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Global optimization with first-principles energy expressions (GOFEE) is an efficient method for identifying
low-energy structures in computationally expensive energy landscapes such as the ones described by density
functional theory (DFT), van der Waals enabled DFT, or even methods beyond DFT. GOFEE is an evolutionary
algorithm, that in order to explore configuration space creates several candidates in parallel. These are treated
approximately using a machine learned surrogate model of energies and forces, trained on the fly, eliminating
the need for expensive relaxations using first-principles methods. Eventually, using Bayesian statistics, GOFEE
chooses one candidate and treats that at the full first-principles level. In this paper we elaborate on the importance
of the use of a Gaussian kernel with two length scales in the Gaussian process regression surrogate model. We
further explore the role of the use in GOFEE of the lower confidence bound for relaxation and selection of
candidate structures. In addition, we present details of a sampling scheme for obtaining parent structures in
the evolution. Using machine learning clustering of the entire pool of low-energy structures ever calculated, and
choosing the most stable member from each cluster, the scheme ensures a highly diverse sample of structures that
plays the role of a population. The versatility of the GOFEE method is demonstrated by applying it to identify the
low-energy structures of gas-phase fullerene-type 24-atom carbon clusters and of dome-shaped 18-atom carbon
clusters supported on Ir(111).
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I. INTRODUCTION

The atomic scale understanding of material properties is
a fundamental goal of modern computational chemistry and
materials science. As material properties to a large extent
are governed by the lowest-energy atomic structure, the ef-
ficient determination of such optimal structure is an important
problem. The problem is however a difficult one, due to the
vastness of the configurational space of even small sized
systems, a result of the exponential scaling of the number
of metastable structures with the number of atoms in a sys-
tem [1,2]. For simple systems, the use of domain knowledge
is often enough to identify the correct structure. The lit-
erature however also contains many examples, where this
approach fails [3], and for the vast majority of systems, that
are more complex and less studied, one has to thoroughly
explore the configurational space in order to identify the op-
timal structure. This is commonly achieved using automated
and unbiased search strategies such as random search [1],
basin and minima hopping [4,5], particle swarm optimiza-
tion [6,7], evolutionary algorithms [2,8–10], etc., which have
been successfully applied to a wide range of different sys-
tems including surface reconstructions [11–14], surface steps
[15] grain boundaries [16,17], binary compounds [18,19],
isolated [20–22] and supported [3,23–25] nanoparticles,
solids [26], etc.

Most often, atomic-scale materials science projects rely
on computationally expensive first-principles methods such
as density functional theory (DFT), van der Waals enabled
DFT, or even more advanced quantum chemical methods.

When using conventional global optimization methods in con-
junction with such electronic structure and quantum chemical
methods, their performance becomes limited due to the com-
putational cost of the many energy and force evaluations
required to sufficiently explore the configurational space. As
a potential solution, solving the global optimization problem
in machine learned model potentials has proven a capable
and less expensive alternative to solving it with the full en-
ergy expression, which we for the sake of simplicity within
this paper will refer to as DFT or “target potential.” Various
machine learning methods have been successfully used to
create such model potentials, from training databases. These
include kernel based methods [27,28] combined with robust
representations of atomic structures [29–31], deep neural net-
works [29,32], and methods based on body-ordered energy
decompositions [33,34].

Despite cheap evaluations once the model is trained, the
required quantum mechanical calculated databases represent
a considerable computational expense. As an example, for
molecular dynamics to be successfully carried out with a
machine learned potential, the potential must, depending on
the temperature adopted, accurately describe all configura-
tions below a certain energy, which requires a both broad and
thorough database. Improvements in data efficiency of such
databases have recently been achieved by generating the data
using active learning [35–42], where starting from a small,
incomplete database the model itself, in combination with an
acquisition strategy, actively collects all further data, with new
data iteratively improving the model throughout the collection
process. Active learning can also be applied in a problem

2469-9950/2022/105(24)/245404(15) 245404-1 ©2022 American Physical Society

https://orcid.org/0000-0002-7849-6347
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.245404&domain=pdf&date_stamp=2022-06-09
https://doi.org/10.1103/PhysRevB.105.245404


MALTHE K. BISBO AND BJØRK HAMMER PHYSICAL REVIEW B 105, 245404 (2022)

specific context, where further savings in training data are pos-
sible, because accurate predictions are especially relevant only
for subsets of the full configurational space. This includes
configurational problems that are local in nature, such as
structure relaxation [43,44] and transition state determination
[45–47] as well as more ambitious tasks such as molecular
dynamics [48–53], chemical reaction networks [54,55], free
energy calculation [56], and finally global structure search
[3,25,57–66], including our recently proposed global opti-
mization with first-principles energy expressions (GOFEE)
structure search method [67]. For global structure search an
active learning approach can utilize the fact that accuracy is
increasingly important for lower-energy structures, such that
higher-energy structures can be screened based on only rough
energy predictions. In this paper we further detail the key
elements of GOFEE, which relies heavily on exploring the
configurational space in an actively learned Gaussian process
regression (GPR) surrogate model. This includes elaborating
on the effect of using a Gaussian kernel with two separate
length scales in the surrogate model as well as the inclusion
of a repulsive interatomic potential as a prior for this sur-
rogate model. In addition, we explore the role of the lower
confidence bound, of the surrogate model, in relaxing and
selecting among new candidate structures in the search. Fi-
nally, we discuss a recently proposed improvement to the
method [68] in which the entire pool of low-energy struc-
tures is sampled using a clustering technique. The resulting
highly diverse sample plays the role, normally served by the
population, of providing parent structures for the evolutionary
process.

The paper is outlined as follows. First a detailed description
of the GOFEE search method is given. Throughout, the effects
of key elements of the method are illustrated on searches for
the reconstructed surface of TiO2(001)-(1 × 4). Finally the
model is applied to isolated and Ir(111) supported carbon
clusters, and we report new low-energy structures for the
supported system.

