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Herein, we establish a hybrid coupling model (HCM) containing both near- and far-field couplings to describe
the electromagnetic response of the coupled-grating system composed of two parallelly aligned subwavelength
dielectric gratings. The HCM shows that the near-field coupling strength only contributes to the frequency
splitting of two resonant modes, while the far-field one contributes to the frequency splitting and the linewidths
of two resonant modes simultaneously. By changing the distance between two dielectric gratings, both the near-
and far-field coupling strengths can be flexibly tuned, giving rise to rich electromagnetic responses. In addition,
the formation of Fabry-Perot bound states in the continuum in coupled-grating systems can be clearly explained
by the HCM. In this paper, we not only provide an all-dielectric platform for simultaneously manipulating near-
and far-field couplings but also offer a viable approach to achieve reflectance/transmittance spectra with diverse
shapes.
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I. INTRODUCTION

Electromagnetic response tailoring (i.e., optical spectrum
tailoring) has attracted the great interest of researchers since
it plays a fundamental role in optical physics [1–4]. By
tailoring electromagnetic responses, various optical function-
alities (such as optical absorption, polarization manipulating,
and lasing) with narrow bands [5–8], broad bands [9–12],
and even multiple bands [13–15] can be achieved. Over the
past several decades, optical resonators have been widely
utilized to realize various optical functionalities with narrow
bands [16–26]. To realize strong optical resonances, numer-
ous microstructures have been proposed, such as photonic
crystal cavities [16,17], microrings [18,19], split-ring res-
onators [20,21], metasurfaces [22–24], and subwavelength
gratings [25,26]. Through coupling with optical resonators,
electromagnetic responses can be tailored flexibly [27,28].
Such couplings can be divided into two classes: near-
and far-field couplings. On one hand, near-field couplings
can be realized in coupled microrings [29] (or microtoroid
[30]), coupled split-ring resonators [31,32], and dielectric
disk chains [33]. Through exploring near-field couplings, re-
searchers found a series of interesting physical phenomena,
including exceptional points [34–36], electromagnetically
induced transparency [37,38], and plasmon-induced trans-
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parency [39,40]. On the other hand, far-field couplings can
be realized in waveguide-coupled resonators [41–44] and
metamaterial crystals [45]. Through exploring far-field cou-
plings, researchers also found a series of interesting physical
phenomena, including Fano resonances [42,43] and topologi-
cal phase transition [43,45]. Additionally, waveguide-coupled
resonators in the weak-coherent regime have also been
utilized to reveal the nontrivial photon propagation and scat-
tering characteristics [46,47]. Interestingly, researchers found
that near- and far-field couplings can coexist in some spe-
cial coupled-resonators systems, which greatly enriches the
electromagnetic response tailoring [48–52]. To reveal the
underlying physics of near- and far-field optical losses, re-
searchers proposed first-principles-based physical models of
photonic radiative [53] and absorption losses [54]. Only a few
metallic coupled-resonators systems can support near- and
far-field couplings simultaneously [48–52].

Over the past two decades, subwavelength dielectric grat-
ings have attracted immense interest due to their unique
resonant properties [55–57]. Owing to the guided mode res-
onances (GMRs), subwavelength dielectric gratings can be
viewed as narrow-band resonators [55–57]. In this paper,
we parallelly align two identical subwavelength dielectric
gratings separated by air to constitute a coupled-grating sys-
tem. Within the framework of the temporal coupled-mode
theory (TCMT) [58], we establish a hybrid coupling model
(HCM) containing both near- and far-field couplings to de-
scribe the electromagnetic response of the coupled-grating
system. The near-field coupling originates from the overlap-
ping of strongly localized evanescent waves of two gratings.
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The origination of the far-field coupling can be explained
as follows. One of the grating couples to the incident elec-
tromagnetic wave and then reradiates a propagating wave
(details can be seen in Sec. II A). The reradiative propagat-
ing wave undergoes the distance between two gratings and
finally couples with the other grating. This coupling is related
to the phase of the propagating wave between two gratings
and the so-called far-field coupling. The cooccurrence of
the near- and far-field couplings enables us to achieve rich
electromagnetic responses which cannot be obtained in the
systems where only one kind of coupling exists. The pro-
posed HCM shows that the near-field coupling strength only
contributes to the frequency splitting of two resonant modes,
while the far-field one contributes to the frequency splitting
and the linewidths of two resonant modes simultaneously. By
changing the distance between two gratings, both the near-
and far-field coupling strengths can be flexibly tuned. Ad-
ditionally, the proposed HCM can explain the formation of
Fabry-Perot bound states in the continuum (BICs) in coupled-
grating systems [59–62]. In this paper, we not only provide an
all-dielectric platform for simultaneously manipulating near-
and far-field couplings but also offer a viable approach to
achieve reflectance/transmittance spectra with diverse shapes.

