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Moiré disorder effect in twisted bilayer graphene
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We theoretically study the electronic structure of magic-angle twisted bilayer graphene with disordered moiré
patterns. By using an extended continuum model incorporating nonuniform lattice distortion, we find that the
local density of states of the flat band is hardly broadened, but splits into upper and lower subbands in most
places. The spatial dependence of the splitting energy is almost exclusively determined by the local value of
the effective vector potential induced by heterostrain, whereas the variation of local twist angle and local moiré
period give relatively minor effects on the electronic structure. We explain the exclusive dependence on the
local vector potential by a pseudo Landau level picture for the magic-angle flat band, and we obtain an analytic
expression of the splitting energy as a function of the strain amplitude.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) exhibits various exotic
quantum phenomena with a wide variety of correlated phases
[1–19]. These quantum states originate from moiré-induced
flat bands, which emerge when two graphene layers stacked
with a magic angle (∼1◦) [20–23]. The flat band is usually
described by a theoretical model assuming a regular moiré
superlattice with a perfect periodicity [20–35]. However, the
moiré interference pattern is highly sensitive to a slight distor-
tion of underlying structure. In TBG, an atomic displacement
of graphene’s lattice is magnified in the moiré superlattice by
factor of the inverse twist angle [36], leading to unavoidable
disorder in the moiré superlattice. Indeed, the moiré patterns
in actual TBG samples are not perfectly regular, but exhibit
nonuniform structures including local distortion and variance
of the twist angle [4–7,37–51].

It is expected that such a disorder in the moiré pattern
would strongly affect the flat band and its electronic properties
in the one-body level. Generally, nonuniform moiré systems
are hard to treat theoretically, because one needs to consider a
number of moiré periods each of which contains huge number
of atoms. In previous works, the effect of the twist-angle
disorder in TBG was investigated using various theoretical
approaches, such as a real-space domain model composed
of regions with different twist angles [52], transmission cal-
culations through one-dimensional variation of twist angle
[53–55], and a Landau-Ginzburg theory to study the interplay
between electron-electron interactions and disorder [56].

In this paper, we study the electronic structure of magic-
angle TBG in the presence of nonuniform moiré patterns as
shown in Fig. 1, generated from random lattice distortion of
graphene layers. The model automatically contains possible
moiré disorder components, including various types of local
strains and local rotations. We calculate the energy spectrum
by using an extended continuum model incorporating nonuni-
form lattice distortion [57]. We find that the local density

of states (LDOS) of the flat band is hardly broadened but
splits place by place. Remarkably, the spatial variation of
the splitting energy is totally uncorrelated with local twist
angle or local periodicity, but it is almost exclusively de-
termined by the local value of the effective vector potential
caused by heterostrain, or relative strains between layers. We
explain the exclusive dependence on the strain-induced vec-
tor potential by using a pseudo Landau level picture for the
magic-angle flat band [58], and obtain an analytic expression
for the splitting energy as a function of the strain amplitude.
The strain-induced flat band splitting is an analog of that in
uniformly-distorted TBGs [5,59–67], and the strong coinci-
dence between the splitting energy and the local strain tensor
in nonuniform TBGs reflects a highly-localized feature of the
flat band wave function.

This paper is organized as follows. Before we consider
nonuniform moiré disorder, we present in Sec. II a detailed
study on a TBG with uniform distortion. We investigate the
effects of different types of strain components independently,
and show that the flat band splitting is mainly caused by shear
and anisotropic-normal heterostrain. We derive an approxi-
mate expression for the splitting energy by using the pseudo
Landau level analysis. In Sec. III, we calculate the LDOS
of magic-angle TBG with nonuniform moiré patterns, and
demonstrate a strong relationship between the LDOS split and
the strain-induced vector potential. A brief conclusion is given
in Sec. IV.

