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Achieving maximum scattering circular dichroism through the excitation of anapole states
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The chirality-dependent asymmetric light-matter interaction can be enhanced using various artificial photonic
structures as well as engineered incident field. Compared with chiral photonic structures, the engineered optical
field is less explored and recently recognized as a new regime in tailoring light-matter interaction. In this work,
we demonstrate that weakly chiral spheres can exhibit the maximum scattering circular dichroism (CD) by
tailoring the incident field to construct chirality-sensitive anapole states. By considering the chiral terms radiated
from Mie nanospheres as perturbation, a multiscattering model is established to predict the chiroptical Mie
scattering response of these nanospheres. This model provides a specific guideline to tailor the incident field to
realize the upper limit of the achievable scattering CD.
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I. INTRODUCTION

Chirality describes the structural properties of three-
dimensional objects that cannot be superimposed onto their
mirror images [1]. It has been proved that an infinite number
of pseudoscalars can be constructed to quantify the chirality
of a geometric object [2]. With just one nonzero pseudoscalar,
the object is chiral. Therefore, no golden standard is available
to quantitatively evaluate or compare the degree of geometric
chirality. Instead of geometry, an alternative way to evaluate
chirality of an object is based on its light-matter interac-
tion. For example, a chiral object may respond differently
to circularly polarized light (CPL) with opposite handedness,
resulting in chiroptical effects such as circular dichroism
(CD) [1]. Conventionally, the CD signal is defined as g =
2(W + − W −)/(W + + W −), where W ± is the absorption (or
scattering) power under left/right-handed CPL. This technique
has been widely used to characterize the chirality of chemical
and biomolecules whose CD signals are mostly very weak
(e.g., [3]). In recent years, extensive effort has been devoted
to design and fabricate nanostructures with enhanced CD re-
sponses [4–8] (e.g., using plasmonic helices [9], nanocavities
[10], and metasurfaces [11]). The theoretical upper limit of
CD is g = 2 (e.g., when W − is zero but W + is nonzero),
indicating that the object can interact with one handedness of
CPL beam, but not with the opposite handedness [12]. For
instance, a complex metasurface was designed theoretically
to obtain the maximum CD enabled by bound states in the
continuum [13]. This maximum CD effect can be interpreted
as the perfect match between the geometrical chirality of the
designed structures and the CPL field.
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On the other hand, a more general definition of CD has
been proposed to describe the chiral response of objects under
arbitrary light fields rather than the two orthogonal CPL states
[14]. Using this general parameter, the maximum CD can
also be realized by using light field engineered to match the
chiral features of a given object instead of designing structural
objects. Optical chirality (also called Lipkin’s 00-zilch [15])
is defined as C = (ε0E · ∇ × E + μ0H · ∇ × H)/2, describ-
ing the local chiral feature of a light field [14]. For a point
chiral dipole, the intensity of the CD signal is proved to be
proportional to the local C value. Thus, in the past decade a
significant amount effort has been devoted to realize superchi-
ral light with larger C values than CPL beams to enhance CD
signals [14,16–20]. In Ref. [7], the chiral response of nanos-
tructures can be enhanced by optimizing the incident field in
the far field region. However, the optical chirality C cannot
represent the global chiral features of the entire light field. If
the size of the object is beyond the Rayleigh regime (i.e., large
objects that are not much smaller than the wavelength), the
contributions of high order multipole moments to the chiral
response cannot be neglected [14,21]. As a result, the C value
is inappropriate to predict the chiral interaction between these
large Mie particles and the light field. Recently, experimental
works have demonstrated that scattering CD by a large chiral
structure can be enhanced to g = 1.2 by increasing the topo-
logical charge of the incident light [22]. Therefore, the global
feature of the light field (e.g., topological charge) is closely
related to the chiral response of Mie particles. One of the key
fundamental questions is how to design the light field globally
to enhance and even maximize the CD signal for a chiral Mie
particle.

In this work, we develop a multiscattering model that can
be used to calculate the value of the scattering CD signal
quantitatively. Using this model, the specific conditions of the
global optical field can be determined to realize the maximum
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FIG. 1. The theoretical model is demonstrated in (a) and (b). (a)
The zeroth-order scattering process by the reference system (i.e.,
the nonchiral sphere). (b) The high order scattering fields radiated
by the localized sources in two spheres with the opposite chirality.
(c) The upper limit of scattering CD by sphere with weak chirality
when the incident field consists of VSHs with the order of (1, 1).

CD signal for a Mie sphere made of chiral materials. Under
the designed optimized optical fields, the upper limit of CD
value (i.e., g = 2) can be realized at specific frequencies due
to the excitation of anapole states.

II. MULTISCATTERING MODEL FOR CHIRAL SPHERE

To predict the scattering CD from Mie spheres, here we
propose a multiscattering model based on the Lorentz-Mie
theory [23]. When the chirality of a sphere is weak, the influ-
ence of its chiral property can be considered as a perturbation
in the model [8]. The basic route of this method contains
two steps: Step 1 is to analyze the reference structure by
removing the chirality of the sphere [Fig. 1(a)]. The zeroth-
order scattering field [E(0)

scat, H(0)
scat] and the field inside the

sphere, [E(0)
1 , H(0)

1 ], are both calculated by the Lorentz-Mie
theory [23]. Step 2 is to consider the interaction between the
zeroth-order scattering field and the chiral features to solve
the secondary scattering field [Fig. 1(b)]. The first-order per-
turbing sources of current and magnetization can produce the
outgoing waves from the internal sphere region. The transmit-
ted and reflected fields through the sphere surface are denoted
as [E(1)

scat, H(1)
scat] and [E(1)

1 , H(1)
1 ], respectively. The first order

inner field of [E(1)
1 , H(1)

1 ] can further excite other perturbing
sources and high order scattering fields of [E(l )

scat, H(l )
scat] with

l > 1. The total scattering fields are contributed by the direct
scattering fields from the nonchiral sphere and the secondary

scattering fields from nonzero order perturbing sources. In
Fig. 1(b), the secondary scattering fields by two spheres
with opposite chiralities (i.e., enantiomers) are compared. By
switching the chirality of the sphere, the sign of scattering
field is changed for odd-order terms, while unchanged for
even-order terms. Using this multiscattering model, the total
scattering field can be decomposed into the chiral part and
nonchiral part rigorously. Next, the details of this model are
discussed.