II. METHOD

The GOFEE search method combines the evolutionary
search strategy with a computationally inexpensive, actively
learned surrogate model of the energy landscape, which can
be used to carry out significantly more structure queries than
would be possible with the target potential. A much smaller
number of evaluations is however carried out using the tar-
get potential on the structures deemed most promising by
the surrogate model. These are in turn used as training data
to further improve the surrogate model. A flowchart of the
GOFEE search scheme is shown in Fig. 1. The key steps can
be summarized as follows.

(i) Generate and evaluate a number of random structures
used to serve as initial parent structures and used for initial
training of the surrogate model.

(ii) Train the surrogate model based on all DFT evaluated
structures accumulated up until this point in the search.

(iii) Handle parent structures by updating a population or
extracting a sample from all DFT evaluated structures.

(iv) Generate new candidates by applying stochastic rattle
and permutation operations on some parent structures.

FIG. 1. Dataflow in GOFEE. (i) Random initial structures are
generated, evaluated with DFT, and added to a structural database.
(ii) The surrogate model is trained based on the database. (iii) Handle
parent structures. (iv) A number, Nc, of new candidate structures
are generated by applying stochastic changes to some parent struc-
tures. (v) All Nc candidates are relaxed in the acquisition function.
(vi) The single most promising candidate according to the acquisition
function is selected. (vii) A single evaluation, using the target energy
expression, is performed for this structure, along with a second
evaluation for the structure perturbed slightly along the force. The
search is carried out by adding these two newly evaluated structures
to the training database and repeating steps (ii)–(vii) N times in total.

(v) Relax all new candidates by local optimization in the
acquisition function based on the surrogate model potential.

(vi) Select “most promising” candidate structure from (v)
according to the acquisition function.

(vii) Evaluate the selected structure using the DFT
potential.

The generation of initial structures in the first step (i) is
done by randomly placing atoms within a predefined box
and requiring that no bond lengths are shorter than 0.7dcov,i j ,
with dcov,i j being the sum of the covalent radii of the in-
volved atoms i and j. In addition each atom is required to
have its nearest neighbor within 1.4dcov,i j , to avoid isolated
atoms. After this step, the search is carried out by repeating
steps (ii)–(vii).

III. ASSESSING SEARCH PERFORMANCE:
SUCCESS CURVES

In the following we will discuss in more detail all the above
outlined elements of the search and assess the importance of
specific choices that have been made in regards to each of
them. To this end, the effect on the search performance is
quantified by carrying out multiple independent restarts of
the search on problems, for which the global minimum is
known. As depicted in Fig. 2, the results are converted into
success curves, showing, as a function of the number of DFT
evaluations spent, how large a fraction of the independent
searches have found the global minimum.
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FIG. 2. The construction of success curves based on a known
global minimum. (a) DFT energies for the structures in a single
search instance, as the search progresses one single-point evaluation
at a time. (b) Histogram (with a bin size of 10) over 30 independent
search instances, counting at what point in each search the known
global minimum is first found. (c) Green curve, normalized cumula-
tive distribution of (b); red curve, cumulative distribution with a bin
size of 1 (this is referred to as a success curve).

From the success curves one can directly read, e.g., how
many DFT evaluations are required for a single search to have
50% chance of finding the global minimum. In this paper, we
use, as our main problem on which to compare search perfor-
mance, the anatase TiO2(001)-(1 × 4) surface reconstruction
[11], for which the global minimum is already known and
is shown in Fig. 3. We will address this problem with two
levels of difficulty, requiring the search to find the correct
positions for atoms in the uppermost two or three layers (see
Fig. 3). We will label these the two-layer and three-layer
TiO2(001)-(1 × 4) problems, respectively. For computational
convenience, all TiO2 studies were carried out using density
functional tight-binding (DFTB) theory calculations with the
parameters from Ref. [69]. Using DFTB as opposed to DFT
for these systems does not introduce any significant differ-

FIG. 3. The anatase TiO2(001)-(1 × 4) surface reconstruction,
featuring rows of protruding titanium atoms. In the structure search
context we consider two versions of the problem, having either two
or three atomic layers optimized on top of a fixed bulk layer. One unit
cell of the global minimum for these problems, labeled the two-layer
and three-layer TiO2(001)-(1 × 4) problems, respectively, are shown
in the figure. For the two-layer problem 27 atoms are optimized,
whereas 39 atoms are optimized in the three-layer problem.

ence, as the two potentials share the same global minimum
and are of comparable difficulty from a structure search per-
spective. As we move on to discuss each element of the search
algorithm in detail, we will make use of success curves to
assess the performance of these elements.

A. Surrogate model

The GOFEE search method relies heavily on a computa-
tionally inexpensive surrogate model of the energy landscape,
to reduce the number of expensive DFT evaluations required
to carry out a search. For this purpose we adopt a Bayesian
approach, to have convenient access to prediction uncertain-
ties, and specifically choose to use a GPR model, as it is very
adequate at learning continuous functions and behaves well
even with little training data. This is indeed the condition
in the beginning of a search, where only a small number
of structures have yet been evaluated. The data comprise a
set of observed atomic configurations X = (x1, x2, . . . , xN )T

and their energies E = (E1, E2, . . . , EN )T . To accommodate
learning, it is crucial to take advantage of the basic symmetries
of the Hamiltonian. This is achieved by letting xi be a suitable
representation of the ith configuration. In the GOFEE method
we follow the approach of Valle and Oganov [30] and use, for
the representation, a Gaussian smeared distribution of inter-
atomic distances and extend it to interatomic angles as well,
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FIG. 4. The radial part of the representation depicted for the
benzene molecule. (a) Radial distribution functions for the three
unique combinations of atomic species (H-H, H-C, and C-C) are
concatenated. Three specific separation distances are highlighted
on the benzene model, and their contributions to the distribution
functions are highlighted. (b) To turn the distribution functions into
a representation, each is discretized into 30 elements. The angular
part of the representation can be constructed analogously and is
concatenated with the radial part to construct the full representation.

which we will refer to as the radial and angular distribution
functions.

