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Debye temperature of iron nanoparticles: Finite-size effects in the scaling regime
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The Debye temperature �D characterizes the vibrations of a solid and marks the transition between quantized
and classical behaviors of nuclear motion. While thermodynamical theories suggest that for nanoparticles
�D should be lower than the bulk limit and increase with increasing nanoparticle size, various experimental
measurements have reported intriguing variations with size, including values above the bulk limit and possibly
decreasing with size. In this paper we have theoretically determined the Debye temperature of iron nanoparticles
of up to about 7 nm diameter at the atomistic level of detail, using complementary approaches based on the
equilibrium heat capacity or the mean-square atomic displacement. Both methods consistently indicate steady
finite-size effects in the scaling regime, with no evidence for values higher than the bulk or varying in opposite
ways, but they also produce marked quantitative differences. Further comparison with the melting temperature
Tm indicates that the two quantities correlate with each other through Tm ∝ �α

D, but with an exponent α close to
3 that deviates from the expected value of 2 that classical thermodynamical theories predict based on pure bulk
ingredients.
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I. INTRODUCTION

The vibrations in nanoparticles differ mostly from those in
a bulk material owing to the presence of their free surface.
This can be exploited to tune their acoustic response [1],
which in turn is of potential interest for practical applica-
tions involving their manipulation [2], mechanical stability
[3] to heat transport [4]. One fundamental property that is
particularly sensitive to the vibrations of a solid is the Debye
temperature �D, which describes its low-temperature specific
heat as if the system was assumed to behave accordingly with
the Debye model of lattice vibrations. In bulk materials, the
Debye model reproduces fairly well the phonons contribution
to the specific heat, in particular at low (T 3 behavior) and
high (Dulong-Petit limit) temperatures. The Debye tempera-
ture can thus be considered as a limiting value between the
quantum mechanical and classical regimes of vibrations in the
solid.

Over the past decades, various experimental efforts have
been dedicated to measuring the Debye temperature in low-
dimensional systems and in particular metallic nanoparticles,
including gold [5–7], platinum [8,9], cobalt [10], iron [11,12],
as well as bimetallic systems [13]. From these investigations,
quite diverse conclusions were reached regarding how the
Debye temperature varies with increasing nanoparticle size
N . In most cases, �D(N ) exhibits values lower than the bulk
limit �∞

D , and tends to increase with increasing nanoparticle
size. This behavior was notably found for Debye temperatures
inferred from Raman [6,7] or Mössbauer [10,11] spectroscopy
measurements. Such monotonic corrections to the bulk limit
are expected based on thermodynamical arguments, in par-
ticular those relying on the connection with the Lindemann

theory of melting that assumes specific scaling relations
with the cohesive energy or the melting temperature [14],
combined with other semiempirical law describing the size
variations of the melting temperature itself [15]. Such phe-
nomenological approaches using classical ingredients have
been used by other groups in the past at the nanoscale [16,17].
For isolated nanoparticles, they necessarily predict a depres-
sion in the Debye temperature, with a magnitude that scales
approximately linearly with inverse particle radius. Similar
scalings are also expected for other characteristic frequen-
cies of the material, such as the breathing frequency that
is accessible through Raman or pump-probe spectroscopic
measurements [18,19].

However, other measurements relying on x-ray techniques
have suggested deviations from the bulk behavior that are in
striking contrast with thermodynamical predictions, in partic-
ular for platinum where a nonmonotonic dependence of �D

