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Transport probe of the nonadiabatic transition caused by moving Majorana zero modes
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We propose a transport probe scheme to detect the nonadiabatic transition caused by moving Majorana
zero modes. The scheme is analyzed theoretically by means of a time-dependent single-electron-wave-function
approach to quantum transport. Based on the Kitaev model, we simulate the time-dependent currents and
examine the feasibility of using the currents to infer the nonadiabatic transition. In particular, we develop a
method to determine the Landau-Zener tunneling ratio in the context of transport, and compare it with the result
computed from the same Majorana moving in the isolated quantum wire. Desirable agreements are demonstrated
for the whole proposed scheme.
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I. INTRODUCTION

The nonlocal nature of the Majorana zero modes (MZMs)
and the intrinsic non-Abelian braiding statistics, both im-
plying immunity from the influence of local environmental
noises, promise a sound potential for topological quantum
computation [1–6]. The braiding operation is actually ex-
changing the Majorana modes in real space, which leads to
a unitary rotation in the degenerate subspace of ground states.
The unitary rotation can constitute desired quantum informa-
tion processing and realize logic gates in topological quantum
computation.

For braiding operations, the early and representative
scheme is quantum-adiabatically moving the MZMs by tuning
a series of electric gates to drive different regions of the
Majorana quantum wire into the topological or nontopological
regime [7–10], being guided by the fact that the MZMs will
form at the boundaries between the topological and nontopo-
logical regions. The subsequent alternative proposals include
tuning the couplings between Majorana modes directly or
indirectly via modulating the charging energy on the Majorana
island or through quantum dots [11–21], measurement-only
schemes [22–25], and others [26]. We notice that, with the
progress of gating control techniques, the Majorana mov-
ing schemes have gained renewed interest in the past years
[27–31]. In order to realize the topological protection, i.e.,
to restrict the quantum evolution in the subspace of the
ground states, the quantum moving should be adiabatically
slow. However, this may contradict other requirements such as
avoiding the quasiparticle-poisoning decoherence. In practice,
the adiabatic condition may be violated by finite braiding
rates, and the effects of nonadiabatic transition constitute thus
an important subject among the studies [27,32–37].

Rather than simulating the nonadiabatic effects in the iso-
lated quantum wires [27,32–37], we raise the question of
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how to probe the nonadiabatic transition by experimental
measurements. This interesting problem, to the best of our
knowledge, has not been studied so far in the literature. In
this work, we will propose a transport probe scheme to in-
fer the Majorana-moving-caused nonadiabatic transition, as
schematically shown in Fig. 1, which is actually the minimal
setup of tunneling spectroscopy of Majorana conductances.

Conceptually, as shown in Fig. 1 for the one-lead (two-
terminal) transport setup, in the nonsteady state, the current
in the left normal-metallic lead (IL) is unequal to the Andreev
current (IA) owing to formation of extra Cooper pairs in the
superconductor. Note that increasingly more electrons in the
superconductor (owing to formation of extra Cooper pairs and
conversion to normal electrons) will flow back to the left lead
through the external circuit, forced by the bias voltage (V )
in order to maintain the Fermi level of the superconductor
unchanged. In particular, the Andreev-reflection (AR) physics
tells us that IL(t ) = ILe(t ) + ILh(t ) and IA(t ) = 2ILh(t ), where
ILe(t ) is the “electron” current for electrons entering to occupy
the empty zero-energy bound states (ZEBS) |0〉E0 , and ILh(t )
is the “hole” current for electrons entering to annihilate the
occupied state |1〉E0 (to form Cooper pairs). Since the two pro-
cesses contributing to ILe(t ) and ILh(t ) are not simultaneous,
we then know that ILe(t ) �= ILh(t ) and IL(t ) �= IA(t ), during
the transient stage, or in the more general case, when moving
the MZMs.