The constitutive relations of the reciprocal and chiral media
inside a homogeneous sphere can be expressed as [24]

D = εsE − iκsH, (1)

B = μsH + iκsE. (2)

Here εs and μs are the permittivity and permeability of
sphere; κs is the chiral parameter. The scattering field by
removing the chiral feature of the sphere (i.e., κs = 0) is
considered first. In the frame of Lorentz-Mie theory [23], the
scattering field by a Mie sphere should be expanded as the
linear combination of the vector spherical harmonics (VSHs)
as

E(0)
scat =

+∞∑
n=1

n∑
m=−n

[
a(0)

mnMmn(k0, r) + b(0)
mnNmn(k0, r)

]
, (3)

H(0)
scat = 1

iZ0

+∞∑
n=1

n∑
m=−n

[
a(0)

mnNmn(k0, r) + b(0)
mnMmn(k0, r)

]
. (4)

In Eqs. (3) and (4), k0 and Z0 are the vacuum wave vec-
tor and vacuum impedance. a(0)

mn and b(0)
mn are the scattering

coefficients. The expressions with the superscript of “(0)”
are associated with the reference structure, i.e., the nonchiral
sphere in free space. The incident field and the internal field of
the sphere can also be expressed as the combination of VSHs,
i.e.,

Einc =
+∞∑
n=1

n∑
m=−n

[
u(0)

mnRgMmn(k0, r) + v(0)
mnRgNmn(k0, r)

]
,

(5)

Hinc = 1

iZ0

+∞∑
n=1

n∑
m=−n

[
u(0)

mnRgNmn(k0, r) + v(0)
mnRgMmn(k0, r)

]
,

(6)

E(0)
1 =

+∞∑
n=1

n∑
m=−n

[
c(0)

mnRgMmn(k1, r) + d (0)
mn RgNmn(k1, r)

]
,

(7)

H(0)
1 = 1

iZ1

+∞∑
n=1

n∑
m=−n

[
c(0)

mnRgNmn(k1, r) + d (0)
mn RgMmn(k1, r)

]
.

(8)

To avoid the singularity at the origin (i.e., the center of the
sphere), the incident field and internal field are expressed as
the combination of regular VSHs (i.e., RgMmn, RgNmn). In
Eqs. (7) and (8), k1 = (εsμs)1/2k0 and Z1 = (μs/εs )1/2. By
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applying the boundary conditions at the surface of the sphere,
the unknown expansion coefficients in scattering field and the
internal field can be calculated by u(0)

mn and v(0)
mn ,

a(0)
mn = T a

n u(0)
mn, (9)

b(0)
mn = T b

n v(0)
mn, (10)

c(0)
mn = T c

n u(0)
mn, (11)

d (0)
mn = T d

n v(0)
mn . (12)

In Eqs. (9)–(12), the coefficients of T a
n , T b

n , T c
n and T d

n are
given in Appendix A. When the chiral property is introduced
into the sphere, the scattering field will deviate from the
nonchiral case (i.e., in the reference structure). In our model,
the terms including κs in Eqs. (1) and (2) are considered as
the perturbing sources that produce the localized distributions

of current J(1) and magnetization M(1) inside the sphere.
These perturbing sources are expressed as J(1) = −ωκsH1

and M(1) = i(κs/μ)E1. It should be noted that [E1, H1] are
calculated in the sphere with chirality. For materials with
weak chirality (i.e., a usual case for existing natural materials),
the internal field of [E1, H1] can be approximately replaced
by [E(0)

1 , H(0)
1 ] in Eqs. (7) and (8). The radiation field of

[E(1)
inc, H(1)

inc] by J(1) and M(1) can be obtained by solving the
following inhomogeneous wave equations:(∇2 + k2

1

)[
r · E(1)

inc

] = k1Z1L̂ ·
[

M(1) + 1

k2
1

∇ × J(1)

]
, (13)(∇2 + k2

1

)[
r · H(1)

inc

] = −iL̂ · [J(1) + ∇ × M(1)]. (14)

In Eqs. (13) and (14), the angular momentum operator is
defined as L̂ = −ir × ∇. The Green’s function for the wave
equations is G1(r, r′) = eik1|r−r′ |/|r − r′|, which can be ex-
pended by spherical harmonics as [25]

G(r, r′) = ik1

+∞∑
n=0

jn(k1r′)h(1)
n (k1r)

n∑
m=−n

(−1)m(2n + 1)Y −m
n (θ ′, φ′)Y m

n (θ, φ), (15)

which is only applicable for r > r′. In this work, the scalar spherical harmonics are defined as Y m
n = Pm

n (cos θ )eimφ At the inner
surface of the sphere (i.e. |r| = R−

s ), the secondary incident field radiated by J(1) and M(1) is expressed as the sum of outgoing
VSHs:

