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Excitation of weak and strong guided waves in a semiconductor slab and their strong
coupling with confined magnetoexcitons
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We have obtained and analyzed optical spectra of a semiconductor slab, containing a quantum well which
serves as a source of magnetoexcitons in the presence of an external dc magnetic field. Our setup corresponds to
the optical technique based on the breaking of the total internal reflection. Specifically, the semiconductor slab
is sandwiched between two external leads/prisms separated from the slab by two gap layers of a dielectric or
metal. The reflectivity, transmissivity, and absorption spectra for such a system in a quantizing magnetic field
were revealed to display a resonant structure originating from the excitation of electromagnetic modes localized
on the semiconductor slab which are strongly coupled with the confined magnetoexcitons. It is surprising that the
Rabi splitting for the setup with dielectric gap layers (weak guiding) turns out to be greater than that for metallic
and even semiconductor microcavities (strong guiding). Our results were verified by comparing the calculated
optical spectra with the dispersion curves for localized modes derived analytically.
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I. INTRODUCTION

Adjusting light-matter interactions offers an improvement
in efficiency of devices and the development of unique appli-
cations [1]. Depending on the strength of the coupling, several
different regimes can be established [2]: weak, strong, very
strong, and ultrastrong coupling. In semiconductor microcav-
ities, the weak coupling regime occurs when the measure
of coupling between the electromagnetic field and a crystal
quasiparticle (e.g., exciton) is smaller than the width of the
cavity mode and is characterized by an irreversible decay
[3]. The presence of the microcavity modifies the radiative
decay rate of the exciton [4]. The strong coupling regime
emerges when the light-matter coupling is larger than the
decay rate and no irreversible decay takes place: instead,
the energy oscillates between the exciton and photon modes
(Rabi oscillations), leading to a Rabi splitting in the frequency
domain [5,6]. The latter manifests itself in the appearance
of two eigenmodes, namely, the lower (LP) and upper (UP)
polaritons, which are linear superpositions of the bare exciton
and photon states. At zero detuning, i.e., when exciton and
photon energies coincide, the LP and UP are separated by
the Rabi splitting. The strong coupling between excitons and
photons in planar semiconductor microcavities has been stud-
ied experimentally and theoretically [7–10]. If the measure of
coupling is comparable with the exciton binding energy, the
regime is called very strong coupling and is distinguished by
the appearance of different hybridized excitons levels since
the wave function of the electron-hole pair is effectively
modified [11,12]. Finally, in the ultrastrong coupling regime,
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hybridized states with different numbers of excitations are
observed [13–16].

The strong coupling of excitons with photons can also be
achieved in metal microcavities [17–21]. The use of metal
mirrors offers the advantage that they serve as electrodes,
allowing electrical excitation of the polaritons in the cavity
[18,21]. In addition, the penetration depth in metal mirrors
is smaller than in distributed Bragg reflectors (DBRs) of
semiconductor microcavities and, therefore, the photon con-
finement in metallic microcavities is stronger than that in
semiconductor ones. For this reason, larger Rabi splitting
energies for metallic microcavities have been experimentally
demonstrated [17].

It has been shown that strong coupling between waveguide
modes and excitonic states can be realized in dye molecules
[22] and quantum wells (QWs) [23]. In particular, the strong
coupling of inorganic QW excitons to the guided modes
of a planar film waveguide was reported in Ref. [24]. In
Ref. [25], the waveguided polaritons on a III-nitride slab with
c-plane GaN/(Al,Ga)N QWs was studied in the strong cou-
pling regime. Excitons in semiconductor nanowires can also
be strongly coupled to weakly guided photons [26,27], i.e.,
when the wires are surrounded by a medium with lower re-
fractive index. Recently, the strong-coupling regime between
electromagnetic modes guided by a semiconductor nanowire
and excitonic states of molecules localized in its surrounding
media was predicted in Ref. [28]. The fact of using a slab
surrounded by a dielectric medium instead of a semiconductor
microcavity offers an advantage in experimental design for
reducing the number of layers. On the other hand, the substi-
tution of metallic layers in a metallic microcavity by dielectric
media could considerably reduce the losses in the system.