This paper is organized as follows. In Sec. II, we estab-
lish a HCM containing both near- and far-field couplings
for the coupled-grating system within the framework of the
TCMT. First, the dynamic equations of the coupled-grating
system are given in Sec. II A. Second, the reflectance of the
coupled-grating system is derived in Sec. II B. Third, two
complex eigenfrequencies of the coupled-grating system are
solved in Sec. II C. In Sec. III, we give the numerical results
and discussions to confirm the correctness of the proposed
theoretical model. Specifically, the numerical results of the
coupled-grating systems when two gratings are close and far
away are given in Secs. III A and III B, respectively. Next, the
mechanism of the Fabry-Perot BICs in the coupled-grating
system is analyzed in Sec. III C. Finally, the conclusion is
given in Sec. IV.

II. HCM CONTAINING BOTH NEAR- AND FAR-FIELD
COUPLINGS FOR COUPLED-GRATING SYSTEMS

In this section, we establish a HCM containing both
near- and far-field couplings for coupled-grating systems. In
Sec. II A, we give the dynamic equations of the coupled-
grating system within the framework of the TCMT [58]. Then
the reflectance of the coupled-grating system is derived in
Sec. II B. Finally, to obtain the angular frequency positions
and the corresponding linewidths of two resonant modes, we
solve two complex eigenfrequencies of the coupled-grating
system in Sec. II C.

A. Dynamic equations of coupled-grating systems

Figure 1(a) shows the schematic of the coupled-grating
system composed of two parallelly aligned identical subwave-
length gratings. For each grating, the refractive indices of
the high- and low-index media are nH and nL, respectively.
The grating constant is denoted by �, the duty cycle is de-
noted by p, and the height is denoted by h. The distance

FIG. 1. (a) Schematic of the coupled-grating system composed
of two parallelly aligned identical subwavelength gratings. (b) Hy-
brid coupling model (HCM) containing both near- and far-field
couplings, which describes the electromagnetic response of the
coupled-grating system.

between two identical gratings is denoted by d . Around the
angular frequency of the GMR, the electromagnetic response
of each grating can be described by the single resonator
model (SRM) [63]. Therefore, the electromagnetic response
of the coupled-grating system can be described by a coupled-
resonator system composed of two resonators.

We establish a HCM containing both near- and far-field
couplings to describe the electromagnetic response of the
coupled-grating system, as schematically shown in Fig. 1(b).
The resonant angular frequencies of two resonators are de-
noted by ω1 and ω2, respectively. The radiative losses of two
resonators are denoted by γ1 and γ2, respectively. Suppos-
ing an electromagnetic wave S̃0 normally impinges on the
coupled-grating system, the dynamic equations for two res-
onance modes (ã1 and ã2) can be determined by the TCMT
[58]:

dã1

dt
= (iω1 − γ1)ã1 + iκ ã2 + i

√
γ1S̃0

+ i
√

γ1(i
√

γ2e−iϕ ã2), (1a)

dã2

dt
= (iω2 − γ2)ã2 + iκ ã1

+ i
√

γ2e−iϕ S̃0 + i
√

γ2(i
√

γ1e−iϕ ã1). (1b)

In the right-hand side of Eq. (1a), the second term iκ ã2

represents the near-field interaction between two resonators
with the near-field coupling strength κ . The near-field cou-
pling originates from the overlapping of strongly localized
evanescent waves of two resonators. The third term i

√
γ1S̃0

represents the direct coupling between the incident electro-
magnetic wave S̃0 and resonator 1 [64]. The fourth term
i
√