As depicted in Fig. 4, for the radial part alone, the rep-
resentation is constructed by concatenating the distribution
functions for each unique combination of atomic species, after
which the distribution functions are discretized to achieve a
finite dimensional representation. To achieve the full repre-
sentation, the angular part of the representation is constructed
in an equivalent manner, and is concatenated onto the radial
part. The relevant radial and angular distribution functions,
for each unique combination of atomic species, are defined as
follows:

FA,B(r) =
{

Dr
∑

Ai,Bj

1
r2

i j
exp

( − (r−ri j )2

2l2
r

)
, r < Rr,

0, r � Rr,

(1)

FA,B,C (θ ) = Dθ

∑
Ai,Bj ,Ck

fc(ri j ) fc(rik ) exp

(
− (θ − θi jk )2

2l2
θ

)
,

(2)

where fc is the smooth cutoff function,

fc(r) =
{

1 + γ
(

r
Rθ

)γ+1 − (γ + 1)
(

r
Rθ

)γ
, r < Rθ ,

0, r � Rθ ,
(3)

with A, B, and C being placeholders for different atomic
species. For the cutoff function a sharpness of γ = 2 is used.
The radial and angular cutoff radii adopted are Rr = 6 Å and
Rθ = 4 Å, respectively, and the widths of the Gaussians used

for smearing are lr = 0.2 Å and lθ = 0.2 rad. The scaling con-
stants are Dr = �/(4πN2

a ) and Dθ = η�/N3
a , respectively,

with � being the supercell volume and Na the number of
atoms. η = 20 Å−2 is introduced to convert units and scale
the angular contributions relative to the radial ones. Finally,
each individual distribution function has been discretized into
30 elements as illustrated in Figs. 4(a) and 4(b) for the
radial part.

Representing atomic configurations with feature vectors x
in this form, the GPR model is then tasked with inferring
a distribution over functions, p(Esur|X, E), that is consistent
with the training data (X, E). As this distribution, by defini-
tion of a Gaussian process, is assumed normal, its mean and
standard deviation, respectively, can be used to predict both
the energy, Esur (x), and the expected uncertainty, σsur (x), on
the energy prediction, for a new atomic configuration. The
GPR model is defined by its prior mean function μ(x) and
covariance function k(xi, x j ), from which the prior distribu-
tion, i.e., the untrained model, is derived. Given these, the
posterior distribution, i.e., the trained model, is determined
by conditioning the prior distribution on the available training
data. The resulting expressions, for energy and uncertainty
prediction of a new structure x∗, are [70]

Esur (x∗) = kT
∗ (K + σ 2

n I )−1(E − μ) + μ(x∗), (4)

σsur (x∗)2 = k(x∗, x∗) − kT
∗ (K + σ 2

n I )−1k∗, (5)

where K = k(X, X ), k∗ = k(X, x∗), μ = (μ(x1), μ(x2),
. . . , μ(xN ))T , and the target function is assumed noisy with
uncertainty σ 2

n = 5 × 10−2 eV2, which acts as regularization.
Figures 5(a)–5(c) illustrate a GPR model applied to data
sampled from a one-dimensional function. Both the prior
and posterior distributions are depicted with their mean and
standard deviation, along with concrete sample functions
from the two distributions.

The GPR model in Figs. 5(a)–5(c) uses the Gaussian co-
variance:

k(x, x′) = θ0e−(x−x′ )2/(2λ2 ), (6)

with characteristic length scale λ and maximal covariance θ0.
In GOFEE we instead adopt a covariance function consisting
of a sum of two Gaussian covariance functions with different
length scales, which we dub the double Gaussian covariance:

k(x, x′) = θ0[(1 − β )e−(x−x′ )2/(2λ2
1 ) + βe−(x−x′ )2/(2λ2

2 )], (7)

with characteristic length scales λ1 and λ2, respectively, max-
imal covariance θ0, and weights given by β = 0.01. As is
common for GP models, all nonfixed hyperparameters are
automatically selected by maximizing the marginal log likeli-
hood of the parameters given the observed data. In GOFEE we
use multirestart gradient descent to carry out the optimization.
The present covariance function is chosen because the opti-
mized length scale of a single Gaussian covariance tends to
be significantly larger than the feature space distance between
neighboring local minima and comparable to the extent of the
training data in the feature space. This limits the resolution
of the resulting model, which in addition tends to be over-
confident in its predictions. Adding the second Gaussian with
a small weight and shorter length scale than the first partly
remedies this problem.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. One-dimensional GPR example, comparing the normal Gaussian kernel (a–c) with the double Gaussian kernel (d–f) used in
GOFEE. The target function is represented by the thick black line, the GPR model is represented by the thick green line, and the training
data are represented by red dots. The thin lines represent functions sampled from the model distributions. (a, d) Prior to training, both models
just predict the mean of the data, however functions sampled for the two kernels are visually dissimilar, with the double Gaussian kernel
resulting in short scale wiggles on top of the long scale variations. (b, e) For the trained models, the single Gaussian model tends to overshoot
the target, and underestimate short scale uncertainties Even with only a weight of β = 0.01, the short scale Gaussian in the double Gaussian
model remedies these flaws to a large extent. (c, f) Adding further data, as orange dots, requiring even more short scale variation, only reinforces
this point.