E(1)
inc =

+∞∑
n=1

n∑
m=−n

[
u(1)

mnMmn(k1, r) + v(1)
mnNmn(k1, r)

]
, (16)

H(1)
inc = 1

iZ1

+∞∑
n=1

n∑
m=−n

[
u(1)

mnNmn(k1, r) + v(1)
mnMmn(k1, r)

]
. (17)

Following the derivation in the textbook [25], the expansion coefficients can be calculated by the integrals over the secondary
radiation sources:

u(1)
mn = k2

1Z1

γmn

∫
V

Y −m
n (θ, φ)

{
jn(k1r)[∇ · (r × J(1) )] + ∂

∂r [r jn(k1r)](∇ · M(1) )
−k2

1 jn(k1r)[(r · M(1) )]

}
d3r, (18)

v(1)
mn = ik2

1Z1

γmn

∫
V

Y −m
n (θ, φ)

{ 1√
ε1μ1

ρ(r) ∂
∂r [r jn(k1r)] + ik1 jn(k1r)(r · J(1) )

−ik1 jn(k1r)∇ · (r × M(1) )

}
d3r. (19)

After some mathematical derivations, Eqs. (18) and (19) can be simplified as

u(1)
mn = κ1Fn(k1Rs)d (0)

mn , (20)

v(1)
mn = κ1Fn(k1Rs)c(0)

mn. (21)

The definition of Fn(x) is Fn(x) = −i(ε1μ1)−1/2[ψ ′
n(x)ψn(x) + 2

∫ x
0 ψ2

n (α)dα]. The secondary incident field radiates from
the internal sphere region. The scattering process by sphere surface should be considered in our model. The transmission and
reflection field are defined as scattering field and internal field excited by the first-order perturbing sources. These fields are
indicated by the superscript “(1).” These first-order perturbing fields can also be expanded by VSHs as

E(1)
scat =

+∞∑
n=1

n∑
m=−n

[
a(1)

mnMmn(k0, r) + b(1)
mnNmn(k0, r)

]
, (22)

H(1)
scat = 1

iZ0

+∞∑
n=1

n∑
m=−n

[
a(1)

mnNmn(k0, r) + b(1)
mnMmn(k0, r)

]
, (23)
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E(1)
1 =

+∞∑
n=1

n∑
m=−n

[
c(1)

mnRgMmn(k1, r) + d (1)
mn RgNmn(k1, r)

]
, (24)

H(1)
1 = 1

iZ1

+∞∑
n=1

n∑
m=−n

[
c(1)

mnRgNmn(k1, r) + d (1)
mn RgMmn(k1, r)

]
. (25)

The expansion coefficients can be calculated to be

a(1)
mn = Sa

nu(1)
mn, (26)

b(1)
mn = Sb

nv
(1)
mn, (27)

c(1)
mn = Sc

nu(1)
mn, (28)

d (1)
mn = Sd

n v(1)
mn . (29)

In Eqs. (26–29), the coefficients of Sa
n , Sb

n, Sc
n, and Sd

n
are given in Appendix A. As shown in Fig. 1(b), when
the chirality of the sphere is inversed (i.e., κs → −κs), the
sign of scattering field [E(1)

scat, H(1)
scat] will be changed. The

scattering circular dichroism is introduced by the secondary
scattering field. Meanwhile, the internal field [E(1)

1 , H(1)
1 ] can

produce second order current J(2) and magnetization M(2),
whose magnitude is related to κ2

1 . Therefore, the scattering
field [E(2)

scat, H(2)
scat] produced by J(2) and M(2) are nonchi-

ral. Following this procedure, the high order sources can be
also calculated. The total scattering field can be expressed
as the sum of all the terms associated with different or-
ders of perturbing sources. The total scattering coefficients
amn and bmn can be divided into nonchiral and chiral parts,
respectively, i.e.,

amn(±κ1) = Amn ± A′
mn, (30)

bmn(±κ1) = Bmn ± B′
mn, (31)

where m and n are integers to denote the orders of VSH field.
Here Amn and Bmn are nonchiral parts, while A′

mn and B′
mn are

chiral parts. The nonchiral parts of amn and bmn are composed
by the even-order coefficients, which are unchanged during
the chirality inversion, while the chiral parts are contributed
by the odd-order coefficients. Here,

Amn = �(a)
n umn, (32)

A′
mn = γ (a)

n vmn, (33)

Bmn = �(b)
n vmn, (34)

B′
mn = γ (b)

n umn. (35)

In Eqs. (32)–(35), the coefficients of �(a)
n , γ (a)

n , �(b)
n , and

γ (b)
n can be expressed as

�(a)
n =

[
T a

n + κ2
1 F 2Sa

nSd
n T c

n

1 − κ2
1 F 2

n Sc
nSd

n

]
, (36)

γ (a)
n = κ1FnSa

nT d
n

1 − κ2
1 F 2

n Sc
nSd

n

, (37)

�(b)
n =

[
T b

n + κ2
1 F 2

n Sb
nSc

nT d
n

1 − κ2
1 F 2

n Sc
nSd

n

]
, (38)

γ (b)
n = κ1FnSb

nT c
n

1 − κ2
1 F 2

n Sc
nSd

n

. (39)

The total scattering power by the chiral sphere can be
calculated by the scattering coefficients of amn and bmn in
Eq. (40) [23],

W = 1

2k2
0

+∞∑
n=1

n∑
m=−n

[|amn|2 + |bmn|2]. (40)

As discussed in the Introduction, the generalized CD of a
chiral sphere can be determined by values of W + and W −,
which are the scattering power under the illuminations of
arbitrary field and the corresponding mirror field. By taking
the mirror operation on the chiral sphere and optical field
simultaneously, the scattering power remains the same. There-
fore, W + and W − equal the scattering powers of the chiral
sphere with κs and the mirror sphere with −κs under the same
incident field in Eq. (41),

W ± = 1

2k2
0

+∞∑
n=1

n∑
m=−n

[|Amn ± A′
mn|2 + |Bmn ± B′

mn|2]. (41)

Therefore, based on Eqs. (32)–(35) in the multiscattering
model, the value of the scattering CD can be directly calcu-
lated by the expansion coefficients of umn and vmn.