Since the Andreev current is proportional to the occupation
probability of the ZEBS, one can thus extract information
of the ZEBS occupation from the Andreev current. During
Majorana moving, the nonadiabatic transition will reduce the
occupation probability of the ZEBS and affect the Andreev
current. However, technically, the complexity to handle this
problem is twofold. On one aspect, the quantum moving
and transport probing are highly time dependent. We are
thus required to apply a time-dependent transport theory. In
this work, we will apply the single-electron wave function
(SEWF) approach [38–41], which is a time-dependent gen-
eralization of the stationary S matrix scattering theory. In
particular, this approach was recently extended to the context
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FIG. 1. (a) Schematic setup for transport probe of the nonadi-
abatic transition caused by Majorana moving, via measuring the
time-dependent lead current IL and the Andreev current IA flowing
back to the lead from the superconductor through the grounded
terminal. The electrochemical potential μA is tuned to make the left
half wire in the topological regime, while μB is changed to make the
right half wire from initially topological to finally the nontopological
regime. As a consequence, the Majorana mode γ2 is moved from
the right side to the center of the quantum wire. (b) Energy diagram
for the transport setup under bias voltage V (with μL the chemical
potential of the lead). In particular, formation of a Cooper pair by
two electrons from the lead through creation and annihilation of the
zero-energy (E0) quasiparticle, and the nonadiabatic transition to the
excited states, are schematically shown. The associated “electron”
and “hole” currents, ILe(t ) and ILh(t ), are also illustrated.

of superconductor-induced Andreev reflections [42]. On the
other aspect, determination of the Landau-Zener tunneling
ratio is nontrivial in the transport probing process.

The article is organized as follows. We first outline in
Sec. II the SEWF approach, in contact with the Kitaev lattice
model. Then, in terms of the time-dependent AR coefficient,
we display in Sec. III the Andreev currents in three stages
and discuss several remarkable features. After carrying out
a self-consistency examination, in Sec. IV the Landau-Zener
transition ratio properly determined from transport probe is
compared with the result calculated in the isolated quantum
wire. Full agreement is demonstrated, which is also followed
by support from the whole moving-period transition and under
(small) finite bias voltages. Finally, we summarize the work in
Sec. V with discussions.

II. SINGLE-ELECTRON-WAVE-FUNCTION APPROACH

For the transport setup schematically shown in Fig. 1, the
total Hamiltonian can be split into three parts, H = HW +

Hlead + H ′, i.e., the sum of the Hamiltonians of the quantum
wire, the transport lead, and their coupling. The Hamiltonian
of the transport lead can be simply described by Hlead =∑

l εl a
†
l al , with a†

l (al ) the creation (annihilation) operator of
the lead electron with energy εl . In this work, we use l to label
the continuum of the lead electron states. The tunnel-coupling
Hamiltonian between the quantum wire and the lead is de-
scribed by H ′ = ∑

l tl c
†
1al + H.c., where c†

1 is the electron
operator of the leftmost site of the quantum wire coupling
to the lead. Without loss of essential physics, we employ in
this work the Kitaev model (spinless p-wave superconductor)
to describe the quantum wire. For the s-wave superconduc-
tor proximitized Rashba nanowire, one can follow the same
treatment developed in this work. The one-dimensional Kitaev
lattice model reads as [1]

HW =
∑

j

[
− μ jc

†
j c j − �

2
(c†

j c j+1 + H.c.)

]

+ �

2

∑
j

(c jc j+1 + H.c.). (1)

μ j is the chemical potential which can be tuned via elec-
tric gates, � is the order parameter of the superconductor,
and � is the hopping energy between the nearest-neighbor
sites with c†

j (c j) the associated electron creation (anni-

hilation) operators. Introducing the Nambu operator �̂ =
(c1, . . . , cN , c†

1, . . . , c†
N )T , the Hamiltonian of the quantum

wire can be rewritten as HW = 1
2 �̂†H̃W �̂, with H̃W the well-

known Bogoliubov–de Gennes (BdG) Hamiltonian matrix
which gives directly the energy spectrum of the Bogoliubov
quasiparticles after diagonalization [42]. Instead of the oper-
ators basis, the BdG Hamiltonian matrix can be understood
as well as constructed under the single-particle state basis
{|e1〉, . . . , |eN 〉; |h1〉, . . . , |hN 〉}, where |e j〉 and |h j〉 describe,
respectively, the electron and hole states on the jth site of the
quantum wire. Using the electron and hole basis states, the
tunnel-coupling Hamiltonian can be rewritten as

H ′ =
∑

l

tl (|e1〉〈el | − |h1〉〈hl |) + H.c. (2)

Here, in order to account for the AR process, we have in-
troduced also the electron and hole states {|el〉, |hl〉} for the
transport lead.