The effect of this choice of covariance is exemplified in
Fig. 5, which in addition to Figs. 5(a)–5(c), showing the model
resulting from using the normal Gaussian covariance, Eq. (6),
also shows, in Figs. 5(d)–5(f), the result of using the dou-
ble Gaussian covariance, Eq. (7). The compared covariance
functions are identical in all but the shorter length scale Gaus-
sian, which has only a weight β = 0.01, relative to the long
length scale Gaussian. Even this small addition of a shorter
length scale is remarkably visible, already in the functions
sampled from the priors, Figs. 5(a) and 5(d). Moving on to
the trained models, the addition of the shorter length scale
results in models that are better at accommodating short scale
changes in the target function, and that do not suffer from
the underestimation of uncertainties on the short scale, to
the extent seen when using the normal Gaussian covariance.
We have recently used the double Gaussian covariance in the
context of structure optimization with image recognition and
reinforcement learning [71], where it proved highly efficient
in speeding up the searches.

Because the acquisition function, central to GOFEE, de-
pends on the predicted uncertainties, to supply explorative
incentive in the search, the underestimation of uncertain-
ties causes a less lively search, more prone to stagnation.
This is reflected in the results in Fig. 6(a), showing that the
searches adopting the normal Gaussian kernel are more prone

to stagnate, compared to the double Gaussian kernel. This is
indicated by the slope of the success curve almost vanishing
after ≈700 DFT evaluations.

Besides the covariance function, the second component to
the prior distribution of the GPR model is the prior mean
function, μ(x). For this a common and simple choice is to use
a constant value equal to the mean, Ē , of the training data. It is
however useful to keep in mind that the model effectively only
needs to learn the difference between the prior mean function
and the target function. It can therefore be useful to include
general features of the target function, here the total energy,
into μ(x). In GOFEE we add to the data mean a conservatively
chosen, repulsive interatomic potential, such that

μ(x) = Ē +
∑

i j

(
0.7rCD,i j

ri j (x)

)12

eV, (8)

where rCD,i j is the sum of the covalent radii of the ith and
jth atoms and ri j (x) is the distance between them. This is
used with the main purpose of not producing data of very
high energy due to some very short bonds. Such data can
significantly impact the energy scale of the regression problem
and negatively affect the resulting GPR model.

Without the repulsive prior, the search naturally, and es-
pecially early on, tends to spend more resources sampling
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(a)

(b)

FIG. 6. Benchmark of GOFEE, on the three-layer
TiO2(001)-(1 × 4) problem. Green curve: GOFEE is used as
presented in this paper, with dual-point evaluation, the double
Gaussian kernel, the same κrelax = κ = 2 used for relaxation and
candidate selection, and the repulsive prior. Blue curve: Using the
normal Gaussian covariance. Red curve: Omitting the repulsive
prior mean function. (b) Minimum bond distance as a fraction of the
covalent bond distance, shown for the first 500 structures in GOFEE
searches. Thick and thin lines represent, respectively, the mean and
minimum value in bins of ten episodes. All lines are averages over
ten independent searches.

structures with unreasonably short bonds, which typically
have high energies. As a derived effect the surrogate model
also has to accommodate a significant amount of high-energy
structures, which to some extent compromises the prediction
accuracy on the low-energy structures, which are relevant to
the search. This derived effect is largest early on, where the
high-energy structures make up a larger proportion of the
data. As shown in Fig. 6(a), neglecting the repulsive prior
results in a less effective search strategy, with the difference
being especially apparent early on in the searches. Figure 6(b)
illustrates, based on data from GOFEE searches, that the first
≈500 structures, sampled in searches without the repulsive
prior, contain significantly shorter bonds.

Sticking with the order defined in the flowchart, we will
now halt the discussion of the surrogate model for a while, in
favor of a description of how the parent structures are estab-
lished and used as the basis for generating new candidates. We
subsequently return to the surrogate model, when it is used for
relaxation of these new candidates.

B. Parent structures

A population of breeding parent structures is an important
element for any evolution-based search strategy, as it effec-
tively controls what new candidate structures are likely to

be created [2,8–10]. To avoid premature convergence of the
search, while still progressing it, the population must both
be diverse and prioritize low-energy structures. Usually, the
population is maintained in two steps: in every generation,
all new offspring structures are added to it, and subsequently
the “survival of the fittest” evolutionary pressure is applied
to trim the population to a manageable size. In a structure
search context, this is often interpreted as the population being
reduced to a fixed size with the energetically most favor-
able, yet sufficiently different, structures as members. In some
implementations, the evolutionary search is run in a mode
without the concept of generations, and new structures are
produced and handled either one at a time or asynchronously.
In these cases, the population is updated in much the same
manner, having the new structure, Snew, replace an existing
member, Spop, of the population if Snew is more stable than
Spop and Snew is sufficiently different from all other popu-
lation members that are also more stable than Snew. In our
original formulation of GOFEE [67], we enforced the differ-
ence criterion by applying a maximum covariance threshold
of kmax = 0.995 eV2 between any two structures of the
population.

Recently, we proposed a new approach, which achieves
a diverse set of parent structures via direct sampling of the
entire pool of structures treated at the first-principles level
[68]. The sample of parent structures is established by first
selecting from the pool all structures that have an energy
within �Esample of the best structure found so far in the search.
Next, these structures are clustered into Nsample clusters, e.g.,
by k-means++ clustering, and the best structure within each
cluster becomes part of the sample. While the precise clus-
tering technique is not considered important for the method,
the stochastic nature of k-means++ clustering might be ben-
eficial as it will cause variations in the composition of the
sample, that may counter stagnation during late stages of
searches.