In the presence of an external strong dc magnetic field,
the QW exciton changes into a different quasiparticle, the
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so-called magnetoexciton. To the best of our knowledge,
the strong coupling of light with magnetoexcitons in a
semiconductor QW has only been theoretically studied in
semiconductor microcavities [29,30]. The impact of the cou-
pling between magnetoexciton and waveguide modes in a
semiconductor QW embedded either in a dielectric or in metal
is an open question. Furthermore, the optical excitation itself
of magnetoexcitons in such nanostructures is also of relevant
interest. A possible technique for the excitation of magne-
toexcitons coupled to waveguide modes can be that based on
breaking the total internal reflection (TIR) with the use of two
prisms. It should be mentioned that such an optical technique
has been recently applied for exciting THz electromagnetic
localized Josephson plasma waves in a superconducting slab
with internal insulating layers perpendicular [31,32] and par-
allel [33] to its surfaces.

In the present paper, we develop a unified formalism for
theoretically studying the excitation of waveguide modes lo-
calized on a semiconductor waveguide and the emergence of
strong-coupling regimes between guided modes and magne-
toexciton states. Here we shall consider a semiconductor slab
with a QW being covered either by two dielectrics or by two
metal layers, which are adjacent to two prisms. The developed
formalism is based on the Stahl-Balslev real-space density-
matrix approach [34], which employs a system of coupled
equations for the coherent-wave amplitude and the electro-
magnetic fields in the semiconductor slab. Such a formalism
has been successfully employed for studying the coupling
of photons with magnetoexcitons in semicondcutor QW het-
erostructures [29,30,35–38].

The paper is organized as follows. In Secs. II and III,
we formulate the problem, present the system geometry, and
introduce the basic definitions and notations. In addition, in
Sec. III, we briefly elucidate the origin of localized eigen-
modes. Then, we calculate and analyze s-polarized optical
spectra for the semiconductor slab covered by dielectrics,
Sec. IV, as well as metal, Sec. V. In the analysis, the disper-
sion relation of the electromagnetic modes localized on the
semiconductor slab is used to interpret the features of optical
spectra. In Sec. VI, the strong coupling of magnetoexcitons
with guided modes, observed in the optical spectra, is com-
pared with the optical manifestation of magnetoexcitons in
semiconductor microcavities with the QW. There is a sec-
tion of conclusions, Sec. VII.

II. MODEL FORMULATION

Let us consider an electromagnetic wave propagating
through a semiconductor slab c consisting of a cap layer (0 <

x < x1), a semiconductor QW (x1 < x < x2), and a buffer
layer (x2 < x < dc). The semiconductor slab c is under the
action of an external dc magnetic field B0 applied perpendic-
ularly to the slab along the x axis (B0||x). The propagation
should be accompanied by the resonant excitation of waveg-
uide modes localized on the slab that is achieved with the use
of the setup depicted schematically in Fig. 1. Specifically, the
semiconductor slab c is placed between two identical semi-
infinite dielectric leads, aL and aR, with positive permittivity
εa > 0 and separated from them by two gap layers, bL and bR,
of permittivity εb and thickness db. An incident electromag-

B 0

FIG. 1. A sketch of the setup and the coordinate system. The
valence and conduction band edges for the QW heterostructure is de-
fined by the electron/hole steplike confining potential (upper/lower
blue curves, respectively). The dc magnetic field B0 is oriented per-
pendicular to the QW plane.

netic wave comes onto interface (aL|bL ) from the left lead aL,
while the right lead aR serves as a receiver of a transmitted
wave going out from interface (bR|aR).

Throughout our paper, the resonant transmission phe-
nomenon is analyzed for the electromagnetic waves of TE
polarization (or the same of s polarization). In line with
the chosen coordinate system, this fact implies the electric
E(x, z, t ) and magnetic H(x, z, t ) fields to be expressed as

E(x, z, t ) = {0, Ey(x), 0} exp(ikzz − iωt ), (2.1a)

H(x, z, t ) = {Hx(x), 0, Hz(x)} exp(ikzz − iωt ). (2.1b)

The wave frequency ω and the tangential wave number kz are
assumed to be free external positive parameters of the prob-
lem. However, the requirement of wave propagation inside the
left/right leads aL and aR provides the constitutive restriction

kz < k
√

εa, k = ω/c (2.2)

should be met.
According to the problem geometry formulated above,

the electromagnetic radiation inside the left lead aL repre-
sents a superposition of incident and reflected plane waves,
whereas in the right lead aR there is a transmitted wave only.
Specifically,

Ey(x) = eika (x+db) + A−
L e−ika (x+db), (2.3a)

Hz(x) = ka

k

[
eika (x+db) − A−

L e−ika (x+db)
]

(2.3b)

inside semi-infinite medium aL where x � −db, and

Ey(x) = A+
R eika (x−dc−db), (2.4a)