with increasing size was reported [8,9], with values higher
than the bulk. For iron, a decrease with increasing particle
size was found by Cuenya and coworkers [12], the values
residing this time below the bulk limit. Such results are all
the more surprising in that they are often associated with
other equally unusual phenomena such as lower-than-bulk
[20] or even negative [8,21] thermal expansion coefficients.
While these results are difficult to reconcile with classical
thermodynamical theories without invoking arguments related
to the environment of the nanoparticles, a critical discussion of
such measurements based on x-ray profile analyses (extended
x-ray absorption fine structure or near-resonant inelastic x-ray
scattering) recently concluded that nonbulk behavior could
also be an interpretation artifact of these techniques [22] (and,
obviously, possibly both).
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Another contribution to this confusion probably originates
from the fact that various quantities have been employed to
determine �D depending on the nature of the experiment. This
issue is also well known in bulk materials, where different
values of �D, possibly carrying some dependence on the
measurement temperature itself, are available. For nanopar-
ticles, the standard approach relies on the determination of
heat capacities from vibrational densities of states, either
obtained from x-ray or Raman techniques. Alternatively, in
Mössbauer spectroscopy �D is inferred from the mean-square
atomic displacement σ 2 through the Debye-Waller factor. A
dependence of �D on experimental temperature Texp results
if the specific value of the heat capacity Cv (or σ 2) at this
temperature is assigned to be equal to that of the Debye
model, rather than fitting entire temperature-dependent curves
Cv (T ) or σ 2(T ) obtained over a broad range of temperatures.
Additional errors can also be introduced from the use of
macroscopic models to describe finite-size systems. This is
obviously particularly true for the smallest clusters containing
typically 10–100 atoms, for which the density of vibrational
states is highly quantized [23–25]. In the case of the De-
bye temperature, the discrete vibrational spectrum necessarily
conveys to variations of the heat capacity at low temperature
that are exponentially increasing, rather than the expected T 3

behavior in bulk solids [24]. The parameter causing this ex-
ponential character is the lowest vibrational frequency in the
system, also sometimes called acoustic gap, which is expected
to decrease with increasing nanoparticle size [19]. However,
even considering that the Debye model for lattice vibrations
can be applied phenomenologically to finite systems, it re-
mains unclear why the thermodynamic approach relating the
melting temperature to the square of the Debye temperature
in a linear fashion, as suggested, e.g., by Yang and coworkers
[14,15], should also hold for nanoparticles.

To clarify these issues, we computationally determined
the Debye temperature of iron nanoparticles described at the
atomistic level of details, comparing various approaches to-
gether and against available thermodynamical theories but
without assuming them to hold in the first place. The choice
of iron is motivated by the availability of experimental mea-
surements [11,12] reporting nonbulk behavior, but also by
the existence of accurate many-body potentials appropriate to
model them [26]. The present work builds on earlier efforts
from the computational modeling community, which already
discussed the specific character of vibrations in nanoparticles
[6,7,24,27–30], and the validity of the Debye model to de-
scribe in particular the low-temperature heat capacity [24,25].
Here we extend the scope to the mean-square atomic displace-
ment as an alternative property from which �D can be inferred
(instead of deriving this property from the vibrational proper-
ties themselves), cover an extended size range, and provide
a critical discussion of the relation between the Debye and
melting temperatures, in the case of ideal iron nanoparticles.

Our results suggest that for these systems the Debye model
can be used to describe quantitatively the heat capacity of
finite nanoparticles over a broad size range, but does not
perform as satisfactorily to model the mean-square atomic
displacement. Despite such limitations, the Debye tempera-
tures inferred from either quantity are found to scale linearly
with inverse particle radius, as expected from classical ther-

modynamical theories. However, comparison with the melting
temperature obtained independently for the same nanoparti-
cles and the same underlying model shows that the Debye and
melting temperature do not vary in the expected square ratio,
but a cubic exponent is numerically predicted instead.

The paper is organized as follows. In the next section we
briefly recall the main features of the Debye model for lattice
vibrations of a solid, and how the heat capacity and mean-
square atomic displacement are computed for nanoparticles
described atomistically. Section III presents and discusses the
results obtained for and from the heat capacities, while Sec. IV
focuses on the mean-square atomic displacement. The size
variations of the Debye temperature and their comparison
with available experimental results are the subject of Sec. V,
where we also critically discuss the relation with the melting
temperature. Some concluding remarks are finally given in
Sec. VI.

II. METHODS

We consider iron nanoparticles taken from the bcc arrange-
ment and truncated at surfaces according to the ideal Wulff
construction, yielding sizes of N = 51, 169, 363, 1013, 1603,
2381, 4279, 7495, 11 337, and 14 039 atoms. The interaction
model is taken from the work by Mendelev and coworkers
[26], in which the energetic, thermal, and vibrational prop-
erties of iron in the bcc and fcc solid phases but also in
the liquid state are reproduced fairly well. The choice of a
model that performs well not only for vibrations but also
for phase transitions turns out to be rather important for the
present work, in which the Debye temperature and the melting
temperature will tentatively be connected to one another (vide
infra). While the Wulff construction is expected to produce
very low-energy structures for medium to large nanoparticles,
even lower minima might exist in the small size limit due to
strongly nonmonotonic finite-size effects. While this global
optimization problem is interesting in itself, we have not at-
tempted to solve it here, focusing instead on finite-size effects
in the scaling regime [23].