II. TBG WITH A UNIFORM DISTORTION

A. Atomic structure

We first consider a TBG with a uniform lattice distortion
and investigate its effect on the flat band. We define the
lattice vectors of monolayer graphene as a1 = a(1, 0) and
a2 = a(1/2,

√
3/2) where a = 0.246 nm is the lattice con-

stant, and define b j as the corresponding reciprocal lattice
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FIG. 1. Moiré patterns of magic-angle TBG (θ = 1.05◦) with
random nonuniform distortion of ε = 0, 0.0006, 0.0012, and 0.0018,
where the characteristic wave length is λ = 7LM , and the supercell
size (big parallelogram) is nSM = 8. The bright region represents
local AA stack and the dark region represents AB/BA stack. The red
dots are the AA spots of the nondistorted TBG for reference.

vectors to satisfy ai · b j = δi j . In a perfect TBG without dis-
tortion, the lattice vectors of layer l (= 1, 2) are given by
a(l )

j = R(∓θ/2)a j where ∓ is for l = 1 and 2, respectively, R
is a two-dimensional rotation matrix, and θ is the twist angle.

We introduce a uniform distortion to layer l , which is
expressed by a matrix,

E (l ) =
(

ε (l )
xx −�(l ) + ε (l )

xy

�(l ) + ε (l )
xy ε (l )

yy

)
. (1)

The E (l ) represents a deformation such that a carbon atom at
a position r in a nondistorted system is shifted to r + E (l )r.
Here ε (l )

xx and ε (l )
yy represent normal strains in x and y directions,

respectively, ε (l )
xy is a shear strain, and �(l ) is a rotation from

the original twist angle. For later arguments, we also define
the isotropic/anisotropic components of the normal strain by

ε
(l )
± = 1

2

(
ε (l )

xx ± ε (l )
yy

)
, (2)

and the interlayer difference of each strain/rotation component
as

ε± = ε
(1)
± − ε

(2)
± ,

εxy = ε (1)
xy − ε (2)

xy , (3)

� = �(1) − �(2).

In the presence of distortion, the lattice vectors change
to a(l )

j = (1 + E (l ) )R(∓θ/2)a j . In the following, we assume
the original twist angle and the distortion is sufficiently small
(θ,�(l ), ε (l )

μν � 1), so that

a(l )
j ≈ [R(∓θ/2) + E (l )]a j . (4)

FIG. 2. Brillouin zones of (a) a nondistorted TBG and (b) a
distorted TBG. Blue and orange hexagons on the left represent the
first Brillouin zone of graphene layer 1 and 2 (twisted by ∓θ/2),
respectively, and red arrows are the displacement vectors from the
layer 2’s K+ point to layer 1’s. A green hexagon on the right side is
the moiré Brillouin zone.

Similarly, the reciprocal lattice vectors are written as

b(l )
j ≈ [R(∓θ/2) − E (l )T]b j, (5)

where T is the matrix transpose.
In an intrinsic monolayer graphene, six corner points of

the Brillouin zone (BZ) are given by ξK j ( j = 1, 2, 3), where
ξ = ±1 label the valley degree of freedom, and

K j = R(φ j )
4π

3a
(−1, 0), φ j = 2π

3
( j − 1), (6)

are equivalent points in the BZ. Corresponding vectors for the
distorted TBG are written as

K (l )
j ≈ [R(∓θ/2) − E (l )T]K j . (7)

Figure 2 illustrates the schematics of BZ for (a) a nondistorted
TBG and (b) a distorted TBG. In each panel, blue and orange
hexagons on the left represent the first BZ of graphene layer
l = 1 and 2, respectively, where the corner points are given by
ξK (l )

j . We define interlayer shift of the corner points by

q j = K (1)
j − K (2)

j ( j = 1, 2, 3), (8)

as shown in Fig. 2. The q j’s can be expressed only by the
interlayer rotation and strain components as

q j = 4π

3a

[
R(φ j )

(
ε+

θ − �

)
+ R(−φ j )

(
ε−
εxy

)]
. (9)
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The reciprocal lattice vectors of the moiré pattern are given
by GM

j = b(1)
j − b(2)

j , which are also written as GM
1 = q2 − q1,

GM
2 = q3 − q2. In Fig. 2, a green hexagon on the right side

represents the moiré Brillouin zone defined by GM
j ’s.