Hz(x) = ka

k
A+

R eika (x−dc−db) (2.4b)

inside semi-infinite medium aR where dc + db � x. Here,
without loss of generality, we have assumed the unit amplitude
of the incident wave. The symbols A−

L and A+
R stand for the
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reflected and transmitted amplitudes at the interfaces (aL|bL )
and (bR|aR), respectively. Under the indispensable condition
(2.2), the x projection ka of the wave vector inside leads aL

and aR is evidently real valued:

ka =
√

k2εa − k2
z . (2.5)

The resonant excitation of waveguide modes localized on
the semiconductor slab c is realized when conditions of the
TIR at the (aL|bL ) and (bR|aR) interfaces are satisfied. In
such a case, the distribution of electromagnetic field in the
gap layers bL and bR is described by a linear combination of
evanescent waves. Thus,

Ey(x) = B+
L e−κbx + B−

L eκbx, (2.6a)

Hz(x) = iκb

k
[B+

L e−κbx − B−
L eκbx] (2.6b)

inside the left gap layer bL where −db � x � 0, and

Ey(x) = B+
R e−κb(x−dc ) + B−

R eκb(x−dc ), (2.7a)

Hz(x) = iκb

k
[B+

R e−κb(x−dc ) − B−
R eκb(x−dc )] (2.7b)

inside the right gap layer bR where dc � x � dc + db. The
corresponding wave amplitudes at the interfaces (bL|c) and
(c|bR) are denoted as B+

L , B−
L and B+

R , B−
R , respectively. Then,

in contrast to the wave number ka, the x projection kb of the
wave vector in the gap layers bL and bR must be imaginary:

kb = iκb, κb =
√

k2
z − k2εb. (2.8)

Inside the semiconductor slab c (0 � x � dc), the elec-
tromagnetic field is coupled with a magnetoexciton. The
description of this coupling can be adequately realized in
terms of the polarization vector P(x, z, t ). For s-polarization
Eqs. (2.1) with the chosen geometry of Fig. 1, it is defined as

P(x, z, t ) = {0, Py(x), 0} exp(ikzz − iωt ). (2.9)

Therefore, the wave electromagnetic field inside the semi-
conductor QW structure obeys Maxwell equations, which are
reduced to (

d2

dx2
+ k2

c

)
Ey(x) = −k2Py(x), (2.10a)

Hz(x) = 1

ik

d

dx
Ey(x) (2.10b)

with the background wave number kc being defined by

kc =
√

k2εc − k2
z . (2.11)

The transverse wave number kc is characterized by the back-
ground dielectric permittivity εc > 0 of the semiconductor
slab c without the QW. The general solution of Eq. (2.10a)
for the electric field is appropriate to obtain in terms of the
quantities Hz(0), Hz(dc), and Py(x):

Ey(x) = ik

kc

Hz(0) cos[kc(dc − x)] − Hz(dc) cos(kcx)

sin(kcdc)

− k2

kc

∫ x

0
Py(x′) sin[kc(x − x′)]dx′ (2.12)

− k2

kc

cos(kcx)

sin(kcdc)

∫ dc

0
Py(x′) cos[kc(dc − x′)]dx′.

The integration constants Hz(0) and Hz(dc) determine the
tangential wave magnetic field on the semiconductor slab
boundaries x = 0 and x = dc.

To proceed further, we should calculate polarization Py(x)
and, as a consequence, associate it with the electric field Ey(x).
To this end, the Stahl-Balslev coherent-wave microscopic for-
malism [34] is employed, within which the polarization Py(x)
is expressed via the so-called coherent electron-hole interband
amplitude Yy(rr, r) as follows:

Py(r) = 8π

∫
My(rr )Yy(rr, r)d3rr . (2.13)

The basic equation for amplitude Yy(rr, r) within the
Stahl’s coherent-wave approach can be written as

[Heh − h̄(ω + iν)]Yy(rr, r) = My(rr )Ey(r). (2.14)

Here, r = {x, y, z} stands for the radius-vector of exciton cen-
ter of mass, rr is the excitonic relative radius-vector, rr ≡
re − rh = {xr, ρr} with re = {xe, ρe} and rh = {xh, ρh} being,
respectively, the radius-vectors of electron and hole. Note
that vector ρ = {y, z}, depending on the imposed subindex,
denotes the corresponding radius-vector oriented parallel to
the QW plane (or the same, perpendicularly to the external dc
magnetic field B0 ‖ x). Symbol ν implies a phenomenological
damping parameter. In our numerical treatment, we use the
value h̄ν = 1 meV, which is typical for confined excitons in
semiconductor systems (see, e.g., Refs. [30,37] and references
therein).