The Debye model assumes that the vibrational density of
states (VDOS) gD(ω) of a solid scales with frequency ω

as gD(ω) ∝ ω2H (ωmax − ω), where H is the Heaviside step
function and ωmax a maximum frequency that defines the
Debye temperature �D through h̄ωmax = kB�D, kB being the
Boltzmann constant. The Debye model predicts a lattice con-
tribution to the heat capacity that reads

CDebye
v (T ) = 9NkB

( T

�D

)3 ∫ �D/T

0

x4ex

(ex − 1)2
dx. (1)

In bulk solids, the mean-square atomic displacement (MSD)
σ 2 can also be connected to the Debye temperature
through [10]

σ 2
Debye(T ) = 9h̄2

mkB�D

[
1

4
+

( T

�D

)2 ∫ �D/T

0

xex

ex − 1
dx

]
, (2)

where m and h̄ are the atomic mass and the reduced Planck
constant, respectively.

In experiments on real systems, Debye temperatures are
extracted from either of these quantities, assuming that the
Debye quadratic model of vibrations can be used to describe
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either specific values of Cv or σ 2 at a prescribed measure-
ment temperature, or their entire variations over a temperature
range. Depending on the details of the fitting procedure, the
value of �D that results from this adjustment may thus carry a
temperature dependence itself, or be more robust and charac-
teristic of the system over a broader range of conditions. In the
remainder of this paper, we choose to define a system-specific
but temperature-independent Debye temperature from the
variations of Cv or σ 2 over an entire temperature range, and
refer interested readers to the work by Garzón and coworkers
[24] on the additional features introduced by considering the
measurement temperature as an extra parameter, here in the
case of sodium microclusters.

Phenomenological Debye temperatures can be defined for
the present iron nanoparticles using a similar procedure, from
the knowledge of the temperature variations of their heat
capacity or mean-square atomic displacement, as determined
independently for the chosen interaction model. If we denote
by g(ω) the vibrational density of states of the actual system,
i.e., without invoking the Debye approximation, the canoni-
cal heat capacity and mean-square atomic displacement are
obtained, respectively, as

Cv (T ) =
∫

h̄ω2

kBT 2

exp(h̄ω/kBT )

[exp(h̄ω/kBT ) − 1]2
g(ω)dω (3)

σ 2(T ) = 1

2Nm

∫
h̄

ω tanh (h̄ω/2kBT )
g(ω)dω. (4)

Equations (1) and (2) are naturally recovered by inserting gD

in lieu of g in the above expressions.
In a first approach, the VDOS of nanoparticles can be

obtained in the harmonic approximation that is expected to
be valid at low temperatures:

g(ω) =
3N−6∑
i=1

δ(ω − ωi ), (5)

where {ωi, i = 1 · · · 3N − 6} are the normal mode frequencies
obtained after diagonalizing the dynamical matrix. However,
such a diagonalization procedure is computationally costly
as it scales with N3, which limits its application to nanopar-
ticles of a few thousands of atoms only. Alternatively, the
VDOS can be numerically obtained by Fourier transforming
the time autocorrelation function of the atomic velocities,
g(ω) ∝ F[γ (t )] where

γ (t ) = 〈∑i �vi(t ) · �vi(0)〉
〈∑i ‖�vi(0)‖2〉 , (6)

which can be straightforwardly obtained from time series
accumulated in molecular dynamics simulations. This pro-
cedure has the advantage of incorporating finite temperature
anharmonicities, and scales only as N2 with the number of
atoms through the gradient evaluation needed during the MD
propagation. Here we initiate 20 independent MD trajectories
from the global minimum structure and let them evolve at
constant total energy (microcanonical ensemble) chosen to
yield a kinetic temperature of about 300 K. The individual
trajectories used to generate the VDOS were each propagated
for 100 ps, after 20 ps equilibration, and employed a time step
of 1 fs.
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FIG. 1. Vibrational densities of states obtained at 300 K for FeN

nanoparticles with 363, 1013, and 2183 atoms. The harmonic densi-
ties of states are superimposed in the background as gray lines. No
broadening of any kind was imposed to the results.