The sampling scheme is sketched in Fig. 7 for real GOFEE
data using principal component analysis to enable a two-
dimensional representation of the data. Figure 7(a) illustrates
the initial selection of low-energy structures, here using
�Esample = 5 eV. Figure 7(b) illustrates the subsequent clus-
tering of the selected structures, based on Euclidean distances
in the feature-space, Eqs. (1) and (2), using the k-means++
algorithm. The dots representing the structures are colored
according to the clusters the structures end up in and the
cluster centers are marked with crosses. Since the cluster-
ing is done in the entire feature space, and not in the two
first principal component dimensions, the clusters overlap
slightly in Fig. 7(b). Once the clusters have been established,
the sample is set up by choosing the most stable structure
(crosses) from each cluster. Figure 7(c) depicts the actual
structures in a sample resulting from applying this scheme.
The number of clusters in the clustering step is fixed at the
desired number of sample members. Figure 8 explores, for
the three-layer TiO2(001)-(1 × 4) system and using κ = 4 in
the search, how the number of sample members affects the
search performance. Comparing Nsample = 5, 10, and 25, the
best performance is achieved using Nsample = 10. We specu-
late, however, that for more complex systems, with a larger
number of competing energy funnels, having more sample
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FIG. 7. The sampling scheme for assembling parent structures. (a, b) Points represent previously DFT evaluated structures, visualized with
principal component analysis (PCA), with the first two principal components capturing 83% of the variance. (a) First, all evaluated structures,
with an energy above �Esample of the best structure found so far, are ignored. These are represented by black circles. The remaining structures
are colored according to their DFT energy. (b) Second, the remaining structures are clustered in the feature space using the k-means++
algorithm. The resulting clusters are colored, and cluster centers drawn as black circles. Third, the sample is created by selecting the lowest-
energy structure in each cluster, highlighted by black crosses. (c) The actual structures resulting from applying the sampling scheme to this
dataset, consisting of the 500 first structures of a GOFEE search. As the sampled structures can lie on cluster edges, some could in principle
be very similar. The diversity of the sample of parent structures is however not found to suffer greatly from this effect, as exemplified in (c).
The adequacy of the PCA visualization is also visible in the fairly reasonable positions of the cluster centers, and only slight smearing of the
cluster borders.

members is likely beneficial. In this paper, Nsample = 10 sam-
ple members have been used for all other presented searches.

Figure 8 also compares the clustering based sampling strat-
egy to the similarity based population strategy for handling the
parents. The sample based search generally performs best.

The presently proposed means of using clustering in setting
up the set of parent structures for GOFEE differs from our
previous use of clustering in conjunction with an algorithm
approach. In the work of Jørgensen et al. [72] new members
for the population were chosen based on energy (fitness) and
dissimilarity to lower-energy members of the population and
selection of population members to become parents was made
with a selection scheme that favored population members
that were outliers when clustering the entire pool of calcu-
lated structures. In this paper, we construct the set of parent
structures—the sample—directly via the clustering, have a
uniform selection scheme for picking parents from the sample,
and choose the optimal candidate for DFT evaluation via
Bayesian statistics, as detailed below.

C. Generating new candidates

After setting up a sample of parent structures, Nc, new can-
didate structures are generated by applying stochastic changes
to structures uniformly drawn from the sample. At present,
these include simple operations such as shifting or permuting
atoms. More elaborate operations such as crossover [73,74]
represent a potential future avenue for improvements. It is
worth pointing out that generating multiple new candidates
is only beneficial because we have the computationally in-
expensive surrogate model, which can be used to relax and
compare them all selecting a single one, to be evaluated with
DFT. Since sample members have structures that reflect local
minima in the surrogate model-based acquisition function at
earlier stages of the search, it serves a purpose to reoptimize
the sample members with newer versions of the acquisition
functions. We hence occasionally add to the Nc generated can-
didates, the entire sample. Specifically, it is done in every third
search iteration and adds to the degree of exploitation done for
the best structures found so far. However, since only a single
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FIG. 8. Comparison of sample strategy and population strat-
egy for handling parents. Success curves are for the three-layer
TiO2(001)-(1 × 4) system and for this comparison and κ = 4 has
been adopted to reduce the degree to which the acquisition function is
a limiting factor for exploration. Blue curves: Cluster based sampling
strategy, with different values of the sample size, Nsample = 5, 10, 25.
Red curves: Similarity based population strategy, with different val-
ues for the similarity threshold, kmax = 0.95, 0.99, 0.995.

candidate is selected for DFT evaluation, this measure comes
at the expense of less resources being spent on exploration.
This particular compromise ensures that at least two-thirds of
the resources are spent on some degree of exploration.

We will now turn back to the surrogate model, and discuss
how it is used to define an acquisition function for relaxing the
new candidates and selecting the most promising one among
them. But before we move on, it is important to introduce the
acquisition function used in combination with the surrogate
model in these steps.

D. Acquisition function

The main goal of the search is to arrive at the global
minimum structure. The surrogate model contributes to this
task by inexpensively supplying approximate energies of new
structures, thus avoiding many unnecessary DFT evaluations.
However, the surrogate model is inherently uncertain in its
predictions, especially in regions far from its training data.
When deciding what new candidate structure to evaluate with
DFT, it is useful to also take the uncertainty into account. This
is the purpose of the acquisition function [75], f (x). It is used
to quantify how desirable, to the overall optimization problem,
it is to evaluate a given structure with DFT, taking into account
both the predicted energy, Esur (x), and the predicted uncer-
tainty, σsur (x). In this paper we have used the lower confidence
bound [76,77] of the model predictions,

f (x) = Esur (x) − κ · σsur (x), (9)

due to its simplicity. Here κ controls the emphasis put on the
predicted uncertainty. This also effectively controls the degree
of exploration in the search strategy. Ideally we would want to
identify the structure corresponding to the global minimum
of the acquisition function and evaluate this structure with

DFT, repeating this to progress the search. This is however
not practically feasible in the present setting, due to the size of
the configurational space. Instead we must settle on sampling
the configurational space and selecting among these samples,
which we refer to as new candidate structures.

E. Relaxing new candidates

In sampling the configurational space, there is general
consensus among well-established, all DFT, search strategies
such as random search [1], basin hopping [4,5], and evolu-
tionary algorithms [2,8–10], that it is more efficient to explore
the configurational space by locally optimizing each sample,
compared to evaluating a larger number of samples, without
optimizing them. We apply the same strategy to sample the
acquisition function and locally optimize each new candidate
structure in the acquisition function, which we also refer to as
relaxing the structures. The procedure is illustrated schemati-
cally in Fig. 9. After such relaxation of a number of structures,
the acquisition function, i.e., the κ-dependent lower confi-
dence bound, is further used to select which new candidate
structure is most beneficial to evaluate with DFT. This selec-
tion step will be further discussed in the next section.