III. PREDICTION OF MAXIMUM SCATTERING CD

Next, we implement this model to predict the maximum
CD scattering condition for a homogeneous chiral sphere.
When the incident field is a linear combination of two regular
VSHs with the same order, i.e., umnRgMmn + vmnRgNmn, the
scattering CD can then be expressed as

gmn = 4Re
[(

�(a)
n γ (a)

n
∗ + �(b)

n
∗
γ (b)

n

)
umnv

∗
mn

]
(∣∣�(a)

n

∣∣2 + ∣∣γ (b)
n

∣∣2
)
|umn|2 +

(∣∣�(b)
n

∣∣2 + ∣∣γ (a)
n

∣∣2
)
|vmn|2

.

(42)
Using Eq. (42), one can obtain the upper limit of the CD

value related to the order of (m, n). It can be proved that the
upper limit of |gmn| should be Gn, which can be expressed as

Gn = 2
∣∣�(a)

n γ (a)
n

∗ + �(b)
n

∗
γ (b)

n

∣∣√∣∣�(a)
n

∣∣2 + ∣∣γ (b)
n

∣∣2
√∣∣�(b)

n

∣∣2 + ∣∣γ (a)
n

∣∣2
. (43)

The condition to obtain the maximum value of gmn = Gn is

umn

vmn
= e−i


√∣∣γ (a)
n

∣∣2 + ∣∣�(b)
n

∣∣2
/

√∣∣γ (b)
n

∣∣2 + ∣∣�(a)
n

∣∣2
, (44)
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FIG. 2. The spectra of scattering power and CD for the chiral
sphere under tailored fields of E(±). (a) Scattering power spectra
when uinc/vinc = 1/55. (b) Scattering power spectra when uinc/vinc =
−26. The blue and red lines in (a) and (b) represents the results under
E(−) and E(+). (c) The scattering CD spectrum when uinc/vinc =
1/55. (d) The scattering CD spectrum when uinc/vinc = −26.

where 
 is the complex phase of �(a)
n γ (a)

n
∗ + �(b)

n
∗
γ (b)

n . Using
Eq. (43), the upper limit of scattering CD, G1, for the order
of n = 1, is plotted in Fig. 1(c). In this calculation, the radius
of the sphere is 320 nm, ε1 = 9, μ1 = 1, and κ1 = 0.01. In-
triguingly, one can see two peaks at the frequencies of 241.46
and 294.46 THz, where the CD values can reach the maximum
value of g = 2. Importantly, using Eq. (44), one can determine
the incident field for the Mie sphere to realize these maximum
CD scattering values, as will be explained next.

To determine the required optical field to realize the max-
imum scattering CD, here we calculate the scattering CD
spectra. The incident field consists of two VSHs with (m, n) =
(1, 1), i.e., E(+) = uincRgM1,1 + vincRgN1,1. According to
Eq. (44), the peak condition for G1 = 2 in Fig. 1(c) were
realized when uinc/vinc = 1/55 and uinc/vinc = −26. The scat-
tering spectra of the chiral sphere under E(+) are shown by
the red curves in Figs. 2(a) and 2(b), respectively. To obtain
the CD value, the scattering spectra should be calculated
under the incident field after mirror operation, i.e., E(−) =
uincRgM−1,1 − vincRgN−1,1 (see Appendix B). Under the il-
lumination of E(−), the scattering spectra of the chiral sphere
are shown by the blue curves in Figs. 2(a) and 2(b). In these
cases, the scattering power drops to zero at the frequencies of
241.46 and 294.46 THz, indicating the completely suppressed
scattering field from the sphere. The corresponding scattering
CD spectra for these two pairs of incident fields are calculated
using g = 2(W + − W −)/(W + + W −) as shown in Figs. 2(c)
and 2(d). One can see that the maximum scattering CD signal
is achieved in the sphere enabled by the complete nonscat-
tering states. In contrast, under the illumination of CPL, the
value of scattering CD from the same sphere is −0.114–0.054
in the frequency range [176.5, 333.3 THz] (see Appendix C).

It should be noted that although the upper limit of scat-
tering CD in Eq. (43) is only applicable for the incident

field of umnRgMmn + vmnRgNmn with a given order of (m, n),
it can be generalized to cases with arbitrary incident fields
of

∑N
n=1

∑n
m=−n umnRgMmn + vmnRgNmn. For simplicity, the

incident field is only consisting of two orders of VSHs. There-
fore, the scattering powers under two incident fields (i.e.,
mirror images of each other) can be expressed as

W + = W +
1 + W +

2 , (45)

W − = W −
1 + W −

2 . (46)

The following two parameters are defined as

g1 = 2(W +
1 − W −

1 )/(W +
1 + W −

1 ), (47)

g2 = 2(W +
2 − W −

2 )/(W +
2 + W −

2 ). (48)

Because the scattering power is positive, g1 ∈ [−2, 2] and
g2 ∈ [−2, 2]. The scattering CD can be expressed as

g = g1(W +
1 + W −

1 ) + g2(W +
2 + W −

2 )

W +
1 + W −

1 + W +
2 + W −

2

. (49)

Without loss of generality, we assume that g1 > g2, then

g = g1 + (W +
2 + W −

2 )(g2 − g1)

W +
1 + W −

1 + W +
2 + W −

2

� g1, (50)

g = g2 + (W +
1 + W −

1 )(g1 − g2)

W +
1 + W −

1 + W +
2 + W −

2

� g2. (51)

Therefore, it can be proved that min(g1, g2) � g �
max(g1, g2). This conclusion can easily be generalized to
the case with more orders of VSHs, i.e., min(g1, g2, . . .) �
g � max(g1, g2, . . .). Therefore, the absolute value of gmn

is limited by Gn, so that min(−G1,−G2, . . .) � g �
max(G1, G2, . . .).