Classical and path-integral molecular dynamics (PIMD)
simulations at constant temperature were also performed to
calculate the mean-square atomic displacement σ 2. Nosé-
Hoover thermostats were applied to the atoms or all of the
P replicas in the PIMD description. A Trotter discretization
number of P = 64 was used for temperatures in the range of
1–100 K, with a time step of 0.1 fs and a total integration
time of 100 ps, for nanoparticles containing up to 1013 atoms
only. Classical trajectories were also conducted for sizes up
to 14 039 atoms, over times of 100 ps and a time step of 1 fs,
but over the extended temperature range of 10–500 K. Finally,
additional trajectories were performed for body-centered cu-
bic (bcc) samples under periodic boundary conditions in the
minimum image convention, for system sizes of 2000 and
8192 atoms, to assess the importance of surface effects in the
limit of large sizes.

III. DEBYE TEMPERATURE FROM HEAT CAPACITIES

Figure 1 shows the vibrational densities of states obtained
for three iron nanoparticles in the size range of 363–2183
atoms after Fourier transforming the time autocorrelation
function of atomic velocities at 300 K, as well as the cor-
responding harmonic densities that are valid in the zero
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FIG. 2. Lattice canonical heat capacities of FeN nanoparticles
with N = 363 and N = 1013, and for a periodic 2000-atom bcc
sample, obtained from the anharmonic vibrational density of states
at 300 K (solid lines) and in the harmonic limit (dashed lines). The
curves for the two nanoparticles were shifted for clarity, and the
vertical arrows mark the values of the Debye temperatures inferred
from fitting the anharmonic heat capacities to a Debye model. The
inset shows the quality of such a Debye fit against the harmonic
prediction for the periodic 2000-atom sample.

temperature limit. These densities exhibit a progressive and
rather monotonic evolution as the nanoparticle size increases,
in particular with the main peak near 260 cm−1 that be-
comes increasingly high and narrow. The acoustic gap, which
is defined as the lowest excitable frequency, decreases in
the harmonic limit as the nanoparticle becomes larger, but
this feature does not appear as markedly for the anharmonic
VDOS owing to its continuous nature. We show in Fig. 2 the
variations of the canonical heat capacities Cv (T ) obtained for
the two smaller nanoparticles but also for the periodic 2000-
atom bcc system using again both the corresponding harmonic
and anharmonic (300 K) densities of states, to emphasize their
strong similarities. These quantities exhibit smoothly increas-
ing variations, the Dulong-Petit classical limit Cv (T → ∞) 	
3kB/atom being almost reached at 500 K. Anharmonicities
tend to decrease the heat capacities by a minor amount, but
this effect is noticeable only in the strongly quantum regime
T < 100 K.

Although the vibrational densities of states clearly deviate
from the assumptions of the Debye model, Eq. (1) provides

a quantitative description of the heat capacity obtained from
applying Eq. (3) to the VDOS calculated for each specific
system, provided that �D is numerically adjusted to each
specific system. An example of such a quantitative modeling
is shown as an inset in Fig. 2 for the periodic system in the
harmonic limit.

The Debye temperatures of the 1013-atom nanoparticle
were obtained by fitting the entire reference heat capacity
curves of Fig. 2 onto the Debye form of Eq. (1) in the 0–
500 K temperature range. The values obtained are found to be
372 K and 370 K for the harmonic and anharmonic models
of the VDOS, respectively, or about 100 K lower than the
low-temperature limit bulk Debye temperature of α iron [31],
and close to the room temperature �D of the same material
(373 K, Ref. [32]). For the smaller nanoparticle these values
drop to 364 K and 358 K, respectively, while for the 2000-
atom periodic sample we find 397 K and 401 K, respectively,
in much closer agreement with the experimental temperature
for bulk α iron. From simulations performed for the 8192 bcc
sample, we find �D = 403 K in the 300 K anharmonic model,
indicating that residual finite-size effects due to the periodic
cell remain very limited.

At 300 K, anharmonicities amount to only about 1%
deviation in the numerically estimated Debye temperature,
although it is interesting to note that in the case of the periodic
system the anharmonic �D is higher than the harmonic value,
the opposite being found for the nanoparticles.