Following the single-particle S matrix scattering approach
within the Landauer-Büttiker formalism, we notice that an
electron entering the superconductor will either excite a Bo-
goliubov quasiparticle or destroy it, depending on whether
the quasiparticle state is empty or occupied. The former case
corresponds to the normal tunneling process and the latter
results in the Andreev reflection. After accounting for this
physics, the tunnel-coupling Hamiltonian is truncated as [42]

H ′ =
∑

l

tl (|ẽ1〉〈el | − |h̃1〉〈hl |) + H.c., (3)

where the edge states |e1〉 and |h1〉 are projected onto the sub-
space of the Bogoliubov quasiparticle states through |ẽ1〉 =
P̂|e1〉 and |h̃1〉 = P̂|h1〉. The projection operator is given by
P̂ = ∑′

n |En〉〈En|, with the sum ranging over all the eigen-
states of the particle sector of the BdG Hamiltonian matrix.
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In this work, we would like to employ the single-electron
wave function (SEWF) approach [38–42] for the highly time-
dependent transport problem under study, which is actually a
time-dependent generalization of the stationary S matrix scat-
tering theory. The basic idea of the SEWF approach is keeping
track of the quantum evolution of a single electron initially
in the lead, and computing the time-dependent transport co-
efficients. Let us assume the electron initially in the lead
state |�(0)〉 = |el̄〉, and with the incident energy Ein = El̄ .
The subsequent evolution with time will result in a quantum
superposition of all basis states of the lead and the quantum
wire, as

|�l̄ (t )〉 = |�w(t )〉 + |�leads(t )〉

=
N∑

j=1

[b je(t )|e j〉 + b jh(t )|h j〉]

+
∑

l

[βl (t )|el〉 + β̃l (t )|hl〉]. (4)

Substituting it into the time-dependent Schrödinger equation
ih̄|�̇〉 = H |�〉 and applying the technique of Laplace and
inverse-Laplace transformations to eliminate the degrees of
freedom of the lead, after some algebra, we obtain the equa-
tions for the quantum wire state as [42]

ih̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ḃ1e

ḃ2e
...

ḃNe

ḃ1h

ḃ2h
...

ḃNh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [H̃W + (P̂�P̂)]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1e

b2e
...

bNe

b1h

b2h
...

bNh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ tLe− i
h̄ Eint P̂

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Here we have introduced the self-energy operator

� = (−i	L/2) (|e1〉〈e1| + |h1〉〈h1|). (6)

The tunnel-coupling rate under the wideband limit reads as
	L = 2πρLt2

L , with ρL the density of states of the transport
lead, and tL the constant tunnel-coupling strength (i.e., tl =
tL).

The single (l̄) electron currents are obtained through the
changing rates of the occupation probabilities of the lead
electron and hole, given by

iLe = − e

h̄

∂PLe

∂t
= − e

h̄

∂
∑

l |βl (t )|2
∂t

,

iLh = e

h̄

∂PLh

∂t
= e

h̄

∂
∑

l |β̃l (t )|2
∂t

. (7)

One may note that iLe and iLh are, respectively, the electron
and hole currents flowing through the tunnel junction from
the lead to the quantum wire. Moreover, after some algebra,
one can further obtain

iLe = − e

h̄

[
2tLIm

(
e

i
h̄ Eint 〈e1|P̂|�w〉) + 	L |〈e1|P̂|�w〉|2],

iLh = e

h̄
	L |〈h1|P̂|�w〉|2. (8)

We are thus allowed for very convenient computation for
the time-dependent currents by solving Eq. (5) for the time-
dependent state |�w(t )〉 of the quantum wire.

Along the same line of the Landauer-Büttiker formalism of
single-particle scattering theory, the time-dependent currents
under finite bias voltage (at zero temperature) can be com-
puted as

ILe =
∫ μL

−μL

dEl̄ρLiLe = e

h

∫ μL

−μL

dEl̄TL,

ILh =
∫ μL

−μL

dEl̄ρLiLh = e

h

∫ μL

−μL

dEl̄TA. (9)

Here, we have related the results from the single-particle
currents with the conventional theory in terms of transmission
coefficients. However, the present SEWF approach is a time-
dependent generalization of the Landauer-Büttiker S matrix
scattering theory and also of the nonequilibrium Green’s func-
tion treatment. Note also that the total lead current flowing
through the tunnel junction from the lead to the quantum wire
is the sum of the electron and hole currents, i.e., IL = ILe +
ILh, while the Andreev current flowing back to the transport
lead from the quantum wire through the grounded terminal is
IA = 2ILh. Accordingly, the linear Andreev differential con-
ductance is given by GA = (2e2/h)TA. The Andreev reflection
coefficient TA can be calculated through

TA = h

e
ρLiLh = 	2

L

t2
L

|〈h1|P̂|�w〉|2. (10)

One can prove that, in steady state, this result will recover the
standard expression in terms of the nonequilibrium Green’s
functions [42].