B. Continuum model and band calculation

We use the continuum model [22,24–35,57–61,64–69] to
describe a strained TBG. The effective Hamiltonian for valley
ξ is written as

H(ξ )(k) =
(

H1(k) U †

U H2(k)

)
, (10)

where Hl (k) is the 2×2 Hamiltonian of distorted monolayer
graphene, and U is the interlayer coupling matrix. The Hamil-
tonian [Eq. (10)] works on the four-component wave function
(ψ (1)

A , ψ
(1)
B , ψ

(2)
A , ψ

(2)
B ), where ψ

(l )
X represents the envelope

function of sublattice X (=A, B) on layer l (=1, 2).
The Hl (k) is given by

Hl (k) = −h̄v

[(
R(∓θ ) + E (l )

)−1
(

k + e

h̄
A(l )

)]
· σ, (11)

where ∓ is for l = 1 and 2, respectively, v is the graphene’s
band velocity, σ = (ξσx, σy) and σx, σy are the Pauli matrices
in the sublattice space (A, B). We take h̄v/a = 2.14 eV [25].
The A(l ) is the strain-induced vector potential that is given by
[70–72]

A(l ) = ξ
3

2

βγ0

ev

(
ε

(l )
−

−ε (l )
xy

)
, (12)

where γ0 = 2.7 eV is the nearest-neighbor transfer energy of
intrinsic graphene and β ≈ 3.14. Note that the strain-induced
vector potential A(l ) depends only on ε

(l )
− and ε (l )

xy , while not on

ε
(l )
+ or �(l ). This is because A(l ) originates from a change of the

tight-binding hopping energies between carbon atoms due to a
lattice distortion, and it arises only when the hopping energies
from a single carbon atom to three neighboring atoms are
inequivalent. The �(l ) (rotation) and ε

(l )
+ (isotropic expansion)

obviously keep the threefold rotational symmetry and hence
do not contribute to A(l ).

The interlayer coupling matrix U is given by

U =
3∑

j=1

Uje
iξq j ·r,

U1 =
(

u u′
u′ u

)
, U2 =

(
u u′ω−ξ

u′ω+ξ u

)
,

U3 =
(

u u′ω+ξ

u′ω−ξ u

)
. (13)

The parameters u = 79.7 meV and u′ = 95.7 meV are inter-
layer coupling strength between AA/BB and AB/BA stack
region, respectively. The difference between u and u′ effec-
tively arise from the in-plane lattice relaxation and from the
out-of-plane corrugation effect [25,57]. The interlayer matrix
U depends on the strain via q j’s [Eq. (9)].

Below we investigate the effect of lattice distortion on the
energy bands using the effective Hamiltonian, Eq. (10). In
fact, the electronic structure is mainly affected by the inter-
layer asymmetric components of the strain tensor [Eq. (3)],

and in particular, the flat band is highly sensitive to ε− and
εxy. To demonstrate this, we calculate the energy bands of the
magic-angle TBG (θ = 1.05◦) in the presence of asymmet-
ric strain E (1) = −E (2) = E/2, where different types of strain
components �, ε+, ε−, εxy are considered independently.
Figure 3 shows the band dispersion and the density of state
(DOS) in individual strain components, where black, green,
red, and blue lines represent the strain amplitude (i.e., value
of �, ε+, ε−, εxy) of 0, 0.001, 0.002, and 0.004, respectively.

We clearly observe that the central flat band is particularly
sensitive to ε− and εxy, where a small distortion of 0.001
leads to a significant split of the flat band about 20 meV. In
contrast, ε+ and � gives relatively minor effects. ε+ moves the
Dirac points at κ and κ ′ in the opposite directions in energy,
resulting in a smaller DOS split. � shifts the twist angle
from the magic angle and slightly broadens the flat band. The
strain-induced flat band splitting was also found the previous
paper, which considered the effect of uniaxial heterostrain in
TBG [5,60,63–65], which corresponds to ε− and εxy in our
notation.

It should also be noted that the split flat bands in Fig. 3 are
not completely separated, but stick together at certain points
near γ (off the path shown in Fig. 3) [60]. These Dirac points
are originally located at κ and κ ′ in the nondistorted TBG,
and when a uniform distortion is applied, they move without
gap opening under the protection of the C2zT symmetry. The
two Dirac points cannot pair-annihilate because they have the
same Berry phase [73].