γ1(i
√

γ2e−iϕ ã2) can be explained as follows. When the
incident electromagnetic wave S̃0 normally impinges on
the coupled-resonator system, resonator 2 will reradiate a
propagating wave i

√
γ2ã2. The reradiative propagating wave

undergoes the distance between two resonators d with the
phase ϕ = k0d and finally couples with resonator 1. Hence,
the fourth term can be expressed as i

√
γ1(i

√
γ2e−iϕ ã2). The

second, third, and fourth terms in the right-hand side of
Eq. (1b) can be explained similarly.
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Then Eqs. (1a) and (1b) can be reduced as

dã1

dt
= (iω1 − γ1)ã1 + iκ ã2 + i

√
γ1S̃0 − √

γ1γ2e−iϕ ã2, (2a)

dã2

dt
= (iω2 − γ2)ã2 + iκ ã1 + i

√
γ2e−iϕ S̃0 − √

γ1γ2e−iϕ ã1.

(2b)

One can clearly see that the far-field coupling strength is√
γ1γ2e−iϕ . One of the resonators couples to the incident elec-

tromagnetic wave and then reradiates a propagating wave. The
reradiative propagating wave undergoes the distance between
two resonators and finally couples with the other resonator.
This coupling is related to the phase of the propagating wave
between two resonators and the so-called far-field coupling.

In the coupled-grating system shown in Fig. 1(a), the two
subwavelength gratings are identical. Hence, we have ω1 =
ω2 = ω0 and γ1 = γ2 = γ0. As a result, Eqs. (2a) and (2b)
can be further reduced to

dã1

dt
= (iω0 − γ0)ã1 + iκ ã2 + i

√
γ0S̃0 − γ0e−iϕ ã2, (3a)

dã2

dt
= (iω0 − γ0)ã2 + iκ ã1 + i

√
γ0e−iϕ S̃0 − γ0e−iϕ ã2.

(3b)

The far-field coupling strength now becomes γ0e−iϕ . Con-
sidering the time harmonic case, we have

ãk = Akeiωt (k = 1, 2), (4a)

S̃0 = S0eiωt , (4b)

where ω represents the angular frequency, and t represents
the time. Under the steady-state condition (dAk/dt = 0),
Eqs. (3a) and (3b) can be reduced to

[i(ω0 − ω) − γ0]A1 + (iκ − γ0e−iϕ )A2 + i
√

γ0S0 = 0,

(5a)

(iκ − γ0e−iϕ )A1 + [i(ω0 − ω) − γ0]A2 + i
√

γ0e−iϕS0 = 0.

(5b)

After some algebra, we can finally obtain the solutions of
Eqs. (5a) and (5b):

A1 = i
√

γ0e−iϕ (iκ − γ0e−iϕ ) − i
√

γ0[i(ω0 − ω) − γ0]

[i(ω0 − ω) − γ0]2 − (iκ − γ0e−iϕ )2 S0,

(6a)

A2 = i
√

γ0(iκ − γ0e−iϕ ) − i
√

γ0e−iϕ[i(ω0 − ω) − γ0]

[i(ω0 − ω) − γ0]2 − (iκ − γ0e−iϕ )2 S0.

(6b)

B. Reflectance of coupled-grating systems

According to the TCMT [58], the reflection coefficient of
the coupled-grating system can be expressed as

r(ω,ω0, γ0, κ, ϕ) = i
√

γ0A1 + i
√

γ0e−iϕA2

S0
. (7)

It should be noted that the reflection coefficient is a func-
tion of five variables ω, ω0, γ0, κ , and ϕ. Then the reflectance

of the coupled-grating system can be given by

R(ω,ω0, γ0, κ, ϕ) = |r(ω,ω0, γ0, κ, ϕ)|2

=
∣∣∣∣ i

√
γ0A1 + i

√
γ0e−iϕA2

S0

∣∣∣∣
2

. (8)

Similarly, the reflectance is a function of five variables ω,
ω0, γ0, κ , and ϕ.