III. TIME-DEPENDENT CURRENT AND
SELF-CONSISTENCY EXAMINATION

The time-dependent SEWF approach outlined above is in
particular suitable for simulating the transport probe of nona-
diabatic transitions [27,32–37]. In this work, we consider the
simplest piano-key model analyzed in Ref. [27]. Let us de-
note the electrochemical potentials of the left and right half
wire by μA and μB. By fixing μA with a value smaller than
�, the left half is kept in the topological regime, and the right
half is tuned according to [27]

μB(t ) = [1 − f (t/τ )]μBi + f (t/τ )μB f , (11)

where the initial value of μB is set as μBi = μA and the final
value μB f is larger than �. In general, f (s) can be a monoton-
ically increasing function with f (0) = 0 and f (1) = 1. As an
example, one can choose f (s) = sin2(sπ/2). Therefore, the
right half of the quantum wire begins in a topological regime
with μBi = μA < �, and finishes at time τ with μB f > �,
which drives the right half wire into a trivial regime. As the
consequence, the Majorana bound state at the right end of the
wire will be moved to the center.

As a preliminary illustration, we display in Fig. 2 the
time-dependent behaviors of the Andreev current (in terms of
the time-dependent AR coefficient TA) associated with three
stages: (i) steady-state formation of the ZEBS occupation be-
fore switching on the gate (μB) control for Majorana moving;
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FIG. 2. Time-dependent behaviors of the Andreev reflection cur-
rent (in terms of the time-dependent AR coefficient TA) associated
with three stages: (i) steady-state formation of the ZEBS occupation
before switching on the gate voltage (μB) control for Majorana mov-
ing; (ii) gate-control Majorana moving; and (iii) after the moving. In
the simulation, we set the nearest-neighbor hopping energy � = 1
as the energy unit in an arbitrary system of units. Accordingly,
other parameters are set as � = 0.5, μA = 0.9, μB = (0.9, 1.1),
	L = 1.0, and Ein = 0.0. The moving times are chosen as τ = 0.1τ0

in (a) and τ = τ0 in (b), while the Landau-Zener characteristic time
τ0 is determined by Eq. (12) in the main text, which gives τ0 =
202.64.

(ii) gate-control Majorana moving; and (iii) after the moving.
In Fig. 2, we first illustrate the gradual formation of steady-
state current during stage (i), which indicates the formation
of stationary ZEBS occupation. The formation of steady-state
current starting with a single l̄-lead-electron is somehow a
bit tricky. In a simple way, we can say that it corresponds
to the long-time limit of the S matrix scattering approach.
As a more detailed inspection, in Eq. (5) the initial condi-
tion with the l̄ electron injection manifests as a driving term,
which will result in nonzero occupation of the wire states and
nonvanishing continuous current, even in long-time limit. This
interesting feature differs from the alternative initial condition
by considering the electron initially in the quantum wire, e.g.,
on the zero-energy bound state, which will unavoidably lose
the electron into the continuum of the lead reservoir. This is-
sue can be understood better in the simpler transport problem
by considering an electron transmitting through a resonant
level of the quantum dot [41]. After a careful check, one can
find that the single l̄ electron current is extremely small, by
noting that the coupling (energy) amplitude [tl in Eq. (2)] is
infinitesimally small, because of the infinite extension of the
lead electron wave function in the continuum of eigenstates
representation. Therefore, only after multiplying the density
of states of the lead, which is infinity for a continuum, the
finite result of the current or the transmission coefficient as
shown in Eq. (10) can be obtained. We can thus conclude
that the steady-state single l̄ electron current, which is in-
finitesimally small and flows for an infinitely long time, does
not contradict any physical principle. After multiplying the
density of states of the lead and integrating over some energy
range, the single electron transmission approach matches well

the transport problem under bias voltage, where the external
circuit will help to maintain the continuous transport current.

