1)

By performing orthogonal transformation⎛
⎝δφ0

A
δφ0

B
δφ0

C

⎞
⎠ =

⎛
⎜⎝

− 1√
3

−1√
3

−1√
3

− 1√
2

1√
2

0

− 1√
6

−1√
6

2√
6

⎞
⎟⎠
⎛
⎝δφ0

1
δφ0

2
δφ0

3

⎞
⎠, (A2)

we express Eq. (A1) into the form already presented in Eq. (7)
with the scattering matrix

M =

⎛
⎜⎝

− 1√
3

− ωτc (2i+ωτc )√
2(ω2τ 2

c +4iωτc−3)
− ωτc (4i+ωτc )√

6(ω2τ 2
c +4iωτc−3)

− 1√
3

ωτc√
2(3i+ωτc )

− ωτc√
6(3i+ωτc )

− 1√
3

iωτc√
2(ω2τ 2

c +4iωτc−3)
ωτc (5i+2ωτc )√

6(ω2τ 2
c +4iωτc−3)

⎞
⎟⎠,

(A3)
whose low energy limit ωτc � 1 is given in Eq. (9).

APPENDIX B: EFFECTIVE HAMILTONIAN

We start from the Hamiltonian Eq (6) accounting for weak
backscattering in three QPCs. From Appendix A we see that
δφi entering into Eq. (6) are expressed in terms of three in-
coming fields δφ0

α (α = A, B,C). While α = A is the gapless
mode, α = B,C represent gapped modes. We then integrated
out the gapped modes to arrive at the backscattering Hamilto-
nian expressed in terms of single gapless mode δφ0

A. In the
following we provide a quick summary on the integrating
out of the high-energy modes. From the scattering matrix
presented in Appendix A, we have for the field δφ1,

δφ1 = −δφ0
A√
3

−2π

3
(2N1,g+N2,g) − ωτc(2i+ωτc) δφ0

B√
2
(
ω2τ 2

c +4iωτc−3
)

− ωτc(4i + ωτc) δφ0
C√

6
(
ω2τ 2

c + 4iωτc − 3
) . (B1)

The above equation results in the cosine term in the backscat-
tering Hamiltonian of the QPC1 as given in Eq.(10). The
average over the high energy modes 〈δφ2

1 (t )〉HE is obtain
by using the input/output scattering formalism developed in
Refs. [53,60,61] followed by the application of identity

〈
δφ0

α (ω)(δφ0)†
α′ (ω′)

〉 = 2

[
1+nB

(
h̄ω

kBT

)]
δαα′δ(ω − ω′).

At zero temperature we arrive at the result

〈
δφ2

1 (t )
〉
HE = 4

3

∫ ∞

0
dω

ωτ 2
c [7 + (ωτc)2]

[1 + (ωτc)2][9 + (ωτc)2]
e− ωh̄

D

= −4

3
log

[
31/4eγ h̄

Dτc

]
. (B2)

Repeating the same procedure for QPC2 and QPC3, Eq. (6)
finally writes into the form of Eq. (11) presented in the main
text.

APPENDIX C: BETHE ANSATZ SOLUTION

In the main text we showed that the two-site quantum
island in quasiballistic regime falls into the same universality
class as the weak tunneling between fractional quantum Hall
edge states at filling ν = 1/3. The latter problems are de-
scribed by a boundary sine-Gordon model whose Bethe ansatz
solution for the charge current has been thoroughly investi-
gated [39–42]. In particular, the Bethe ansatz equations can
be solved analytically at vanishing temperature by using the
Wiener-Hopf technique [42], providing a closed series repre-
sentation of the universal scaling function for the current in
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FIG. 8. The universal zero-temperature differential conductance
(in the unit of G0 = e2/3h) as a function of eV/kBT∗.

the low and large bias voltage regimes at zero temperature:

I =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e2V
h

∞∑
n=1

(−1)n+1
√

π(3n)
2(n)( 3

2 +2n) x4n, x < x0,

e2V
3h

[
1−

∞∑
n=1

(−1)n+1
√

π( n
3 )

6(n)( 3
2 − 2n

3 )x− 4n
3

]
, x > x0,

where x = eV/kBT ′
B with T ′

B being the boundary temperature
and the convergence radius of the series expansion reads x0 =√

2/33/4. We then matched the above expression of current
for x > x0 stopping the series at n = 1 with that obtained
perturbatively [Eq. (20)] providing the matching T ′

B = T∗.
The resulting zero temperature differential conductance is
presented in Eq. (26) and corresponding universal curve is
depicted in Fig. 8.