C. Two complex eigenfrequencies of coupled-grating systems

To obtain the angular frequency positions and the corre-
sponding linewidths of two resonant modes, we solve two
complex eigenfrequencies of the coupled-grating system. To
solve the eigenvalue problem, the coupled-grating system
should be viewed as a closed system, i.e., S0 = 0 [29]. Then
rewriting Eqs. (5a) and (5b) in the matrix form, we obtain[

i(ω0 − ω) − γ0 iκ − γ0e−iϕ

iκ − γ0e−iϕ i(ω0 − ω) − γ0

](
A1

A2

)
=

(
0
0

)
. (9)

Equation (9) possesses nontrivial solutions when∣∣∣∣i(ω0 − ω) − γ0 iκ − γ0e−iϕ

iκ − γ0e−iϕ i(ω0 − ω) − γ0

∣∣∣∣ = 0. (10)

Two complex eigenfrequencies can be obtained:

ω± = ω0 ± κ + iγ0(1 ± e−iϕ )

= ω0 ± (κ + γ0sinϕ)

+ iγ0(1 ± cosϕ). (11)

The angular frequency positions of two resonant modes are
determined by the real parts of two complex eigenfrequencies:

Re(ω±) = ω0 ± (κ + γ0sinϕ). (12a)

Hence, the angular frequency positions of two resonant
modes are determined by both the near- and far-field coupling
strengths (κ and γ0e−iϕ). The corresponding linewidths of two
resonant modes are determined by the imaginary parts of two
complex eigenfrequencies:

Im(ω±) = γ0(1 ± cosϕ). (12b)

Hence, the linewidths of two resonant modes are com-
pletely determined by the far-field coupling strength (γ0e−iϕ).
Finally, the Q factors of two resonant modes can be calculated
by

Q± = 1

2

Re(ω±)

Im(ω±)
= ω0 ± (κ + γ0sinϕ)

2γ0(1 ± cosϕ)
. (13)

The values of ω0 and γ0 can be obtained by fitting the
reflectance spectrum of the single grating by the SRM [63].
When the distance between two gratings d varies, both the
near- and far-field coupling strengths (κ and γ0e−iϕ) will
change. According to Eqs. (12a) and (12b), both the angu-
lar frequency positions and the linewidths of two resonant
modes of the coupled-grating system can be flexibly tuned.
In other words, by changing the distance between two grat-
ings, the coupled-grating system exhibits rich spectral shapes.
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Interestingly, the formation of Fabry-Perot BICs [59–62] can
be clearly explained by Eq. (13).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we demonstrate the theoretical model estab-
lished in Sec. II by fitting the reflectance spectrum calculated
by the rigorous coupled-wave analysis (RCWA) [65] using
Eq. (8). The RCWA has been widely utilized to directly obtain
the electromagnetic responses of gratings. It is a conventional
approach to calculate exact solutions of Maxwell’s equations
for the electromagnetic diffractions by gratings [65]. In the
RCWA, both the permittivity functions and the electromag-
netic fields are expanded into Fourier series for each layer
[66]. Then the boundary-value problem can be reduced to
an algebraic eigenvalue problem [66]. Finally, connecting the
solutions of the electromagnetic fields at the layer interfaces
by the continuity of the tangential components of the elec-
tromagnetic fields, the diffraction efficiencies of each order
of the reflected and the transmitted waves can be obtained
[65]. The accuracy of the solutions depends solely on the
number of terms retained in the space-harmonic expansions
of the electromagnetic fields [65]. In our calculations, the
number of terms retained in the space-harmonic expansions
of the electromagnetic fields is set to be 11 to guarantee the
accuracy of the solutions. In Sec. III A, we give the numerical
results of the coupled-grating systems when two gratings are
close (i.e., κ > γ0). Then we give the numerical results when
two grating are far away (i.e., κ < γ0) in Sec. III B. Finally,
the mechanism of Fabry-Perot BICs in the coupled-grating
system is analyzed in Sec. III C.