In Fig. 2, for the time-dependent AR coefficient TA, dur-
ing the stage (i) discussed above, one may notice that its
steady-state value is not ideally quantized to unity. Actually,
in the low-energy effective description, the AR coefficient of
unity associated with the MZMs is obtained after the higher
energy excited states are gapped out from the transport. In our
simulation based on the full lattice model, for the purpose
of saving simulation time, we have set a relatively strong
coupling rate 	L = 1.0. Under this choice, the excited states
of the Majorana wire are not fully gapped out during the
transport process, thus leading to the quantization of the AR
coefficient slightly lower than unity. We have checked that
using a weaker coupling rate (smaller 	L) can perfectly restore
the ideal quantization value.

During the stage (ii) as shown in Fig. 2, modulating μB

from μBi to μB f according to Eq. (11) moves the Majorana
bound state γ2 from the right end to the center of the quantum
wire. Two moving times, τ = 0.1τ0 and τ0, are chosen for the
simulation. Here, the characteristic time τ0 is determined from
the Landau-Zener tunneling analysis [27], which reads

τ0 = |μB f − μBi|
(

Nright

π�

)2

, (12)

with Nright the lattice number of the right half wire. Notice
that, during the continuous modulation of μB, the supercon-
ductor energy gap will almost close at μB = � and reopen
after μB > �. The closing and reopening of the energy gap
is associated with a topological phase transition. Accordingly,
the nonadiabatic transition is expected to take place mainly
when crossing the phase transition point. In Fig. 2(a), for the
fast moving with τ = 0.1τ0, after crossing the phase transition
point, the short time does not allow obvious reoccupation of
the ZEBS from injection of the lead electron, resulting thus
in the decreasing Andreev current as observed. In contrast, in
Fig. 2(b), the slower moving (with τ = τ0) reveals a reoccu-
pation behavior after crossing the phase transition point, as
indicated by the turnover behavior of the current.

In Fig. 2, we also show the current behavior in stage (iii)
after the moving. In this context, we notice two interesting fea-
tures. One is the current oscillation, which becomes stronger
after the fast moving; another is that the AR coefficient TA

can be larger than 1. The reason for the former is that the
occupation of the excited quasiparticle states caused by the
nonadiabatic transition will interfere with the reoccupation of
the ZEBS owing to new injection, since the AR current is
extracted from the left-end site of the quantum wire, which
is commonly shared by the ZEBS and the exited states.
The occupation of the excited quasiparticle states is also the
reason for the second phenomenon mentioned above. This
corresponds to an increase of transport channels. From the
Landauer-Büttiker scattering theory (the multichannel ver-
sion), we know that the transport coefficient can be larger
than 1.

In the SEWF approach, the net accumulation of the normal
tunneling current iLe and the Andreev process current iLh

should correspond to the change of the occupation probability
of the ZEBS plus the transition to other excited states. Thus
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FIG. 3. Self-consistency examination for the total probability of
transition to the excited states, with the result of the black line com-
puted through Eq. (13), and the result of the red dots from Eq. (14)
based on tracking the wave function of the quantum wire during
the transport process. The multiplying factor 10−3 inside the fig-
ure indicates rescaling the vertical coordinates. Here we consider the
contribution of multiple electrons near the incident energy Ein, within
a small energy window �E = α	̃L by setting α = 10−2, while 	̃L

is the tunnel-coupling rate (widening width) of the ZEBS. 	̃L can
be determined as 	̃L = |u1|2	L , with u1 the electron amplitude of
the first lattice site (coupled to the lead) in the wave function of the
ZEBS, which can be obtained by diagonalizing the BdG Hamiltonian
of the quantum wire. All the parameters used here are the same as in
Fig. 2.

we have

1

e

∫ t

ti

[iLe(t ′) − iLh(t ′)]dt ′ = [PE0 (t ) − Pi] + Pex(t ). (13)

Here Pi is the initial occupation probability of the ZEBS. In
the numerical simulation, we can compute PE0 (t ) as PE0 (t ) =
|〈E0|�w(t )〉|2, and Pex(t ) as

Pex(t ) =
∑

j

[|〈Ej (t )|�w(t )〉|2 + |〈−Ej (t )|�w(t )〉|2]