Figure 10(a) shows the success curves, for finding the
global minimum structure of the two-layer TiO2(001)-(1 × 4)
system. The curves represent the expected performance from
running GOFEE with different values of κ . Each curve is pro-
duced from 75 independent GOFEE restarts. Comparing the
κ = 0 curve with those for κ = 1, 2, and 3 strongly suggests
using a value of κ > 0. Figure 10(b) shows snapshots of the
corresponding success rates at different points in the search.
From Fig. 10(b) it is seen that the pronounced tendency to
exploit, associated with small values of κ , results in some,
lucky searches finding the GM very quickly. For instance,
≈30% of searches with κ = 1 do find the GM within 200
evaluations. Using κ = 1, however, results in a success rate
of only ≈70% within 800 evaluations, compared to the more
explorative searches, such as κ = 4–8, achieving success rates
of 90% within 800 evaluations. Even larger values of κ are ex-
pected to cause similar or higher success rates, if the searches
were allowed to progress for more episodes. Based on this, a
choice in the range κ = 2–4 is suspected to strike a reasonable
balance between exploration and exploitation. In this paper we
have used κ = 2 for most searches, but note that, if the compu-
tational budget allows, it is likely beneficial to adopt a slightly
larger value of, e.g., κ = 4–6 in searches, carried out for more
episodes, as this will improve the thoroughness of the search.
As an example, Fig. 10(c) shows success curves for both
κ = 2 and 4 for the three-layer TiO2(001)-(1 × 4) system.
For this more complex system, κ = 4 performs notably better
overall, with κ = 2 only offering the best performance in the
the very limited range of ≈250–350 single-point calculations.

While in GOFEE the acquisition function with κ > 0 is
used for both relaxation and selection, one could also imagine
using different values of κ , i.e., κrelax �= κselect. The posterior
mean is the model’s best guess of the target potential, and
therefore also of the locations of local minima, which ulti-
mately are the structures of interest. Following this line of
thought suggests using κrelax = 0, while maintaining κselect >

0 to maintain explorative incentive when selecting. Looking
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FIG. 9. Artificial one-dimensional PES (gray line) and surrogate model (green curve) estimating the PES based on training data (red dots).
The figure depicts the advantage of relying on both surrogate energy and uncertainty for relaxation of new candidates and data acquisition. The
new candidates (crosses), in this case Nc = 4, are generated in each search episode, and relaxed (purple dots) in the lower confidence bound
acquisition function.

at Fig. 11(a), adopting κrelax = 0 does however significantly
reduce the performance on the three-layer TiO2(001)-(1 × 4)
system. The main reason is likely that leaving out the bias
towards uncertain structures during relaxations naturally re-
sults in less diversity in the training database containing the
evaluated structures. This is supported by Fig. 11(b), which
shows learning curves for models resulting from the two
strategies. The models, actively learned, using κrelax = 0, are
significantly less accurate than those with κrelax = 2 when
tested on the diverse set of 1000 test structures. This suggests
that the active learning element of the search method suffers
due to reduced diversity in the training database, collected
during searches using κrelax = 0.

F. Selecting candidate

Having established the acquisition function for selecting
among the new candidates, it is interesting to investigate how
efficiently it chooses from among the Nc new candidates,
and in particular to what extent it is worth it to increase the
number of candidates from which the acquisition function
chooses. As long as the acquisition function is as good or bet-
ter than a random selection scheme at selecting the candidate
best suited for progressing the search, increasing Nc should
statistically benefit the search. However, at some point the
computational cost of generating and locally optimizing new
candidates in the surrogate model will contribute significantly
to the total computation time of the search, which in practice
limits the value of Nc. This contribution typically becomes
significant at values Nc > 100, but is dependent on the spe-
cific system and choice of DFT settings. Figure 12(a) shows
the success curves for different values of Nc. It illustrates
the dramatic importance of generating multiple candidates
in each search iteration. When using Nc = 1 the problem is
barely solvable, with only 10% of searches successful, in 800
DFT evaluations, whereas 90% of searches are successful
in only little more than 200 evaluations, when using Nc =
256. This dramatic improvement of the search performance,
when increasing the number of new candidates generated in
each search iteration, highlights the importance of surrogate
models being not only accurate, but also efficient to evalu-

ate. Efforts to reduce the computational cost of evaluating
machine learned regression models [34,78,79] are therefore
highly relevant, along with methods to reduce the number of
evaluations spent on local optimization [43,80], here carried
out using the model.

Another way to assess the quality of the surrogate based
acquisition function is to measure its ability to take advantage
of desirable structures, when they appear in the set of new can-
didate structures. This could be the global minimum structure,
which is objectively desirable. One way of quantifying this is
thus to measure at each candidate selection phase whether the
global minimum structure would have been selected by the
acquisition function, were it among the candidates actually
generated by the search. As shown in Fig. 12(b), already long
before the global minimum is found in any search, and to a
remarkable extent, the acquisition function prefers the global
minimum over any of the candidates generated in the search.
This does not tell us that the model has already identified
the global minimum, as there are likely other structures, not
among the candidates, that would be selected even over the
global minimum. It does however support the acquisition
function’s ability to successfully identify promising structures
even when far from the structures currently explored in the
search. In addition it indicates that the search can be further
improved by improving the generation of new candidates,
which can be achieved either by increasing the number Nc of
new candidates, by improving the operations used to generate
new candidates, or by improving the way the sample of parent
structures is made.