C. Pseudo Landau level approximation

As shown in the previous section, the flat band is split
significantly by anisotropic normal strain ε− and shear strain
εxy, while not much by other components. We explain this by
using the pseudo Landau level picture of TBG [58], which
describes the flat band as the Landau level (LL) under a
moiré-induced fictitious magnetic field. We apply the same
formulation to the strained TBG, Eq. (10), and analytically
estimate the flat-band split energy.

The pseudo-LL Hamiltonian is obtained by rewriting the
Hamiltonian matrix [Eq. (10)] in the basis (ψ+

A , ψ+
B , ψ−

A , ψ−
B )

where ψ±
X = (ψ (1)

X ± iψ (2)
X )/

√
2, and then expanding it in r

with respect to the origin (the AA-point) upto the first order
[58]. We ignore (R(∓θ/2) + E (l ) )−1 in Eq. (11), which gives
only higher order effects. The detailed calculation is presented
in the Appendix.

As a result, the effective Hamiltonian is written as

HPLL =
(

H+ V †

V H−

)
, (14)

where

H± = −h̄v

(
k ± e

h̄
a(r)

)
· σ, (15)

a(r) = ξ
2πu′

eva
(θ − �)

(−y
x

)
. (16)

Equation (15) is essentially the Dirac Hamiltonian under a
uniform magnetic field ∇ × (±a) = (0, 0,±beff ) with beff =
ξ [4πu′/(e2va)](θ − �). Note that the pseudo vector potential
a(r) originates from the intersublattice coupling u′ in the
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[arb. units]

[arb. units]

[arb. units]

[arb. units]

FIG. 3. Band structure and the DOS of uniformly distorted magic-angle TBGs with different types of strain components, ε+, ε−, εxy, �.
Different colors represent different amplitudes of strain. Horizontal lines in the right panels (DOS) indicate energies of the split levels in the
pseudo Landau level picture.
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moiré interlayer Hamiltonian [Eq. (13)], and it should be
distinguished from the strain-induced vector potential A(l ).

The off-diagonal matrix V is given by

V =
(

−3iuI2 − ev

2
A · σ

)
e−i 2e

h̄ χ (r), (17)

where I2 is a 2 × 2 identity matrix, u is the intrasublattice
coupling in moiré interlayer Hamiltonian [Eq. (13)], and

A = A(1) − A(2) = ξ
3

2

βγ0

ev

(
ε−

−εxy

)
, (18)

χ (r) = ξ
πu′

eva
[(x2 + y2)ε+ + (x2 − y2)ε− + 2xyεxy]. (19)

Here A(l ) is the strain-induced vector potential argued in the
previous section.

In the absence of the off-diagonal matrix V , the eigenstates
are given by the pseudo LLs of sector H±. For ξ = + valley,
it is explicitly written as

|+, 0, m〉 =

⎛
⎜⎝

0
ϕ0,m

0
0

⎞
⎟⎠, |−, 0, m〉 =

⎛
⎜⎝

0
0

ϕ0,m

0

⎞
⎟⎠, (20)

where ϕ0,m(r) ∝ e−imφe−r2/(4l2
eff ) is the 0th LL wavefunction

with angular momentum m expressed in the polar coordi-
nate r = r(cos φ, sin φ), and leff = √

h̄/(ebeff ). The 0th LLs
in Eq. (20) have exactly opposite sublattice polarization (i.e.,
|+, 0, m〉 on B, and |−, 0, m〉 on A), because the Dirac Hamil-
tonians H± have opposite pseudo magnetic fields ±beff .

In the absence of distortion (A = χ = 0), the 0th LLs
remain the zero-energy eigenstates even we include the off-
diagonal terms −3iuI2 [Eq. (17)], because I2 does not mix
different sublattices. The flat band of TBG is understood by
these degenerate 0th LLs. Since the effective Hamiltonian
Eq. (20) is based on the linear expansion around r = 0 (the
AA spot), the approximation is valid for the LL wavefunctions
with small angular momenta m’s, which are well localized to
r = 0.