First, we obtain the values of ω0 and γ0 by fitting the
reflectance spectrum of the single grating by the SRM. For
the single grating, the refractive indices of the high- and low-
index media are set to be nH = 2 and nL = 1.6, respectively.
The geometric parameters are selected to be � = 333 nm,
p = 0.5, and h = 134 nm. The surrounding medium is se-
lected to be air. According to the RCWA [65], we calculate
the reflectance spectrum (zero-order diffraction) of the single
grating for transverse electric (TE) polarization at normal
incidence, as shown by the blue solid line in Fig. 2. According
to the SRM [63], the reflectance can be expressed as

R(ω,ω0, γ0) = γ 2
0

(ω0 − ω)2 − γ 2
0

. (14)

By fitting the reflectance spectrum by the SRM (see the
red dashed line in Fig. 2), the values of ω0 = 3.8172 ×
1015 Hz and γ0 = 0.0285 × 1015 Hz can be obtained. It should
be noted that Eq. (14) describes a symmetric Lorentz line
shape. According to the GMR mechanism, resonant peaks
of subwavelength grating usually exhibit asymmetric Fano
line shapes [55–57]. To better fit the reflectance spectrum of
the subwavelength grating by the SRM, we select the proper
values of the refractive indices and the geometric parameters
of the subwavelength grating. In addition, the values of the re-
fractive indices (nH and nL) and the geometric parameters (�,
p, and h) of the subwavelength grating determine the resonant
angular frequency of the subwavelength grating resonator ω0

FIG. 2. Reflectance spectrum of the single subwavelength grat-
ing for transverse electric (TE) polarization at normal incidence.
Blue solid line represents the reflectance spectrum calculated by the
rigorous coupled-wave analysis (RCWA). Red dashed line represents
the fitting reflectance spectrum based on the single resonator model
(SRM).

and the radiative loss of the subwavelength grating resonator
γ0 in the HCM [Eqs. (3a) and (3b)].

A. Numerical results of coupled-grating systems
when two gratings are close (κ > γ0)

When two grating are close, two gratings are coupled
strongly. When the near-field coupling strength between
two gratings κ is larger than the radiative loss of the single
grating γ0 (i.e., κ > γ0), we define two gratings are close.
We select the distances between two gratings as d = 100,
140, and 180 nm. According to the RCWA, we calculate the
corresponding reflectance spectra (zero-order diffraction) of
the coupled-grating systems for TE polarization at normal
incidence, as shown by the blue solid lines in Figs. 3(a)–3(c).
The corresponding fitted reflectance spectra based on the
HCM [Eq. (8)] are also shown by the red dashed lines. One
can see that the reflectance spectra predicted by the HCM
basically agree with those calculated by the RCWA. For
d = 100, 140, and 180 nm, the fitted near- and far-field
coupling strengths are (κ = 0.0969 × 1015 Hz, γ0e−iϕ =
γ0e−0.293π i), (κ = 0.0557 × 1015 Hz, γ0e−iϕ = γ0e−0.570π i),
and (κ = 0.0345 × 1015 Hz, γ0e−iϕ = γ0e−0.795π i),
respectively.

Since κ > γ0, the angular frequency splitting of two res-
onant modes �ω = ω+ − ω− is mainly determined by the
near-field coupling strength κ , according to Eq. (12a). As
the distance between two gratings d increases, the near-field
coupling strength κ decreases. Therefore, the angular splitting
of two resonant modes �ω becomes smaller. The linewidths
of two resonant modes �ω+ and �ω− can be flexibly tuned by
the far-field coupling strength γ0e−iϕ , according to Eq. (12b).
As the distance between two gratings d increases, the phase
within the far-field coupling strength ϕ increases. Therefore,
the linewidth of the high-frequency resonant mode �ω+ be-
comes smaller, while that of the low-frequency resonant mode
�ω− becomes larger.
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FIG. 3. Reflectance spectra of the coupled-grating systems with different distances between two gratings (a) d = 100 nm, (b) d = 140 nm,
and (c) d = 180 nm for transverse electric (TE) polarization at normal incidence. Blue solid lines represent the reflectance spectra calculated
by the rigorous coupled-wave analysis (RCWA). Red dashed lines represent the fitting reflectance spectra based on the hybrid coupling model
(HCM).

It is known that the near-field coupling strength κ is lin-
early dependent on e−k0d in the coupled split-ring resonators
[31]. Here, we confirm that it is also verified in the coupled-
grating system since it is determined by the overlapping
evanescent fields of two gratings. We select 11 cases of dis-
tance d in total, ranging from 100 to 200 nm with a step of
10 nm. For these 11 cases, we can obtain 11 fitted near-field
coupling strengths κ . The values of e−k0d and the correspond-
ing fitted κ are shown by the blue circles in Fig. 4. The linear
fitting line is also given by the red dashed line. The near-field
coupling strength κ is nearly proportional to e−k0d .