− PE0 (t ), (14)

where the summation is over all the instant eigenstates of
the BdG Hamiltonian matrix. As an examination for self-
consistency, we compare in Fig. 3 the probability Pex(t )
computed through Eq. (14) and the result from Eq. (13). No-
tice that, as explained above, the currents and the occupation
probabilities from a single l̄ electron on the two sides of
Eq. (13) are infinitesimally small. In the plot of Fig. 3, we
consider the contribution of multiple electrons near the energy
El̄ of the l̄ electron, within a small energy window �E = α	̃L

by setting α = 10−2, while 	̃L is the tunnel-coupling rate
(widening width) of the ZEBS. Note also that in the numerical
simulation we set 	L = 2πρL|tL|2 = 1. The full agreement in
Fig. 3 indicates that we can employ the currents and their
accumulations to infer the Majorana-moving-caused nonadia-
batic transition, to be analyzed below in detail.

IV. LANDAU-ZENER RATIO INFERRED BY TRANSPORT
PROBE

We may regard the Majorana-moving-caused nonadiabatic
transition as the Landau-Zener tunneling. For an isolated
quantum wire, if we know the initial and final occupation
probabilities of the ZEBS, Pi and Pf , we can unambiguously
define the Landau-Zener transition ratio as γ = �P/Pi, where
�P = Pi − Pf , since this loss of the occupation probability is
owing to the nonadiabatic transition. However, for the trans-
port probing, the problem is more complicated. After the first
stage, i.e., stage (i) as shown in Fig. 2, steady-state occupation
of the ZEBS is achieved. Then, in stage (ii), during the time
period (ti, t ) (with t < t f and τ = t f − ti), net accumulation
of the quasiparticle-states occupation is the difference of the
normal electron injection and the AR loss, while both are
given by

a = 1

e

∫ t

ti

dt ′ iLe(t ′),

b = 1

e

∫ t

ti

dt ′ iLh(t ′). (15)

We may thus introduce P̃i = Pi + (a − b) and use it to replace
Pi, for the “initial” occupation probability on the ZEBS. How-
ever, for moving after crossing the phase transition point, the
net accumulation is largely not participating in the nonadia-
batic transition, owing to the reopening energy gap during the
later half time period (ti + τ/2, t f ). This insight suggests us
to introduce

ã = 1

e

∫ ti+τ/2

ti

dt ′ iLe(t ′),

b̃ = 1

e

∫ ti+τ/2

ti

dt ′ iLh(t ′), (16)

to replace the quantities a and b in P̃i after crossing the phase
transition point. That is, when t > ti + τ/2, we use P̃i = Pi +
(ã − b̃). For all, we define the Landau-Zener transition ratio γ̃

as

γ̃ = �P̃

P̃i
, (17)

where the transition probability is given by �P̃ = (Pi − Pf ) +
(a − b). Note that here the “final” occupation probability Pf

is defined at the running time t .
In Fig. 4, we display the numerical results of γ̃ versus γ

for different moving speeds and find desirable agreements.
In the numerical simulation, we determine Pi and Pf from
the wavefunction of the quantum wire by solving Eq. (5). In
practice, they should be extracted from the Andreev current
iA(t ) � (2e) 	̃LPE0 (t ), where 	̃L is the coupling rate of the
ZEBS to the lead and the current is recorded by applying
a small bias voltage (in the linear response regime). In this
extracting protocol, Pi can be determined rather precisely,
since there is no nonadiabatic transition to the excited states
until the formation of steady state. Pf (t ) is expected also to
be determined with reasonable precision from iA(t ), provided
that 	̃L is much smaller than the energy gap and the quantum
moving is not so fast.
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FIG. 4. Landau-Zener transition ratio during the moving process,
in comparison between γ̃ (inferred by transport probe) and γ (cal-
culated for the isolated quantum wire). Moving times of τ = 0.1τ0,
τ0, and 2τ0 are considered, respectively, in (a), (b), and (c). Other
parameters are the same as in Fig. 2.

We have shown in Fig. 4 the transient transition behavior
during the moving process. Now we further show in Fig. 5
the final result of transition after the entire τ -period quantum
moving, which corresponds to the standard characterization
of the Landau-Zener tunneling. It is well known that the
Landau-Zener tunneling formula predicts exponential depen-

FIG. 5. Landau-Zener transition ratio as a function of the moving
time (τ ). The results plotted by the filled squares are the ratio γ̃

inferred by transport probe, which are compared with the results
(solid line) calculated for the isolated quantum wire. Parameters are
the same as in Fig. 2.