G. Evaluation

As the final step in a search iteration, the selected structure
is evaluated using DFT. There are several different ways this
evaluation could be carried out. On one end of the spectrum,
only a single-point evaluation is carried out for the selected
structure, whereas on the other end the structure is locally
optimized with DFT to a certain force threshold, or for a
certain number of steps. With the computational cost of DFT
in mind, we opt for a solution toward the single-point part
of the spectrum, but have found it beneficial to use two DFT
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(a)

(b)

(c)

FIG. 10. The effect of κ on the search performance. (a, b) Results
for the two-layer TiO2(001)-(1 × 4) system. (a) Success curves,
each based on 75 independent search restarts, for different values
of κ , with values increasing when going from blue to red. (b) Snap-
shots of the success rates, for the curves in (a). The snapshots are
taken at NSP = 200, 400, and 800 single-point evaluations into the
search. (c) Comparison of κ = 2 and 4 for the larger three-layer
TiO2(001)-(1 × 4) system.

evaluations in total, in what we dub a dual-point evaluation.
A dual-point evaluation consists of a single-point evaluation
of the structure itself and, in addition, a second evaluation
resulting from a single gradient decent step, with the step �R
given by

�R =
{

rmax
F̃max

F̃flat
û, if F̃max < F̃flat

rmaxû, if F̃max � F̃flat
. (10)

Here û is the unit vector in the force direction and F̃max repre-
sents the largest atomic force of any atom in the structure. This
choice �R ensures that the step length is linear in the size of
the largest force of any atom, F̃max, up to the point that this
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FIG. 11. Benchmark of GOFEE, on the three-layer
TiO2(001)-(1 × 4) problem. (a) Green curve, GOFEE as presented
in this paper with κ = κrelax = κselect = 2; red curve, relaxations and
selection are carried out with κrelax = 0 and κselect = 2, respectively.
(b) Learning curves based on the surrogate model trained on the
50–800 first structures visited in GOFEE searches. The models are
tested on a diverse set of 1000 structures and the reported MAE
values are averaged over ten training sets from independent searches.

force equals F̃flat, from which point the step size levels off at
rmax. In GOFEE, the values rmax = 0.1 Å and F̃flat = 5 eV/Å
are used.

The dual-point evaluation is used to take advantage of the
forces readily available from DFT codes at little additional
cost, when having already evaluated the energy. When con-
sidering success curves as a function of search iterations, as
shown in Fig. 13(a), using the dual-point structures only to
improve the GPR model represents a significant improvement
compared to using single-point evaluations only. In addition,
using the dual-point structures for all elements of the search,
i.e., for the GPR model and the sample of parents, results
in further improvement. The full effect of the dual-point
scheme thus results from the combined benefit to both the
GPR model and the population. To correct for the additional
single-point evaluation carried out per search iteration in the
dual-point scheme, Fig. 13(b) shows the more fair comparison
of cumulative success as a function of single-point evalu-
ations. In this comparison, the full dual-point scheme still,
but to a lesser degree, performs significantly better than us-
ing only single-point evaluations. Figure 13(b) shows how
inclusion of the dual-point structures benefits the quality of
the sample of parents. Especially for uncertain structures,
the dual-point evaluation frequently results in lowering the
energy by 0.5 to 1 eV. As novel structures tend to be more
uncertain, the dual-point evaluations will thus result in a pos-
itive bias towards selecting novel structures of the sample of
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(a)

(b)

FIG. 12. Importance of the new candidate structures. (a) Suc-
cess curves for the two-layer TiO2(001)-(1 × 4) problem, resulting
from searches with different numbers, Nc, of new candidates gen-
erated in each search iteration. The gain in performance, from,
e.g., quadrupling Nc is remarkable, especially in the range of rel-
atively small Nc. (b) The full, green line shows the success curve
for the three-layer TiO2(001)-(1 × 4) problem. The leftmost dashed
(dark blue) line shows the fraction of the searches, that, based on
the acquisition function, would have selected the global minimum,
had it been among the new candidate structures in the searches.
The remaining dashed lines only count this artificial selection
of the global minimum (GM) successful, if predicted uncertainties on
the GM, σsur (xGM), thereon, are less than the various threshold values
given in the figure. This supplies information about how certain the
model is about its prediction of the global minimum, in cases where
it would be selected over the other candidates.

parents. For this effect to be significant pronounced, the step
must be fairly large, as achieved by the parameters used in
GOFEE. A similar benefit might be achieved by implementing
a preference towards novelty [77] in addition to the diversity
enforced by the clusters, when constructing the sample of
parents.

One can also take advantage of the force information
by explicitly including it, when training the GPR model
[28,43,44,46,47,81,82]. This is not adopted in GOFEE, al-
though we have explored the approach, the reason being
significantly longer training and evaluation times, which
makes it unfit for all but small systems, despite improving
model predictions. This is also noted in Ref. [81], extending
GOFEE with force information.

FIG. 13. Benchmark of GOFEE, on the three-layer
TiO2(001)-(1 × 4) problem. (a) Success curves as a function
of search iterations. Green curve: GOFEE as presented in this paper,
i.e., with dual-point evaluations. Red curve: Single-point evaluations
only. Blue curve: With dual-point evaluation but the dual-point
structures are used only for the GPR model and not for constructing
the sample of parent structures. (b) The same success curves as
in (a), but as a function of single-point evaluations used. (c) The
difference in target energy between the single- and dual-point
structures, plotted as a function of the prediction uncertainty for the
single-point structure.

IV. APPLICATIONS

To showcase the versatility of the method we finally
present two full-scale DFT structure searches. Specifically, we
have applied the method to gas-phase C24 clusters [83], and
Ir(111) surface bound C18 clusters.