B. Numerical results of coupled-grating systems when two
gratings are far away (κ < γ0)

When two grating are far away, two gratings are not
coupled strongly. When the near-field coupling strength
between two gratings κ is smaller than the radiative loss of
a single grating γ0 (i.e., κ < γ0), we define two gratings are
far away. We select the distances between two gratings as
d = 280, 320, and 360 nm. According to the RCWA, we
calculate the corresponding reflectance spectra (zero-order
diffraction) of the coupled-grating systems for TE polarization

FIG. 4. Dependence of the near-field coupling strength κ on the
exp(−k0d ). Red dashed line represents the linear fitting line.

at normal incidence, as shown by the blue solid lines in
Figs. 5(a)–5(c). The corresponding fitted reflectance spectra
based on the HCM [Eq. (8)] are also shown by the red dashed
lines. Clearly, the reflectance spectra predicted by the HCM
basically agree with those calculated by the RCWA. For
d = 280, 320, and 360 nm, the fitted near- and far-field
coupling strengths are (κ = 0.0069 × 1015 Hz, γ0e−iϕ =
γ0e−1.114π i), (κ = 0.0042 × 1015 Hz, γ0e−iϕ = γ0e−1.261π i),
and (κ = 0.0042 × 1015 Hz, γ0e−iϕ = γ0e−1.451π i),
respectively.

Since κ < γ0, the two resonant modes ω+ and ω− are
almost degenerated, according to Eq. (12a). The linewidths of
two resonant modes �ω+ and �ω− can be flexibly tuned by
the far-field coupling strength γ0e−iϕ , according to Eq. (12b).
As shown in Fig. 5, these two almost generated resonant
modes with different linewidths greatly enrich the line shape
of the reflectance spectrum of the coupled-grating system.

For a normally propagating electromagnetic wave, the
propagating phase between two gratings can be expressed
as k0d . As we discussed in Sec. II A, the phase term of the
far-field coupling strength can be expressed as ϕ = k0d in
the coupled-grating system. To confirm this relationship, we
select 11 cases of distance d in total, ranging from 320 to
420 nm with a step of 10 nm. For these 11 cases, we can obtain
11 fitted phase terms of the far-field coupling strengths ϕ. The
values of d and the corresponding fitted ϕ are shown by the
blue circles in Fig. 6. The relationship ϕ = k0d is also given
by the red dashed line. The fitted ϕ is quite close to the k0d .

C. Mechanism of Fabry-Perot BICs

According to Eq. (12b), the linewidths of two resonant
modes �ω+ and �ω− are completely determined by the
far-field coupling strength (γ0e−iϕ). According to Eq. (13),
the Q factor of the resonant mode becomes infinite when
cosϕ = ±1. Now we discuss these two cases, respectively.

When ϕ = (2m + 1)π (m ∈ N ), the complex eigenfre-
quency of the resonant mode ω+ can be given by

ω+ = ω0 + κ. (15a)

The corresponding Q factor can be calculated by

Q+ = 1

2

Re(ω+)

Im(ω+)
→ ∞. (15b)
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FIG. 5. Reflectance spectra of the coupled-grating systems with different distances between two gratings (a) d = 280 nm, (b) d = 320 nm,
and (c) d = 360 nm for transverse electric (TE) polarization at normal incidence. Blue solid lines represent the reflectance spectra calculated
by the rigorous coupled-wave analysis (RCWA). Red dashed lines represent the fitting reflectance spectra based on the hybrid coupling model
(HCM).

Interestingly, the Q factor of the resonant mode Q+ reaches
infinite, which corresponds to a BIC. The round-trip phase
shift between two gratings is 2ϕ = (2m + 1)2π . Hence, this
type of BIC is also called the Fabry-Perot BIC [59–62].