IV. DEBYE TEMPERATURE FROM MEAN-SQUARE
ATOMIC DISPLACEMENT

Another way of accessing the Debye temperature is based
on the mean-square atomic displacement, which can be
numerically determined in the classical limit by thermostat-
ted MD simulations, and more rigorously by incorporating
nuclear quantum effects using path-integral (PI) MD simu-
lations. It can also be related to the VDOS through Eq. (4).
Figures 3(a), 3(b) show the variations of σ 2(T ) obtained for
the same 363- and 1013-atom iron nanoparticles as a function
of increasing temperature, using the classical and quantum
harmonic approximations as well as the anharmonic MD and
PIMD data. We also show in Fig. 3(c) the corresponding
variations for the periodic 2000-atom bcc sample, for which
the PIMD approach was found to be unpractical.

For nanoparticles, a simple expression for σ 2(T ) is found
to accurately interpolate between the low-temperature, quan-
tum but nearly harmonic behavior and the high-temperature,
anharmonic but nearly classical behavior:

σ 2(T ) 	 3N − 6

2mN

h̄

ωeff tanh (h̄ωeff/2kBT )
, (7)

in which we have introduced a single parameter ωeff as size-
dependent effective frequency. This expression for σ 2(T ) will
be referred to as the anharmonic model for the MSD.

The phenomenological quantum anharmonic model can
also be applied to the bulk sample, by extrapolating the
effective frequency ωeff obtained for increasingly large
nanoparticles. The inset of Fig. 3(b) shows the variations of
ωeff with N−1/3, which is proportional to the inverse particle
radius. In a very good approximation, these variations are
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FIG. 3. Mean-square atomic displacement obtained for FeN nanoparticles with (a) N = 363; (b) N = 1013; (c) a 2000-atom periodic bcc
sample, from the classical (dashed blue line) and quantum (solid red line) harmonic models, from classical MD (blue circles) and path-integral
MD (red crosses, nanoparticles only). The black and green solid lines show the predictions of the interpolation model and the corresponding
best Debye fit, respectively, with vertical arrows pointing at the equivalent Debye temperatures obtained in the harmonic and anharmonic
descriptions. The inset in (b) shows the variations of the effective frequency ωeff (in cm−1) in the interpolation model with increasing inverse
particle radius N−1/3.

essentially linear and can be described as

ωeff (N ) = 176.8 − 155.0N−1/3 + O(N−2/3), (8)

where the frequency is expressed in cm−1. This simple func-
tion provides a convenient way of extrapolating the double
dependence of the MSD on size and temperature, from which
a Debye temperature can be estimated as a continuous func-
tion of size. Applying the model in the bulk limit N → ∞,
the low-temperature quantum harmonic limit and the high-
temperature classical anharmonic limit are both correctly
recovered for the periodic 2000-atom bcc sample, as can be
seen in Fig. 3(c).

Comparing the results obtained for the three systems
shown in Fig. 3, the most striking difference is the decreas-
ingly lower rate of variations in the MSD as a function of
increasing temperature, as the system size itself increases.
This effect is a clear manifestation of the larger proportion of
surface atoms in the smaller nanoparticles, and their greater
ability to move relative to the more constrained and more
coordinated bulk atoms.

Similarly as with the heat capacity, Debye temperatures
can now be extracted from the temperature variations of the
MSD by fitting them onto the one-parameter function of
Eq. (2). For the 1013-atom nanoparticle, the resulting values
for �D are found to be 210 K and 245 K for the harmonic and
anharmonic descriptions of atomic vibrations, respectively,
now significantly lower than the experimental bulk values but
also lower than the values obtained from fitting the specific
heat. In the smaller 363-atom system, these temperatures drop
to 204 K and 236 K, respectively. Conversely but unsurpris-
ingly, for the periodic system we find higher values of 259 K
and 272 K, respectively.

It is worth noting in Fig. 3 that the Debye model does
not perform very well in reproducing the actual variations of
σ 2(T ), particularly at low temperature where the true MSD is
significantly overestimated, even though the differences are
not as marked for the periodic sample. Such discrepancies
are thus a typical manifestation of the errors introduced when
applying bulk concepts to small size objects characterized by
highly discretized state densities. In any case, the lower Debye

temperature obtained from fitting the MSD, relative to the
value obtained from fitting the heat capacity, is consistent with
the two experimental values known for bulk α iron and the
different methodologies they originate from [31,32].