At finite temperature the current can be computed in a
standard way [41,42] from the solution of the so-called ther-
modynamical Bethe ansatz (TBA) equations, an approach
that we summarize here for completeness. The sine-Gordon
model at ν = 1/3 has a spectrum consisting of a pair of
kink-antikink, carrying charge q = ±e in our case, and of a
breather which can be viewed as a kink-antikink neutral bound
state. The corresponding quasiparticle modes are denoted
Aa(θ ), with the quantum number a = +,−, 0 labeling the
kink, the antikink, and the breather, respectively. Momentum
p is parametrized by a rapidity θ = ln pvF

kBT . Those quasiparti-
cles are not free: while integrability results in the many-body
scattering between quasiparticles factorizing as elementary
two-body scattering, just as in a free theory, the interaction
between two quasiparticles Aa1 (θ1) and Aa2 (θ2) is encoded in
a nontrivial two-body scattering matrix Sa1a2 (θ1 − θ2) [76].

As a result of this interaction, at finite temperature the
quasiparticles distributions are not that of free particles, but
rather obey a set of nonlinear equations. In the thermody-
namical limit L → ∞ (with L the system size), we write the
densities of occupied quasiparticles as kBT L

2π h̄vF
ρa(θ ) with ρa

the reduced densities. The reduced densities can then be en-
coded by pseudoenergies εc = ε± and ε0 via ρa = fa Pa where

Pa = ∂θεa is the total (occupied+empty) density of quasi-
particles, and fa = (1 + eεa−μa )

−1
is the occupation function.

We also introduce the functions La(θ ) = ln (1 + eεa (θ )−μa ),
which are connected to the densities via ∂θLa = Pa − ρa. The
reduced chemical potentials read

μ0 = 0; μ± = ± eV

2kBT
.

The TBA equations for the pseudoenergies read

εc(θ ) = 1

π cosh(2θ )
� L0(θ ), (C1)

ε0(θ ) = 1

π cosh(2θ )
� [L+(θ ) + L−(θ )], (C2)

where the convolution is defined by f (θ ) � g(θ ) =∫
dθ ′ f (θ ′)g(θ − θ ′). Equations (C1) and (C2) have to be

supplemented with the boundary conditions εc(θ ) �
θ�1

eθ and

ε0(θ ) �
θ�1

√
2 eθ . These equations are solved numerically,

yielding the densities ρa. The current is then obtained through
a rate equation [41,42]

I = ekBT

2π h̄

∫
dθ (ρ+ − ρ−)(θ )T (θ ), (C3)

where T (θ ) is the probability that a kink is scattered into an
antikink at the impurity site. This probability depends on the
boundary coupling, and reads T (θ ) = (T/TB )4

e4θ+(T/TB )4 where TB

is the scale at which T = 1
2 . It is related to the scale T∗ as

TB = ( 1
4 )

6
√

π( 3
4 )

T∗ [42]. We then express the linear conductance

G(V = 0, T ) = limV →0
∂I
∂V as

G(V =0, T ) = e2

h

∫
dθ

1 + eεc (θ )

1

cosh2
(
2θ + 2 ln T

TB

) . (C4)

The exact low- and high-temperature asymptotic behaviors
of Eq. (C4) can be derived analytically using Keldysh per-
turbation theory [67] and are presented in Eq. (28). The full
conductance curve together with its asymptotic behaviors is
depicted in Fig. 4.

APPENDIX D: PERTURBATIVE CALCULATION
OF THE CONDUCTANCE

We take kB = 1 for simplicity in this Appendix. The per-
turbative correction to the charge current in the vicinity of the
quantum critical (triple) point has been derived in Sec. IV A
by linear response evaluated in real time, see also Eq. (28).
We reproduce below the same result without integrating
the charge mode beforehand. For convenience, we use the
imaginary-time framework. In addition, we also derive the
next-to-leading order correction in T/Ec (not determined in
Sec. IV A) in the spirit of Ref. [22] and argue that it gives the
right exponent for the leading temperature correction in the
Kondo regime. To this end, we introduce three chiral bosonic
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fields φA,B,C via the transformation