IV. CHIRALITY-SENSITIVE ANAPOLE

To reveal the physics of the maximum CD under the de-
signed optical field, we then employ the multipole expansion
method to model the chiral scattering [21,25]. The scattering
field is radiated by the oscillation current J and magnetization
M which are excited by the field inside the sphere. The scat-
tering fields are mainly radiated by the magnetic dipole (MD,
induced by J), electric dipole (ED), and toroidal dipole (TD).
For the maximum scattering CD condition with uinc/vinc =
−26, amplitudes of the three moments for the sphere as well
as the electric and magnetic scattering coefficients (i.e., a1 and
b1) under the incident field of E(−) are calculated in Fig. 3.
At the frequency of 294.463 THz, both scattering coefficients
a1 [Fig. 3(a)] and b1 [Fig. 3(b)] are zero, indicating that the
sphere is at the completely nonradiating state. Specifically, a1

can be well predicted by the amplitude of MD [Fig. 3(a)],
while b1 is mainly contributed by ED and TD [see the am-
plitudes of b1, ED, and TD in Fig. 3(b), and phases of ED
and TD in Fig. 3(c)]. Specifically, at f = 294.46 THz, the
amplitudes of ED and TD are equal, but their phases are the
opposite [see the vertical dashed line in Fig. 3(c)]. As a result,
identical radiation patterns of ED and TD in the far field can
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FIG. 3. The spectra of scattering coefficients and the complex
amplitudes of three types dipoles. The results in (a)–(c) are under the
incidence of E(−) and in (d)–(f) for E(+). The green dashed curves
represent the amplitude of MD in (a) and (d). The blue and red
dashed curves represent the amplitudes of ED and TD in (b) and (e),
and their phases in (c) and (f), respectively. The black solid curves
represent the magnetic scattering coefficient in (a) and (d), and the
electric scattering coefficient in (b) and (e).

lead to the completely destructive interference, resulting in
the excitation of anapole states [26–32]. With the illumination
of E(+), the amplitude of the MD is almost unchanged as
shown in Fig. 3(d). However, the anapole state is broken
because the components of the scattering field contributed by
ED and TD cannot be canceled, as shown in Figs. 3(e) and
3(f), respectively. By switching the incident field from E(−) to
E(+), the condition of complete nonradiating state is no longer
fulfilled. Therefore, it is the chirality-sensitive anapole state
that enables the measurement of maximum scattering CD.

Next, we will use Eqs. (43) and (44) to further elaborate the
mechanism of the chirality-sensitive anapole state. Because
the parameters of γ (a)

n and γ (b)
n are related to the perturbation

terms, their values are usually much smaller than �(a)
n and

�(b)
n , resulting in small Gn in Eq. (43). However, it can be

found that the maximum scattering CD analyzed in Fig. 3
requires the condition of �

(a)
1 = 0, whose physical meaning

can be further clarified below: according to Eq. (32), �
(a)
1 = 0

directly leads to A1 = 0. As the nonchiral part of a1, A1

is mainly contributed by the zeroth-order scattering process
in Fig. 1(a). In other words, the excitation of MD in the
reference structure (i.e., the nonchiral sphere) is completely
suppressed at f = 294.46 THz under the designed incident
field. Considering that �

(a)
1 = 0, the condition of Eq. (44) can

be simpified as vinc/uinc = γ
(b)

1 /�
(b)
1 , indicating that the chiral

part and nonchiral part of the electric scattering coefficient
in Eqs. (34) and (35) are equal (i.e., B1 = B′

1). The electric

FIG. 4. (a) The light scattering by a chiral sphere on substrate. (b)
The scattering CD when the ratio of vinc/uinc is varied from −1 to 1,
when κ = 0.01, 0.02, and 0.03. (c) The scattering field |Escat| under
E(−). (d) The scattering field |Escat| under E(+). The light frequency
is f = 294.463 THz in (b)–(d). The ratio of vinc/uinc is −1/26 in (c)
and (d). |Escat| along the horizontal dash lines are shown in the lower
panels of (c) and (d).

scattering coefficient b1 also becomes zero when the sphere is
illuminated by E(−) (i.e., b1 = B1−B′

1). Therefore, the non-
radiating state is due to the destructive interference not only
between the scattering field components radiated by ED and
TD, but also between the chiral and nonchiral parts of the
scattering field. In contrast, if the incident field is switched to
E(+), the electric scattering coefficient becomes nonzero (i.e.,
b1 = B1 + B′

1). In this situation, the scattering fields radiated
by the ED and TD cannot be canceled mutually in the far
field under the illumination of E(+). As a result, the condition
of the anapole state is not fulfilled as shown in Figs. 3(e)
and 3(f).