V. FINITE-SIZE EFFECTS AND SCALING LAWS

Anharmonic values of �D based on fitting the variations
of the heat capacity obtained from the continuous VDOS
g(ω), as well as the two values from either Cv or σ 2 but in
the harmonic approximations, are represented in Fig. 4 as a
function of N−1/3. These four ways of determining �D lead to
essentially linear variations with increasing N−1/3, the nega-
tive slope being always indicative that the Debye temperature
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FIG. 4. Debye temperatures of FeN nanoparticles as a function
of inverse particle radius N−1/3, obtained from fitting the temper-
ature variations of the heat capacity or the mean-square atomic
displacement using harmonic or anharmonic data, and from available
experimental measurements. The experimental Debye temperatures
for bulk α iron at 0 K and room temperature are also highlighted by
black left arrows, and the simulation results obtained for the periodic
2000-atom bcc sample are also indicated for N−1/3 = 0.
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increases with increasing particle size. The values extrap-
olated at the bulk limit N−1/3 → 0 are 410 K and 401 K
from the heat capacity in the anharmonic and harmonic de-
scriptions, respectively. These temperatures are close to those
obtained using the same computational procedure but on the
2000-atom periodic samples, which confirms that the Wulff
nanoparticles chosen here correctly extrapolate to the bulk
material with the same lattice symmetry.

Using now the mean-square atomic displacement to de-
fine �D, extrapolating the nanoparticle data to the bulk
limit N−1/3 → 0 yields values of 272 K and 228 K in the
anharmonic and harmonic descriptions, respectively. By con-
struction, the former value is consistent with the calculations
performed for the periodic sample. However, in the harmonic
limit the extrapolated value is lower by about 30 K with
respect to the Debye temperature fitted to reproduce the MSD
of the periodic sample assuming harmonic oscillators, which
is consistent with the lesser ability of the Debye model to
account for the simulation results for the MSD observable.

Two sets of experimental measurements of Debye tem-
peratures are available for iron nanoparticles. Herr and
coworkers [11] used Mössbauer spectroscopy to determine the
mean-square atomic displacement in nanocrystalline iron, for
particle sizes of about 6 nm diameter, for which they measured
�D ≈ 345 K. Cuenya et al. [12] used near-resonant inelastic
x-ray scattering (NRIXS) to evaluate various thermodynami-
cal and structural quantities, and also extracted �D from the
temperature variations of the MSD for nanoparticles ranging
from 2–6 nm diameter. As seen from Fig. 4, the range of
these experimental Debye temperatures is consistent with our
theoretically calculated values, and the results for the 2 nm
nanoparticles are even in quantitative agreement, provided
that the heat capacity is used to define �D. However, the
decreasing trend found by Cuenya and coworkers for �D(N )
is not reproduced at all here. It is important to realize that,
in both sets of experiments, the nanoparticles were not strictly
isolated, but inserted in condensed environments or deposited.
Following Cuenya and coworkers [12,22], we attribute the
surprising behavior found in the NRIXS experiments to ei-
ther the consequence of the environment of the nanoparticles
(titanium matrix) or to possible measurements artifacts [22]
(and, obviously, possibly both).

Finally, our calculated data can be used to challenge the
macroscopic approaches to the Debye temperature, which
based on the Lindemann theory of melting predict that �D

should scale linearly [15] with the square root of the melt-
ing temperature Tm. To assess this phenomenological theory,
we have calculated independently from the Debye tempera-
ture the melting points of iron nanoparticles, using classical
molecular dynamics. Here, a slow heating protocol was ap-
plied, the temperature being maintained again through the
Nosé-Hoover method, and increased continuously at a rate of
0.3 K/ps. The excess internal energy U (T ) measured relative
to the global energy minimum was estimated from the aver-
age potential energy, added to the average kinetic energy of
(3N − 6)kBT/2.

Such simulations were carried out for nanoparticles sizes
covering the rather broad size range extending up to 27 937
atoms, always assuming a perfect Wulff shape as the solid
form at zero temperature. The variations of the internal energy
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FIG. 5. Melting behavior of FeN nanoparticles from molecular
dynamics simulations. (a) Melting temperature as a function of
N−1/3, with the bulk value taken from Ref. [26]; (b) Internal energy
as a function of temperature for particles containing N = 363–27 937
atoms.

with increasing temperature are shown in Fig. 5(b) for the
various nanoparticles. For all sizes N , a melting temperature
Tm(N ) can be estimated as the value where the internal energy
exhibits a strong jump that marks the latent heat of melt-
ing. For the present nanoparticles we generally find that the
melting temperature increases monotonically with increasing
nanoparticle size, this being the expected result in the scaling
regime [33].