Similarly, the complex eigenfrequency of the resonant
mode ω− can be given by

ω− = ω0 − κ + i2γ0. (16a)

The corresponding Q factor can be calculated by

Q− = 1

2

Re(ω−)

Im(ω−)
= ω0 − κ

4γ0
. (16b)

To investigate this BIC, we select the distances between
two gratings as d = 180, 200, and 220 nm. The correspond-
ing phase shift between two gratings are k0d = 0.729π ,
0.810π , and 0.891π , respectively. According to the RCWA,
we calculate the corresponding reflectance spectra (zero-order
diffraction) of the coupled-grating systems for TE polariza-
tion at normal incidence, as shown by the blue solid lines in
Figs. 7(a)–7(c). The corresponding fitted reflectance spectra
based on the HCM [Eq. (8)] are also shown by the red dashed

FIG. 6. Dependence of the phase term of the far-field coupling
strength ϕ on the distance d . Red dashed line represents the relation-
ship ϕ = k0d .

lines. As demonstrated, the reflectance spectra predicted by
the HCM basically agree with those calculated by the RCWA.
For d = 180, 200, and 220 nm, the fitted near- and far-
field coupling strengths are (κ = 0.0345 × 1015 Hz, γ0e−iϕ =
γ0e−0.795π i), (κ = 0.0267 × 1015 Hz, γ0e−iϕ = γ0e−0.868π i),
and (κ = 0.0199 × 1015 Hz, γ0e−iϕ = γ0e−0.932π i), respec-
tively. The reflectance spectra around the resonant modes ω+
exhibit asymmetric Fano line types. Hence, the correspond-
ing Q factor can be calculated by Q+ = ωDip/(ωDip − ωPeak ),
where ωDip and ωPeak represent the angular frequencies at the
reflectance dip and peak, respectively [67]. As the phase shift
gradually increases from 0.729π to 0.891π , the Q factor of
the resonant mode Q+ rapidly increases from 2.4 × 102 to
2.2 × 103. Using the finite-difference time-domain (FDTD)
method via commercial software package Lumerical FDTD
Solutions, we simulate the electric field intensity distributions
|Ey| at the corresponding reflectance dips (A–C), as respec-
tively shown in Figs. 7(d)–7(f). The incident electric field
intensity is set to be unity, i.e., |E inc

y | = 1. One can see that
the electric field is greatly enhanced within the gratings. As
the phase shift gradually increases from 0.729π to 0.891π ,
the maximum electric field intensity rapidly increases from
∼6 to ∼25, which indicates that the strength of the resonance
increases dramatically.

Then we give the dependence of the Q factor of the res-
onant mode Q+ on the phase shift k0d , as shown in Fig. 8.
One can clearly see that, as the phase shift approaches π ,
the Q factor increases dramatically. For example, the Q factor
reaches 7.6 × 105 when the phase shift is 0.980π . Therefore,
the Q factor becomes infinite when the phase shift is equal
to π , which is consistent with the theoretical prediction of
Eq. (15b).

When ϕ = 2mπ (m ∈ N ), the complex eigenfrequency of
the resonant mode ω+ can be given by

ω+ = ω0 + κ + i2γ0. (17a)

The corresponding Q factor can be calculated by

Q+ = 1

2

Re(ω+)

Im(ω+)
= ω0 + κ

4γ0
. (17b)
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FIG. 7. Reflectance spectra of the coupled-grating systems with phase shifts between two gratings (a) k0d = 0.729π , (b) k0d = 0.810π ,
and (c) k0d = 0.891π for transverse electric (TE) polarization at normal incidence. Blue solid lines represent the reflectance spectra calculated
by the rigorous coupled-wave analysis (RCWA). Red dashed lines represent the fitting reflectance spectra based on the hybrid coupling model
(HCM). (d)–(f) Electric field intensity distributions |Ey| at the corresponding reflectance dips (A–C). The incident electric field intensity is set
to be unity, i.e., |E inc

y | = 1.

Similarly, the complex eigenfrequency of the resonant
mode ω− can be given by

ω− = ω0 − κ. (18a)

FIG. 8. Dependence of the Q factor of the resonant mode Q+ on
the phase shift between two gratings k0d .

The corresponding Q factor can be calculated by

Q− = 1

2

Re(ω−)

Im(ω−)
→ ∞. (18b)

The Q factor of the resonant mode Q− reaches infinite,
which corresponds to a Fabry-Perot BIC [59–62].