FIG. 6. (a) Landau-Zener transition ratio probed by electrons
with different incident energies. (b) Averaged transition ratio for
transport probe under (small) finite bias voltages. In this plot we
consider the moving time τ = 0.1τ0. Other parameters are the same
as in Fig. 2.

dence on the moving time τ . We see here that, in addition
to the good agreement between γ̃ and γ , the exponential
dependence behavior maintains well for wide range of τ , de-
spite that the present problem is beyond the simple two-level
system considered when deriving the Landau-Zener formula.
We notice certain deviation only for fast moving (small τ ),
which is reasonable by noting that, in the limit of τ → 0,
the “transition” is actually from a transformation of the basis
states that does not obey the Landau-Zener transition formula.

As explained previously, the single-electron approach can
account well for the contribution of multiple electrons at the
incident energy Ein = El̄ , by multiplying a proper constant
(the lead electron numbers at this energy). We can thus apply
the SEWF approach to compute the differential conductance,
which is directly related to the transmission coefficient at
zero temperature, and/or compute the linear response current.
In practice, one may apply some finite (but also small) bias
voltage. In this case, we expect the transport-probe protocol
discussed in this work to be valid as well. Indeed, in Fig. 6(a),
we show the transition results probed by electrons with dif-
ferent incident energies. And, in Fig. 6(b), we average the
results to obtain the transition ratio, which corresponds to the
transport probe under different bias voltages. The result is
found insensitive to the (small) bias voltages. This observation
can benefit the feasibility of the proposed transport probing
scheme.

V. SUMMARY AND DISCUSSION

We proposed a scheme to probe the Majorana-moving-
caused nonadiabatic effects. Our analysis was based on a
recently developed single-electron-wave-function approach,
which generalizes the stationary BdG S matrix scattering
theory to a time-dependent transport version, being thus in
particular suitable for the proposed highly time-dependent
transport problem. Via numerical simulation with the Kitaev
model, we displayed and discussed the time-dependent behav-
iors of the Andreev currents flowing back to the lead through
the grounded terminal of the superconductor, during the pro-
cess of Majorana moving. We further examined the feasibility
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of using the current to infer the nonadiabatic transition and
designed a scheme to determine the Landau-Zener tunneling
ratio in the context of transport. By comparing with the results
of isolated quantum wire, we demonstrated desirable agree-
ments for both the transient and final Landau-Zener tunneling
ratios, together also with simulations under (small) finite bias
voltages.

Majorana moving and the nonadiabatic effects are crucial
ingredients of braiding dynamics. Understanding the moving
effects on Majorana bound states and quasiparticle excitations
is a prerequisite for Majorana manipulation with high fidelity,
since the manipulation at finite timescales will cause both
decoherence and renormalization effects. An important exten-
sion of the present study is to consider the typical realization
of the Rashba semiconductor nanowire in proximity to an
s-wave superconductor, while the Kitaev model simulated in
this work can be regarded as the strong magnetic field limit.
For such more complicated quantum wires, the Landau-Zener
characteristic time τ0 may exhibit significant uncertainty com-
pared with estimated values and may have 1 ∼ 2 orders of
magnitude change with the system parameters [27]. Moreover,
in realistic quantum wires, Majorana moving passing through
static impurities/disorders present in the system may have an

essential influence on the nonadiabatic transitions, as qualita-
tively discussed in Refs. [33,34]. Including such complexities
in our time-dependent lattice-model based scheme of simu-
lations should be straightforward. However, further inclusion
of inelastic scattering effects, quasiparticle excitation, and
poisoning is important but more challenging for theoretical
simulations. In this work, we only considered the simplest
moving scheme analyzed in Ref. [27]. It will be valuable
to simulate the transport probe of nonadiabatic effects as-
sociated with other moving schemes, e.g., the domain-wall
moving [33,34] and the optimal control of quantum moving
to suppress the nonadiabatic transition [35]. Important issues
associated with large moving speed may include the stability
of the Majorana bound states and possible relativistic effects
[33,34]. Simulating all these effects in connection with the
transport probe is of great interest for future studies.
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