For the other peak condition at f = 241.46 THz with
uinc/vinc = 1/55, the mechanism of maximum scattering CD
can also be explained by the excitation of anapole states
using the multipole expansion method (see Appendix D).
It should be noted that the actual conditions for these two
peaks at uinc/vinc = −26 and 1/55 are different; i.e., when
the chirality of the incident field is inversed, the anapole state
can be maintained for the peak at uinc/vinc = 1/55 but not
for uinc/vinc = −26. Nevertheless, this subtle difference in
physics does not change the key mechanism of the maximum
scattering CD, i.e., the excitation of anapole states. Next, we
employ numerical simulation to demonstrate the feasibility
to realize the maximized CD response of the Mie chiral
sphere on substrate. The influence of the chiral parameter
on the excitation condition of maximized CD will also be
analyzed.

V. NUMERICAL SIMULATION RESULTS

In this section, the numerical simulation based on T-matrix
method is used to verify the maximized scattering CD of
the Mie chiral sphere on substrate in Fig. 4(a) [33,34]. The
parameters of the sphere (i.e., Rs, εs, μs, and κ) remain the
same as in Sec. III. The refractive index of the substrate is
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FIG. 5. The scattering CD (i.e., g factor) in the complex
plane of vinc/uinc. The values of the chiral parameters are
0.01, 0.01eiπ/6, 0.01eiπ/3, and 0.01i in (a)–(d), respectively.

1.37. In Fig. 4(b), the scattering CD is calculated when the
ratio of vinc/uinc is varied from −1 to 1. The frequency of
the incident light is selected at 294.46 THz, which has been
determined in Fig. 1(c). The chiral parameter is chosen as
0.01, 0.02, and 0.03. For κ = 0.01, the maximum CD can be
obtained at vinc/uinc = −1/26, which can be well predicted
by Eq. (44). Although the ratio of vinc/uinc for maximum
CD depends on the chiral parameter, one can also find the
optimized excitation condition for different κ values by tuning
the ratio of vinc/uinc. To clearly demonstrate this maximum
chiral response, the pure scattering field excited by E(−) and
E(+) with vinc/uinc = −1/26 are shown in Figs. 4(c) and 4(d),
respectively. Furthermore, the amplitude of |Escat| along the
horizontal dashed lines are plotted in the lower panels. One
can see that the scattering field is strongly confined in the
near field in Fig. 4(c), but can propagate to the far field
under the illumination of an incident field with the mirror
chirality [Fig. 4(d)]. As a result, the scattering power is zero
and nonzero under E(−) and E(+) respectively, leading to the
maximized value for the scattering CD.

The strategy to achieve the maximum CD is also applicable
when the chiral parameter is a complex number. For the sphere
with weak chirality, the frequency for the chirality-sensitive
anapole state is determined by the reference structure (i.e.,
the nanosphere with κ = 0). The value of κ is related to the
specific incident field to excite the desired state. Therefore,
one can adjust the ratio of vinc/uinc to achieve the maximum
scattering CD. To analyze the influence of imaginary part
of the chiral parameter κs, the chiral parameters of 0.01,
0.01exp(iπ/6), 0.01exp(iπ/3), and 0.01i are used in the cal-
culation. The light frequency is f0 = 294.46 THz. In Fig. 5,
the values of scattering CD are calculated under different
ratios of vinc/uinc, respectively. It can be seen that when κ

is a complex number, the optimized value vinc/uinc should be
searched in the complex plane around the original point to
achieve the maximum scattering CD.

VI. CONCLUSIONS

This work proposed a strategy to design the optical field to
realize the maximum scattering CD (i.e., g = 2) for a chiral
Mie nanosphere. Using multipole analysis, we reveal that the
maximum CD effect originates from the excitation of anapole
states. This remarkable maximized scattering CD has not been
reported before since the required special condition of the
incident field was unknown. The maximum chiral response
of chiral spheres has been numerically simulated. Currently,
chiral light-matter interaction is enhanced by seeking the op-
tical field with strong optical chirality at a local point (e.g.,
[14,16–20]). However, this route is only viable for a Rayleigh
chiral scatterer. The model in this work provides a guideline
to globally design the incident field to realize the maximum
CD response from Mie spheres. Although the electromagnetic
chirality of the Mie sphere is weak (i.e., the κ value is small),
the maximum CD response (i.e., g factor) can still be achieved
by manipulating the incident field. The extended boundary
condition method can be employed to calculate T matrix for
homogeneous nonspherical particles, which may be explored
to further extend the model to more general cases.
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APPENDIX A: EXPRESSIONS OF Tn AND Sn

In Eqs. (9)–(12), the expression of T a
n , T b

n , T c
n , and T d

n can
be expressed as Eqs. (A1)–(A4) [23]:

T a
n = Z0ψn(k0Rs)ψ ′

n(k1Rs) − Z1ψn(k1Rs)ψ ′
n(k0Rs)

Z1ψn(k1Rs)ξ ′
n(k0Rs) − Z0ξn(k0Rs)ψ ′

n(k1Rs)
, (A1)

T b
n = Z0ψn(k1Rs)ψ ′

n(k0Rs) − Z1ψn(k0Rs)ψ ′
n(k1Rs)

Z1ξn(k0Rs)ψ ′
n(k1Rs) − Z0ψn(k1Rs)ξ ′

n(k0Rs)
, (A2)

T c
n = Z1k1ψn(k0Rs)ξ ′

n(k0Rs) − Z1k1ξn(k0Rs)ψ ′
n(k0Rs)

Z1k0ψn(k1Rs)ξ ′
n(k0Rs) − Z0k0ξn(k0Rs)ψ ′

n(k1Rs)
,

(A3)

T d
n = Z1k1ξn(k0Rs)ψ ′

n(k0Rs) − Z1k1ψn(k0Rs)ξ ′
n(k0Rs)

Z1k0ξn(k0Rs)ψ ′
n(k1Rs) − Z0k0ψn(k1Rs)ξ ′

n(k0Rs)
,

(A4)

where Rs is the radius of the sphere. ψn(α) and ξn(α) are the
Riccati-Bessel functions.