When we switch on the distortion terms, the 0th Landau
levels are immediately hybridized by A · σ in the off-diagonal
matrix V , and split into E = ±�E/2, where

�E = ev|A| = 3

2
βγ0

√
ε2− + ε2

xy. (21)

Note that the pseudo gauge potential χ (r) only contributes to
the phase factor of the coupling matrix elements [Eq. (17)],
giving a higher order correction to the splitting energy
(see, Appendix). Equation (21) explains the exclusive depen-
dence of the flat band splitting on ε− and εxy. Considering
(3/2)βγ0 ≈ 13 eV, a distortion (ε−, εxy) of the order of 10−3

corresponds to a split width �E ∼ 10 meV.
In Fig. 3, horizontal red lines represent ±�E/2 of Eq. (21),

showing a good agreement with the actual split width of the
DOS. In the energy bands, the structures at κ , κ ′, and μi are
nicely explained by this simple splitting picture. On the other
hand, the energy bands around γ point is rather complicated
and cannot be captured by the same approximation. This is
consistent with the fact that the wavefunction at γ is extended
over the entire moiré pattern unlike those at κ , κ ′, and μi

concentrating on AA points [74–77], and hence the pseudo LL

approximation (assuming the localization at AA point) fails.
The Dirac band touching mentioned above actually occurs
near γ .

III. TBG WITH NONUNIFORM DISTORTION

A. Theoretical modelling

In this section, we construct a theoretical model to simulate
a nonuniform distortion in TBG. We consider a super moiré
unit cell composed of nSM × nSM original moiré units (nSM:
integer), and assume that the lattice distortion is periodic with
the super period as illustrated in Fig. 1. The primitive lattice
vectors for the super unit cell are given by LSM

j = nSMLM
j

and the corresponding reciprocal lattice vectors are GSM
j =

GM
j /nSM.
We define the in-plane displacement vector of layer l =

1, 2 as

u(l )(r) =
∑

p

C(l )
p e−(λ|p|/2π )2

eip·r, (22)

which represents a deformation such that a carbon atom of
layer l at a position r is shifted to r + u(l )(r). Here p runs
over p = m1GSM

1 + m2GSM
2 , and λ is the characteristic wave

length of the spatial dependence of u(l )(r). The amplitude
C(l )

p = (C(l )
p,x,C(l )

p,y) is a two-dimensional random vector, which

satisfy C(l )
−p = C(l )∗

p for real-valued u(l )(r). We assume that
different components of C(l )

p are totally uncorrelated such that〈
C(l )

p,iC
(l ′ )∗
p′, j

〉 = δl,l ′δp,−p′δi, jC
2
0 , (23)

where 〈〉 is the sampling average and C0 is a length parameter
to characterize the amplitude of the random displacement
field.

The local strain tensors and the rotation angle can be ex-
pressed in terms of u(l )(r) as

ε
(l )
i j (r) = 1

2

(
∂iu

(l )
j + ∂ ju

(l )
i

)
, (24)

�(l )(r) = 1
2

(
∂xu(l )

y − ∂yu(l )
x

)
. (25)

As in the uniform case, we define ε
(l )
± (r) by Eq. (2), and

relative strain components ε±(r), εxy(r),�(r) by Eq. (3). We
introduce the magnitude of distortion ε as the root mean
square of the interlayer difference of the strain tensor elements
[Eq. (3)], or,

ε ≡
√

〈|ε±|2〉 =
√

〈|εxy|2〉 =
√

〈|�|2〉 =
√

π3

2

C2
0 SSM

λ4
, (26)

where SSM = |LSM
1 × LSM

2 | is the area of the super moiré unit
cell.