To investigate this BIC, we select the distances between
two gratings as d = 470, 480, and 490 nm. The corresponding
phase shift between two gratings are k0d = 1.904π , 1.944π ,
and 1.985π , respectively. According to the RCWA, we
calculate the corresponding reflectance spectra (zero-order
diffraction) of the coupled-grating systems for TE polarization
at normal incidence, as shown by the blue solid lines in
Figs. 9(a)–9(c). The corresponding fitted reflectance spectra
based on the HCM [Eq. (8)] are also shown by the red dashed
lines. As demonstrated, the reflectance spectra predicted by
the HCM basically agree with those calculated by the RCWA.
For d = 470, 480, and 490 nm, the fitted near- and far-field
coupling strengths are (κ = −0.0004 × 1015 Hz, γ0e−iϕ =
γ0e−1.921π i), (κ = −0.0001 × 1015 Hz, γ0e−iϕ = γ0e−1.953π i),
and (κ = −0.0001 × 1015 Hz, γ0e−iϕ = γ0e−1.995π i),
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FIG. 9. Reflectance spectra of the coupled-grating systems with phase shifts between two gratings (a) k0d = 1.904π , (b) k0d = 1.944π ,
and (c) k0d = 1.985π for transverse electric (TE) polarization at normal incidence. Blue solid lines represent the reflectance spectra calculated
by the rigorous coupled-wave analysis (RCWA). Red dashed lines represent the fitting reflectance spectra based on the hybrid coupling model
(HCM). (d)–(f) Electric field intensity distributions |Ey| at the corresponding reflectance dips (A–C). The incident electric field intensity is set
to be unity, i.e., |E inc

y | = 1.

respectively. It should be noted that the values of fitted
near-field coupling strengths κ are not accurate since they
are quite near zero (i.e., κ ≈ 0) as two gratings are quite far
away. As the phase shift gradually increases from 1.904π

to 1.985π , the Q factor of the resonant mode Q− rapidly
increases from 1.4 × 103 to 3.8 × 104. Since κ ≈ 0 and
sinϕ < 0, the angular frequency positions of the resonant
modes Re(ω+) are smaller than those of the resonant modes
Re(ω−), according to Eq. (12a). Using the FDTD method,
we simulate the electric field intensity distributions |Ey| at the
corresponding reflectance dips (A–C), as respectively shown
in Figs. 9(d)–9(f). The incident electric field intensity is set
to be unity, i.e., |E inc

y | = 1. One can see that the electric field
is greatly enhanced within the gratings. As the phase shift
gradually increases from 1.904π to 1.985π , the maximum
electric field intensity rapidly increases from ∼27 to ∼125,
which indicates that the strength of the resonance increases
dramatically.

Then we give the dependence of the Q factor of the res-
onant mode Q− on the phase shift k0d , as shown in Fig. 10.
One can clearly see that, as the phase shift approaches 2π ,
the Q factor increases dramatically. For example, the Q factor

reaches 3.5 × 105 when the phase shift is 1.999π . Therefore,
the Q factor becomes infinite when the phase shift is equal
to 2π , which is consistent with the theoretical prediction of

FIG. 10. Dependence of the Q factor of the resonant mode Q−
on the phase shift between two gratings k0d .
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Eq. (18b). Based on the HCM containing both near- and
far-field couplings, the formation of the Fabry-Perot BICs can
be explained clearly.

IV. CONCLUSIONS

In summary, we establish a HCM containing both near- and
far-field couplings to describe the electromagnetic response
of the coupled-grating system composed of two parallelly
aligned subwavelength dielectric gratings. The HCM shows
that the frequency positions of two resonant modes are deter-
mined by both near- and far-field coupling strengths, while the
linewidths of two resonant of two resonant modes are com-
pletely determined by the far-field coupling strength. Through
changing the distance between two dielectric gratings, both
near- and far-field coupling strengths can be flexibly tuned,
giving rise to rich electromagnetic responses. Additionally,
the mechanism of the Fabry-Perot BICs in coupled-grating
systems can be explained clearly by the HCM. These results

show that the coupled-grating system is an effective platform
to tailor electromagnetic responses.
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