In Eqs. (26)–(29), the expressions of Sa
n , Sb

n, Sc
n, and Sd

n can
be expressed as Eqs. (A5)–(A8)

Sa
n = Z0k0ξ

(1)
n (k1Rs)ψ ′

n(k1Rs) − Z0k0ψn(k1Rs)ξ ′
n(k1Rs)

Z0k1ξ
(1)
n (k0Rs)ψ ′

n(k1Rs) − Z1k1ψn(k1Rs)ξ ′
n(k0Rs)

,

(A5)

Sb
n = Z0k0ψn(k1Rs)ξ ′

n(k1Rs) − Z0k0ξn(k1Rs)ψ ′
n(k1Rs)

Z0k1ψn(k1Rs)ξ ′
n(k0Rs) − Z1k1ξn(k0Rs)ψ ′

n(k1Rs)
,

(A6)
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Sc
n = Z1ξ

(1)
n (k1Rs)ξ ′

n(k0Rs) − Z0ξn(k0Rs)ξ ′
n(k1Rs)

Z0ξn(k0Rs)ψ ′
n(k1Rs) − Z1ψn(k1Rs)ξ ′

n(k0Rs)
, (A7)

Sd
n = Z1ξn(k0Rs)ξ ′

n(k1Rs) − Z0ξ
(1)
n (k1Rs)ξ ′

n(k0Rs)

Z0ψn(k1Rs)ξ ′
n(k0Rs) − Z1ξn(k0Rs)ψ ′

n(k1Rs)
. (A8)

APPENDIX B: MIRROR OPERATION ON VSH

The vector spherical harmonics (VSHs) are expressed as
[23]

RgMmn = γmn jn(r)
[
imπm

n (θ )θ̂ − τm
n (θ )φ̂

]
eimφ, (B1)

RgNmn = γmnn(n + 1)
jn(kr)

kr
Pm

n (cos θ )eimφ r̂

+ γmn
ψ ′

n(kr)

kr

[
τm

n (θ )θ̂ + imπm
n (θ )φ̂

]
eimφ, (B2)

Mmn = γmnh(1)
n (r)

[
imπm

n (θ )θ̂ − τm
n (θ )φ̂

]
eimφ, (B3)

Nmn = γmnn(n + 1)
h(1)

n (kr)

kr
Pm

n (cos θ )eimφ r̂

+ γmn
ξ ′

n(kr)

kr

[
τm

n (θ )θ̂ + imπm
n (θ )φ̂

]
eimφ. (B4)

In Eqs. (B1)–(B4), γmn is a prefactor for the multipole order
of (m, n),

γmn =
√

(2n + 1)(n − m)!

4πn(n + 1)(n + m)!
. (B5)

Here, jn and h(1)
n are the spherical Bessel and the first kind

spherical Hankel functions. Pm
n is the associated Legendre

function. The functions of πm
n and τm

n are defined as

πm
n (θ ) = Pm

n (cos θ )

sin θ
, (B6)

τm
n (θ ) = dPm

n (cos θ )

dθ
. (B7)

For mirror operation in spherical coordinate, the follow-
ing transformations are performed simultaneously, i.e., r ⇒ r,
θ ⇒ θ , φ ⇒ π−φ, r̂ ⇒ r̂, θ̂ ⇒ θ̂ , and φ̂ ⇒ −φ̂. Therefore,
M̂RgMmn = γmn jn(ρ)[imπm

n (θ )θ̂ + τm
n (θ )φ̂]e−imφ , where M̂

is the mirror operator. The relation between the associated
Legendre functions with (m, n) and (−m, n) can be expressed
as

P−m
n (cos θ ) = (−1)m (n − m)!

(n + m)!
Pm

n (cos θ ). (B8)

By using the relations in Eqs. (B1)–(B8), it can be proved
that

M̂RgMmn = (−1)m+1RgM−m,n, (B9)

M̂RgNmn = (−1)mRgN−mn, (B10)

M̂Mmn = (−1)m+1M−m,n, (B11)

M̂Nmn = (−1)mN−mn. (B12)

Equations (B9) and (B10) can be employed to obtain the
incident field with the inversed chirality. Therefore, for the
incident field of E(+) = uincRgM1,1 + vincRgN1,1, its mirror
field should be E(−) = uincRgM−1,1 − vincRgN−1,1.

APPENDIX C: SCATTERING CD OF NANOSPHERE
UNDER CPL

To verify the multiscattering model in this work, the rig-
orous calculation based on Lorenz-Mie theory is carried out
under the illumination of CPL. The T matrix for the chiral
sphere in free space (with the refractive index of n0) can be
expressed as [34,35]

T =
[

T (1)
11 T (1)

12

T (1)
21 T (1)

22

]−1[
T (2)

11 T (2)
12

T (2)
21 T (2)

22

]
. (C1)

The elements in Eq. (C1) are given below:

T (1)
11 = iZ0ε1ξn(k0Rs)ψ ′

n(kRRs) − i
√

ε1μ1ψn(kRRs)ξ ′
n(k0Rs),

(C2)

T (1)
12 = iZ0ε1ψn(kRRs)ξ ′

n(k0Rs) − i
√

ε1μ1ξn(k0Rs)ψ ′
n(kRRs),

(C3)