A. Carbon clusters

In the case of the C24 clusters, the potential energy land-
scape exhibits multiple local minima, which are very close
in energy to the global minimum, but which are geometri-
cally quite different, as seen in Fig. 14, which shows the
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FIG. 14. The geometries of the four lowest-energy structures of
C24, along with success curves for finding each structure, based
on 50 independent restarts of GOFEE. The colored success curves
represent searches run with the new sampling strategy for handling
parents and an elaborate relaxation scheme detailed in Ref. [84]. The
gray curves represent searches without these additions. Structures 1
and 3 are found in almost 100 % of searches after only 1500 DFT
evaluations, whereas the global minimum and structure 2 are found
in ≈80 % of searches after 3000 DFT evaluations. These might be
more difficult because they both feature two four membered rings,
which are typically not energetically favored compared to hexagonal
and pentagonal rings. In comparison, structures 1 and 3 contain only
one and none, respectively.

geometry of the four lowest-energy structures for the system.
The GOFEE search method relies to a very large extent on
the surrogate model, trained on the fly, from scratch. One
might therefore be concerned that the search can overlook
important minima in unexplored regions of the search space,
if the surrogate model falsely predicts a higher energy, and
therefore never visits the region to update this prediction.
However, because the acquisition function also takes into
account the uncertainty of the surrogate model, the search
is naturally driven towards such unexplored regions, despite
unfavorable initial predictions, and the surrogate model will
thus eventually be corrected in these regions. As seen from
Fig. 14, which also shows the success curves for finding each
of the four structures, the search does indeed explore the

low-energy minima thoroughly, as almost ≈80 % of searches
find all four structures within 3000 DFT evaluations. This
exemplifies, that, given time, the search is able to identify
a number of lowest-energy structures. This is for example
relevant in cases where it is not computationally tractable to
carry out the searches with a sufficiently high level of DFT, but
where the global minimum can be identified from among the
lowest-energy structures of a less computationally demanding
DFT potential used to carry out the search.

B. Carbon clusters on Ir(111)

In recent years, graphene nanostructures, such as nanorib-
bons and nanoislands, have attracted increasing attention, due
to the tunability of their electronic and chemical properties,
achieved by varying the shape and size of such structures
[85]. Compared to nanoribbons, graphene nanoislands have
the largest potential for variation, owing to the larger number
of configurational degrees of freedom [86,87]. In addition,
they are important for the understanding of graphene growth
[88,89] and are promising candidates for quantum dot tech-
nology [90]. Graphene nanoislands show much variety in
both shape and size, with the favored shapes governed by the
substrate, in particular its interaction strength with the islands
as well as the degree of lattice mismatch. Several studies have
investigated the structures of small to medium sized graphene
islands (Cn with n � 24) on various transition metal surfaces
[88,91–96]; however, in all cases, the exploration of the con-
figurational space was limited to a small number of manually
constructed candidates, for each island size. In order to sup-
port and extend this body of research, we have, in the present
paper, used GOFEE to carry out unbiased searches for the
lowest-energy C18 islands on the Ir(111) surface. We choose
Ir(111) for its ability to support a particularly high quality
graphene layer. For this problem, GOFEE was applied with
two layers of iridium atoms all fixed at bulk positions and the
positions of all carbon atoms were optimized, starting from
randomly initialized positions. To avoid unintended infinite
carbon structures extending through the periodic boundary
conditions, carbon atoms were constrained to stay at least 1 Å
from the edge of the periodic, computational cell, in the plane
of the surface. During the search, energy and force evalua-
tions were carried out using the GPAW code in LCAO mode
with a dzp basis set. Generalized gradient approximation with
the dispersion corrected optPBE-vdW functional was used
to describe the exchange–correlation interaction [97]. Subse-
quently, the best structures were transferred to a slab with four
layers, and relaxed with only the bottom two layers fixed.

The resulting lowest-energy C18/Ir(111) structures are
shown in Fig. 15. All structures exhibit a domelike shape, with
the edge atoms bonding to the surface, and the center atoms
detached. The predominant building blocks are hexagonal and
pentagonal rings, as is also the case for medium to large car-
bon clusters in the gas phase. However, compared to isolated
clusters, the geometry of supported clusters is also governed
by their ability to bond to the support. In the structures found,
this is represented by a few cases (4,11,13) of heptagonal
rings, but especially by the many structures (0–9,11) featuring
single atoms branching off closed rings, to bond in hollow
sites of the iridium surface. Such branching atoms are present

245404-12



GLOBAL OPTIMIZATION OF ATOMIC STRUCTURE … PHYSICAL REVIEW B 105, 245404 (2022)

FIG. 15. Top views of the lowest-energy structures of C18 supported on Ir(111). Carbon and iridium atoms are shown in gray and blue
colors, respectively. The brightness of the colors follows the coordinate perpendicular to the surface. Side views are further shown for
structures 0 and 4.

in all structures found within ≈0.85 eV of the proposed global
minimum. The most predominant edge motives are however
still a combination of closed pentagonal and hexagonal rings.
In situations where closed rings alone presumably do not offer
a favorable bonding to the substrate along the entire edge, the
results suggest that the favored alternative is the single branch-
ing atoms. The ability of the branching atoms to flexibly bond
to the surface is illustrated by a comparison of structures 7
and 9, which feature carbon atoms branching at very different
angles to reach the nearest hollow site.

The complexity and diversity of the structures found is
striking and highlights the need for an automated and unbiased
search strategy as the present one. We speculate that any
heuristic or otherwise human inspired search strategy [88]
would generally fail in identifying all such structural candi-
dates for similar types of problems.

V. CONCLUSION

In conclusion we have here further documented the
GOFEE search method [67]. This includes how the introduc-

tion of an additional, shorter length scale in the kernel can
improve short scale resolution and uncertainty estimates of
kernel based surrogate models, how the degree of exploration
can conveniently be changed, and the dramatic improvements
resulting from increasing the number of new candidate struc-
tures generated in each search iteration. In addition we have
presented a scheme for extracting a diverse sample containing
low-energy structures. The search method has been applied
to various systems, including surface reconstruction, isolated
clusters, and supported clusters.
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