Figure 1 show examples of distorted moiré patterns in the
magic-angle TBG (θ = 1.05◦) with different values of ε =
0, 0.0006, 0.0012, 0.0018, where nSM = 8 (indicated by a
big parallelogram) and λ = 7LM . We adopted a continuous
color code to express the stacking sequence [78], where the
bright region represents local AA stack and the dark region
represents AB/BA stack. The red dots are the AA spots of the
nondistorted TBG for reference. It should be noted that a small
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FIG. 4. (a) Moiré pattern of a disordered magic-angle TBG with ε = 0.0004, λ = 7LM. The distortion is observed as slight shifts of AA
points (yellow spots) relative to the regular red dots. (b) LDOS along line XX ′ [defined by a broken line in (a)]. (c) (Black, solid) LDOS at
the points of p1, p2, p3 in (a). (Red, dashed) LDOS at the AA point of the corresponding uniform TBG with the strain tensors fixed to the
local value. (d) The spatial distribution of the splitting energy �E , or the energy distance between the two LDOS peaks. A hexagonal tile
corresponds to a single moiré unit cell, and its color represents �E at the center of the hexagon (the AA point). (e) A contour plot of the
interlayer difference of the strain-induced vector potential, ev|A(r)|. (f) A scattered plot of �E and ev|A| (averaged in every moiré unit cell).

distortion in graphene lattice of the order of ε is magnified to
the moiré disorder of ε/θ ∼ 60ε.

We calculate the energy spectrum by using an extended
continuum model incorporating nonuniform lattice distortion
[57]. The Hamiltonian is given by Eq. (10), where the diago-
nal blocks are replaced by

Hl (k) = −h̄v

(
k + e

h̄
A(l )(r)

)
· σ, (27)

with the local strain-induced vector potential

A(l )(r) = ξ
3

2

βγ0

ev

(
ε

(l )
− (r)

−ε (l )
xy (r)

)
, (28)

and the interlayer coupling U is replaced with

U =
3∑

j=1

Uj eiξ [q j ·r+K j ·(u(2) (r)−u(1) (r))]. (29)

Here Uj are defined in Eq. (13), K j are the corner points of an
intrinsic graphene [Eq. (6)] and q j are interlayer corner-point
shifts [Eq. (8)] of nondistorted TBG. In the diagonal matrix,
we neglected the rotation matrix (R(∓θ ) + E (l ) )−1 in Eq. (11),
which gives a minor effect in the uniform distortion case.

While in this paper we focus on the in-plane compo-
nents of lattice displacement, real TBG samples also contain

out-of-plane corrugations [79–81]. The primary effect of
the corrugation is to differentiate the lattice spacing of
AA-stacking and AB-stacking regions, which is effectively
incorporated by the difference between u and u′ parameters
in the matrix U [25,57], as already mentioned. We may also
have an additional effect from nonuniform corrugation, which
is left for future work.

B. Energy spectrum and flat-band splitting

Using the model obtained above, we calculate the local
density of states (LDOS) for the magic-angle TBG (θ =
1.05◦) with a randomly-generated displacement configuration
u(l )(r). First, we take ε = 0.0004, λ = 7LM , and nSM = 12.
Figure 4(a) illustrates the moiré structure, where the distortion
is barely observed as a slight shift of AA points (yellow spots)
with respect to the regular red dots. In Fig. 4(b), we plot the
LDOS along line XX ′, which is defined by a broken line in
Fig. 4(a). We can see that the LDOS of the flat band separates
into upper and lower parts by a splitting energy depending on
the position. This is quite different from the case of a random
electrostatic potential, which simply broadens the band width.
Figure 4(d) shows the spatial distribution of the splitting en-
ergy �E , which is defined by the energy distance between
the two LDOS peaks. Here a hexagonal tile corresponds to a
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FIG. 5. Plots similar to Figs. 4(d)–4(f) calculated for different characteristic wave lengths λ = 5LM , 3LM , LM .

single moiré unit cell, and its color represents �E at the center
of the hexagon (the AA point).

Actually, the local split width of the flat band is almost
solely determined by the local value of the interlayer differ-
ence of the strain-induced vector potential,

A(r) = A(1)(r) − A(2)(r), (30)

and the local splitting energy is approximately given by �E ∼
ev|A(r)| as in the uniform case [Eq. (18)]. To demonstrate
this, we show a contour plot of ev|A(r)| in Fig. 4(e). We
observe a nearly perfect agreement with the distribution of
�E in Fig. 4(d). We also present a scattered plot of �E and
ev|A| (averaged in every moiré unit cell) in Fig. 4(f), where we
have a high correlation coefficient r ≈ 0.93, and a fitted line
is given by �E ≈ 0.7ev|A|. The strong correlation between
the splitting width and the strain-induced vector potential is a
special property of the magic-angle flat band, as it relies on its
peculiar Landau level like wavefunction. On the other hand,

the position of the satellite peaks (around ±80 meV in Fig. 4)
is totally uncorrelated with ev|A| (the correlation coefficient
about r ∼ 0.1), but it is weakly correlated with the local twist
angle � (r ∼ 0.5).