The melting temperature thus obtained exhibits linear
variations with inverse particle radius N−1/3, as shown in
Fig. 5(a). Extrapolation to the bulk limit N−1/3 → 0 gives a
bulk melting temperature of 1840 K, in fairly good agree-
ment with the experimental value of 1811 K for bulk α

iron, but also in satisfactory agreement with the simulated
values reported by Shu and coworkers [34] using the same
semiempirical potential. Here we note that the value originally
reported by Mendelev and coworkers [26] who developed the
present potential (1758 K) is substantially lower that those
obtained here and more recently by this other group. This
might be attributed to the different computational protocol
employed by Mendelev et al. and possibly less converged
simulations.

From the computational results, the size variations of the
melting temperature of iron nanoparticles are quantitatively
described at lowest correcting order (N−1/3) as

Tm(N ) 	 T ∞
m (1 − aN−1/3), (9)
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FIG. 6. Variations of the Debye and melting temperatures of iron
nanoparticles as a function of inverse particle radius N−1/3, scaled by
their bulk limiting value. For the Debye temperature, the two sets of
data obtained from the anharmonic heat capacity or the mean-square
atomic displacement are shown.

where a > 0 is a parameter. Likewise, a linear scaling relation
with inverse particle radius applies to the Debye temperature
�D, which we write as

�D(N ) 	 �∞
D (1 − bN−1/3), (10)

b > 0 being another parameter, which also depends on the
choice of the observable (heat capacity of mean-square atomic
displacement) used to define the Debye temperature.

A perfect scaling of �D with the square root of Tm would
imply that b = a/2 at leading order. Here we have determined
the size variations of the melting point independently from
those of the Debye temperature, and extrapolated them to
the respective bulk limits, fitting the corresponding data to
evaluate the parameters a and b.

The scaled variations of the melting temperature are rep-
resented in Fig. 6 as a function of N−1/3, together with those
obtained for the Debye temperatures inferred from fitting the
heat capacity or the mean-square atomic displacement, both in
the anharmonic models. The slopes are found to be b = 0.75–
0.9 for �D and a = 2.4 for Tm, giving a ratio a/b much closer
to 3 than to the value of 2 expected from the Lindemann ar-
gument. The present results are thus consistent with a scaling
relation between the Debye and melting temperatures but of
the type

Tm(N ) ∝ �3
D(N ), (11)

and this result appears robust against the choice of the observ-
able used to define the Debye temperature.

VI. CONCLUDING REMARKS

Our predictions for the Debye temperature of iron nanopar-
ticles are consistent with a general depression relative to the
bulk and a softening of vibrational modes due to surface
atoms, and with variations that are linear with inverse particle
radius for a three-dimensional nanosystem. They also confirm
that these variations can be described as scaling laws, but
with coefficients that are about 1/3 of those in the melting
temperature. However, the differences known already in the
bulk system regarding the two alternative ways of defining
�D based on the low-temperature heat capacity or on the
finite-temperature mean-square atomic displacement convey
at the nanoscale with similar differences (exceeding 100 K, or
30%).

Obviously, the present calculations are prone to several
sources of error, starting with the underlying atomistic model
to describe bcc iron [26], which is of high quality but al-
ways perfectible. Unfortunately, extracting the vibrational
properties of nanoparticles containing 103–104 atoms using
methods that explicitly account for electronic structure seems
unfeasible with the presently available methods. Another ap-
proximation lies in the use of classical MD to extract the
anharmonic vibrational density of states, used in a subsequent
step to calculate the lattice contribution to the (quantum)
heat capacity. Despite being rather conventional, this approach
could be improved by incorporating nuclear quantum effects
already from the start, possibly through methods based on
path-integral molecular dynamics such as ring-polymer MD.
However, such approaches are also computationally costly,
and suffer from known resonance problems when applied to
vibrational spectroscopy [35]. Incidentally, the melting tem-
peratures were also evaluated from classical MD, but here the
neglect of nuclear quantum effects is probably well justified.

Notwithstanding such possible minor issues, our computa-
tional results are probably indicative of the generic behavior
in other metal nanoparticles and confirm the difficulties as-
sociated with a unique definition for the Debye temperature
of nanoscale systems, based on concepts that are intrinsically
macroscopic. It would next be of particular interest to ex-
tend the presently developed methodologies to other types of
nanoscale systems, under isolated conditions but also, more
importantly, deposited on substrates or embedded in matrices.
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