⎛
⎝δφ1

δφ2

δφ3

⎞
⎠ = − 2

⎛
⎜⎜⎝

1√
3

1√
2

1√
6

1√
3

0 −
√

2
3

1√
3

− 1√
2

1√
6

⎞
⎟⎟⎠
⎛
⎝φA

φB

φC

⎞
⎠

+ 2π

3

⎛
⎝−2N1,g − N2,g

N1,g − N2,g

N1,g + 2N2,g

⎞
⎠, (D1)

and rewrite the charging energy term Eq. (2) of the original
Hamiltonian as

HC = Ec

π2

(
φ2

B + 3φ2
C

)
. (D2)

The shift in Eq. (D1) removes the gate voltages from the
charging energy. Equation (D2) expresses the fact that the
field φA remains gapless, whereas φB,C develops a charge
gap due to Ec. As a result, as already mentioned just after
Eq. (14), the expression of the current operator simplifies as
Î = e

2π
2√
3
∂tφA(0, t ). Kubo formula then results in the linear

conductance [22]

G = 2e2

3h

ωn

π
〈φA(iωn)φA(−iωn)〉iωn→0+ , (D3)

where ωn = 2πnT/h̄ are bosonic Matsubara frequencies and
Fourier transformed field φA(iωn) is given by

φA(iωn) =
∫ h̄/T

0
dτeiωnτ φA(τ ). (D4)

We proceed with the evaluation of the thermal average in
Eq. (D3) for which we use the path integral formalism. The
quadratic form of charging energy Eq. (D2) implies the un-
perturbed action (in the absence of backscattering)

S0 = 1

π

∑
n

[
|φA(iωn)|2|ωn| + |φB(iωn)|2

(
|ωn| + Ec

π

)

+ |φC (iωn)|2
(

|ωn| + 3
Ec

π

)]
. (D5)

Next, applying the transformation Eq. (D1), the backscatter-
ing at three interspaced QPCs is accounted for by the action

S1 =D

π

∫ h̄/T

0
dτ L(τ ), (D6)

with

L ≡ |r1| cos

[
2√
3
φA+

√
2φB+

√
2

3
φC−2π

3
(2N1,g+N2,g)

]

+ |r2| cos

[
2√
3
φA−2

√
2

3
φC+2π

3
(N1,g−N2,g)

]

+ |r3| cos

[
2√
3
φA−

√
2φB+

√
2

3
φC+2π

3
(N1,g+2N2,g)

]
.

With total effective action S = S0 + S1, we compute the
expression of conductance Eq. (D3) following the straight-
forward procedure of expanding e−S/h̄ in powers of |r j | and
performing Gaussian integrals [22]. We consider the regime
where the temperature is much smaller than the charging
energy T < Ec, allowing for an expansion in powers of T/Ec,
but still large enough such that the relevant perturbation ∝
r2(Ec/T )4/3 � 1 is contained. The conductance, derived with
the next-to-leading order correction in T/Ec, expresses as

G = e2

3h

[
1 − C1

(
eγ Ec

π2T

)4/3

− C2

(
eγ T

Ec

)2/3
]
, (D7)

where

C1 = 31/3

6

√
π(1/3)

(5/6)

∣∣|r1|e 2π i
3 (2N1,g+N2,g )

+
√

3|r2|e −2π i
3 (N1,g−N2,g ) + |r3|e− 2π i

3 (N1,g+2N2,g )
∣∣2, (D8)

which is fully consistent with Eq. (20) and

C2 = 2π2

5

31/3

6

√
π(1/3)

(5/6)

[
28

27
(|r1|2 + |r3|2) + 4

9
|r2|2

− 16
√

3

27
|r2|{|r1| cos(2πN1,g) + |r3| cos(2πN2,g)}

− 52

27
|r1|r3| cos [2π (N1,g + N2,g)]

]
. (D9)

At triple point, where the coefficient C1 vanishes, the third
term of Eq. (D7) becomes the leading order temperature
correction to the unitary conductance e2/3h, associated with
the leading irrelevant operator at the quantum critical point.
In that case in fact, the range of validity of Eq. (D7) ex-
tends down to zero temperature. The correction ∝ (T/Ec)2/3

gradually mutates into a (T/TK )2/3 correction as the QPC
transmission is lowered and the Kondo effect sets in for TK <

Ec. In conclusion, even by doing a perturbative computation
in the quasiballistic limit where Kondo screening is absent,
we are able to derive the leading irrelevant scaling exponent
of the two-charge Kondo fixed point, similarly to Ref. [22].
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