These results suggest that the local electronic structure in
the flat band region of nonuniform TBG is well described by a
uniform Hamiltonian with the strain tensors fixed to the local
value. In Fig. 4(c), we plot the LDOS of the nonuniform TBG
at the points of p1, p2, p3 in Fig. 4(a), and the local density
of states of the corresponding uniform TBGs at AA point.
Indeed, we see a nice agreement between the two curves.
We also note that the LDOS is never completely gapped out
at E = 0, in accordance with the calculation of uniformly-
strained TBGs where the two flat bands are always connected
by the Dirac points.

The approximation with the local Hamiltonian is usually
expected to be valid in a long-range limit with λ � LM , but
actually it works fairly well down to a short-ranged distor-
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FIG. 6. The total DOS of disordered magic-angle TBGs with
different distortion amplitudes ε. For each curve, we take an average
over different random configurations. Broken lines are the distribu-
tion function D(|A|) with horizontal axis scaled by E = 0.7ev|A|.

tion. Figure 5 shows the plots similar to Fig. 4 calculated for
different characteristic wave lengths, λ = 5LM , 3LM , LM . The
correlation coefficient between �E and ev|A| is found to be
0.90 at λ = 3LM , and it is still 0.73 at λ = LM . We presume
that it reflects the strongly localized feature of the flat-band
wavefunctions.

Figure 6 plots the total DOS of nonuniform TBG in differ-
ent distortion amplitudes ε with λ = 7LM , For each curve, we
take an overage over different random configurations. We see
that the two-level splitting feature in the LDOS still remains
as a double-peak structure in the total DOS. In increasing
ε, the curve is simply extended horizontally, as expected
the relationship �E ∼ ev|A|. The form of the DOS curve is
roughly determined by the distribution function D(|A|), which
is plotted as broken line in Fig. 6 for the current model. Here
we scale the horizontal axis by E = 0.7ev|A| in accordance
with Fig. 4(f).

By using the formula Eq. (21), we can roughly estimate
the flat band split energy in real TBG samples. A recent local
measurement of the magic-angle TBG [44] has shown that
the local twist angle slowly varies from θ = 1.05◦ to 1.18◦
[amounts to � � 0.001 (rad)] in a length scale of μm. The
system can be viewed as a part of a disordered moiré pattern
as in Fig. 1, but with a greater length scale. Here the twist
angle variation � does not stand alone, but it is always ac-
companied by other strain components ε+, ε−, εxy with similar
amplitudes, because they stem from the same lattice displace-
ment u(r). It is then expected that the spatial variation of
� gives a relatively minor effect, while the ε− and εxy give
rise to a flat band splitting just as in our simulation. If we
assume ε−, εxy � 0.001, the typical value of the flat band split
width on this sample is estimated at �E � 10 meV by using
Eq. (21). The result suggests that, in realistic magic-angle
TBGs with nonuniform moiré disorder, the flat band is not

actually a single band cluster but it splits by a sizable energy
in most places.

It is consistent with the STM measurements of TBGs near
the magic angle [4,7], where a significant separation of the
LDOS was observed. The local flat-band separation may also
be responsible for the pronounced Landau fan at the charge
neutral point, which is commonly observed in the transport
experiments [2,3,10,44], since the two separate bands are al-
ways touching as argued in Sec. II. The splitting of the flat
band would affect the ground state properties in the presence
of the electron-electron interaction, since the Hilbert space of
the half-split flat band is different from the original full flat
band.

While we focus on the strain effect in this calculation,
the distortion of the moiré pattern should also give rise to
a nonuniform electrostatic potential via an inhomogeneous
charge distribution [28,66,74,82]. We expect that the effect is
roughly captured by including a local shift of the energy in
the present calculation. At the filling factor ν = 2 (i.e., half
filling of the upper flat band), for instance, the upper LDOS
peak would be aligned to the Fermi energy without changing
the local splitting width, to achieve the homogeneous electron
density of ν = 2. We leave a detailed calculation including the
electrostatic potential for future works.