T (1)
21 = −Z0

√
ε1μ1ξn(k0Rs)ψ ′

n(kLRs)

+ μ1ψn(kLRs)ξ ′
n(k0Rs), (C4)

T (1)
22 = Z0

√
ε1μ1ψn(kLRs)ξ ′

n(k0Rs)

− μ1ξn(k0Rs)ψ ′
n(kLRs), (C5)

T (2)
11 = −iZ0ε1ψn(k0Rs)ψ ′

n(kRRs)

+ i
√

ε1μ1ψn(kRRs)ψ ′
n(k0Rs), (C6)

T (2)
12 = −iZ0ε1ψn(kRRs)ψ ′

n(k0Rs)

+ i
√

ε1μ1ψn(k0Rs)ψ ′
n(kRRs), (C7)

T (2)
21 = Z0

√
ε1μ1ψn(k0Rs)ψ ′

n(kLRs)

− μ1ψn(kLRs)ψ ′
n(k0Rs), (C8)

T (2)
22 = −Z0

√
ε1μ1ψn(kLRs)ψ ′

n(k0Rs)

+ μ1ψn(k0Rs)ψ ′
n(kLRs). (C9)

The two wave vectors inside the sphere are kL/R =
ω

√
εsμs ∓ ωκs. The radius of the sphere is Rs. The scattering

coefficients can be calculated by [a b]T = T[u v]T . Then the
scattering power can be calculated by the scattering coeffi-
cients of amn and bmn.

In our model, the radius of the sphere is Rs = 320 nm. For
εs = 9, μs = 1, and κs = 0.01, the scattering CD under the
incidence of CPL is calculated as shown in Fig. 6. Within
the optical frequency range 176.5–333.3 THz, the value of the
scattering CD is in the range [−0.114, 0.054]. The analytical
method can be used to verify the multiscattering model in this
work. For comparison, the scattering CD spectrum calculated
by the multiscattering model is shown by the red dots in
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FIG. 6. The scattering CD spectrum for chiral sphere under the
illumination of CPL. The black curve and the red dots represent
the results calculated by the Mie theory and multiscattering model,
respectively.

Fig. 6, which proves that the multiscattering model is accurate
to describe the chiral response of the Mie sphere with weak
chirality.

APPENDIX D: MAXIMUM CD AT 241.46 THz

To explain the mechanism of maximum scattering CD
at f = 241.46 THz, intensities of the three moments for the
sphere and the electric and magnetic scattering coefficients
(i.e., a1 and b1) are calculated in Fig. 7. The incident field
is E(±) = uincRgM±1,1 ± vincRgN±1,1 with uinc/vinc = 1/55.
Figures 7(a)–7(c) show the calculation results when the chiral
sphere is illuminated by E(−). At the frequency of 241.46 THz,
both scattering coefficients a1 in Fig. 7(a) and b1 in Fig. 7(b)
are zero, indicating that the sphere is at the completely non-
radiating state. Specifically, a1 can be well predicted by the
amplitude of MD in Fig. 7(a), while b1 is mainly contributed
by ED and TD [see the amplitudes of b1, ED, and TD in
Fig. 7(b)]. At f = 241.46 THz, the amplitudes of ED and TD
are equal, but their phases are opposite [see the vertical dashed
line through Figs. 7(a)–7(c)], which indicates the excitation of
anapole state in the sphere. With the illumination of E(+), the
amplitudes of ED and TD are almost unchanged as shown in
Figs. 7(e) and 7(f). It means the anapole state is stable during
the inversion of optical chirality, which is different from the
case in Fig. 3. However, by switching the incident field from
E(−) to E(+), the dip of MD amplitude at f = 241.46 THz
disappears as shown in Fig. 7(d). Therefore, the maximum CD
condition can also be enabled due to the excitation of anapole
states.

To further understand the mechanism of the dependence
of the magnetic scattering coefficient a1 to the chirality of
the incident field, Eqs. (32) and (33) should be considered.

FIG. 7. The spectra of scattering coefficients and the com-
plex amplitudes of three types dipoles for the incident field with
uinc/vinc = 1/55. The results in (a)–(c) are under the incidence of
E(−), and in (d)–(f) for E(+).

The maximum scattering CD analyzed in Fig. 7 requires
the condition of �(b)

n = 0, whose physical meaning can be
further clearified below: It directly leads to Bmn = 0 ac-
cording to Eq. (34). As the nonchiral part of bmn, Bmn is
mainly contributed by the zeroth-order scattering process in
Fig. 1(a). It means that the anapole state in the reference
structure (i.e., nonchiral sphere) and the component of RgNmn

in the incident field cannot be scattered. The condition to
obtain the maximum CD in Eq. (44) can be simplified as
umn/vmn = γ (a)

n /�(a)
n , whose value is much smaller than 1.

Therefore, RgNmn is the dominant component of the incident
field. The anapole state excited by E(−) can be maintained
when inversing the chirality of the incident field. The con-
dition of umn/vmn = γ (a)

n /�(a)
n means that the chiral part and

the nonchiral part of the magnetic scattering coefficient in
Eqs. (32) and (33) are equal (i.e., Amn = A′

mn). The magnetic
scattering coefficient amn also becomes zero when the sphere
is illuminated by E(−) (i.e., amn = Amn − A′

mn). If the inci-
dence is switched to E(+), the magnetic scattering coefficient
becomes nonzero (i.e., amn = Amn + A′

mn). This is the key
reason resulting in the disappearance of the dip of a1 as shown
in Fig. 7(d).
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