Our results suggest that moiré disorder should have sig-
nificant effects in other moiré systems, such as twisted
trilayer graphene (TTG) [83–91] and twisted double bilayer
graphene (TDBG) [92–97]. Compared to TBG, these mul-
tilayer systems have greater degree of freedom in relative
lattice displacement and it may give rise to more complex
phenomena. In TTG, for instance, the interlayer displacement
can be classified by mirror reflection symmetry, where we
expect that the mirror-symmetric component splits the flat
band as in TBG, while the asymmetric part contributes to a
hybridization of the flat band and the Dirac-like band, which
have different mirror eigenvalues [83,91]. The application of
the moiré disorder theory to these multilayer moiré systems
will be presented elsewhere.

IV. CONCLUSIONS

We have studied the electronic structure of the magic-angle
TBG with nonuniform moiré distortion by using an extended
continuum model. We found that the local density of states
of the flat band is split by the local interlayer difference
of anisotropic normal strain ε− and shear strain εxy, while
isotropic strain ε+ and rotation � give relatively minor effects.
The splitting of the flat band can well be described by a
pseudo Landau level picture for the magic-angle flat band,
and an analytical expression of the splitting energy is obtained
[Eq. (21)]. The coincidence between the splitting energy of the
LDOS and the local strain is maintained even in a short-ranged
distortion with λ ∼ LM , reflecting a highly-localized feature
of the flat band wave function.
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APPENDIX: PSEUDO LANDAU LEVEL HAMILTONIAN

In this Appendix, we derive the pseudo landau level Hamil-
tonian Eq. (14) by applying the method of Ref. [58] to the
disordered TBG. By defining

ψ±
X = (

ψ
(1)
X ± iψ (2)

X

)
/
√

2 (X = A, B), (A1)

the Hamiltonian matrix of Eq. (10) is written in the basis
(ψ+

A , ψ+
B , ψ−

A , ψ−
B ) as

H =
(

h+ + i
2 (U − U †) h− + i

2 (U + U †)

h− − i
2 (U + U †) h+ − i

2 (U − U †)

)
, (A2)

where

h+ = −
(

h̄vk + ev
A(1) + A(2)

2

)
· σ

h− = −ev
A(1) − A(2)

2
· σ. (A3)

In the following, we neglect the homostrain component A(1) +
A(2), and focus on the heterostrain part A = A(1) − A(2).

Since the wavefuncton of the flat band is localized around
the AA region, we expand the interlayer coupling matrix U (r)

around the AA stacking point (r = 0) to the linear order of
r/LM . As a result, we have

U + U †

2
=

3∑
j=1

Uj cos q j · r ≈ 3uI2, (A4)

−i
U − U †

2
=

3∑
j=1

Uj sin q j · r ≈
3∑

j=1

Ujq j · r. (A5)

By using Eqs. (A5) and (9), the diagonal part of the Hamilto-
nian (A2) is written as

h+ ± i

2
(U − U †) = −h̄v

[
k ± e

h̄
(a(r) + ∇χ (r))

]
· σ (A6)

where a(r) is the pseudo vector potential of Eq. (16) and the
χ (r) is the gauge potential of Eq. (19). Finally, the effective
Hamiltonian Eq. (14) is obtained by applying a gauge trans-
formation, (

ψ̃
(+)
X

ψ̃
(−)
X

)
=

(
e−i e

h̄ χ 0
0 e+i e

h̄ χ

)(
ψ

(+)
X

ψ
(−)
X

)
. (A7)

The coupling matrix elements in the 0th LLs are given by

〈−, 0, m′|V |+, 0, m〉
= ev

2
A · σ〈ϕ0,m′ |e−i 2e

h̄ χ (r)|ϕ0,m〉

≈ ev

2
A · σ

[
δm,m′ − 2i

e

h̄
〈ϕ0,m′ |χ (r)|ϕ0,m〉

]
. (A8)

Therefore, the gauge potential χ only contributes to a higher
order correction in the 0th LL splitting.
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