Assuming the dc magnetic field B0 to be sufficiently strong,
the Coulomb potential U (rr ) of the electron-hole pair can be
omitted in the two-band Hamiltonian Heh, which in such a
case is given by

Heh = Eg + Hex + Hhx + H2D. (2.15)

Here, Eg represents the gap energy of the semiconductor QW
material. The one-dimensional Hamitonians H jx ( j = e, h)
describing the electron and hole motions along the x axis
are defined by Eq. (A1) in the Appendix. The bidimensional
Hamiltonian H2D for the electron-hole pair subjected to the
static magnetic field B0 ‖ x is given by Eq. (A2).

Now, from the procedure described in detail at the Ap-
pendix we obtain the excitonic polarization Py(x) in the form
of Eq. (A12). Afterward, substituting this Py(x) into Eq. (2.12)
yields an integral equation with respect to the electric field
Ey(x). Remarkably, the obtained equation gets a degenerated
kernel and, therefore, can be immediately resolved. The result
looks like

Ey(x) = ik

kc

cos[kc(dc − x)] − I (x)

sin(kcdc)
Hz(0)

− ik

kc

cos(kcx) − J (x)

sin(kcdc)
Hz(dc); (2.16a)

Hz(x) = sin[kc(dc − x)] − k−1
c I ′(x)

sin(kcdc)
Hz(0)

+ sin(kcx) + k−1
c J ′(x)

sin(kcdc)
Hz(dc). (2.16b)
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Here, the prime stands for the derivative with respect to
coordinate x. Also, in Eqs. (2.16), we have introduced func-
tions I (x) and J (x), which are defined by Eqs. (A13) in the
Appendix.

The external response of the semiconductor slab c with
QW structure to an electromagnetic perturbation is intrin-
sically determined by the matrix ζ̂ of surface impedances
which associates respective values of the tangential electric
and magnetic fields at the left-hand (bL|c), where x = 0, and
right-hand (c|bR), where x = dc, interfaces of the slab:(

Ey(0)
Ey(dc)

)
=

(
ζ00 −ζ0dc

ζdc0 −ζdcdc

)(
Hz(0)
Hz(dc)

)
. (2.17)

In line with definition (2.17) and the resulting electromag-
netic field distribution (2.16) mentioned before, the closed
and explicit analytical expressions for the elements of surface-
impedance matrix ζ̂ are given by

ζ00 = ik

kc

cos(kcdc) − I (0)

sin(kcdc)
, (2.18a)

ζ0dc = ik

kc

1 − J (0)

sin(kcdc)
, (2.18b)

ζdc0 = ik

kc

1 − I (dc)

sin(kcdc)
, (2.18c)

ζdcdc = ik

kc

cos(kcdc) − J (dc)

sin(kcdc)
. (2.18d)

The quantities I (0), I (dc), J (0), and J (dc) are particu-
lar values (A15) of functions I (x) and J (x) introduced by
Eqs. (A13) in the Appendix. These functions are responsible
for the effect of magnetoexcitonic QW on the electrodynam-
ics of the semiconductor slab c. As the QW is absent, the
functions vanish, I (x) = 0 and J (x) = 0, and all the elements
of matrix ζ̂ degenerate into two well-known local surface
impedances:

ζ00 = ζdcdc = ik

kc
cot(kcdc), (2.19a)

ζ0dc = ζdc0 = ik

kc

1

sin(kcdc)
. (2.19b)

In the case when the QW is located asymmetrically inside
the slab, see Fig. 1, the matrix elements are of different values
due to different I (0), I (dc), J (0), and J (dc). However, when
the QW is found in the middle of slab c, it turns out that
I (0) = J (dc) and I (dc) = J (0). As a consequence, ζ00 = ζdcdc

and ζ0dc = ζdc0 in the symmetric situation, and only two sur-
face impedances remain to be independent.

III. TRANSFER RELATIONS, LOCALIZED MODES

The electromagnetic field distributions (2.3)–(2.8) and the
surface impedance relation (2.17) should be complemented
by continuity conditions for tangential electric and magnetic
fields passing across the interfaces (aL|bL ), (bL|c), (c|bR),
and (bR|aR). As a result, we arrive at the matrix relation that
determine the wave transfer throughout our setup:(

A+
R

0

)
= Q̂

(
1

A−
L

)
. (3.1a)

The total transfer matrix Q̂ attaches the amplitudes, 1 and
A−

L , of incident and reflected waves in the left lead aL to the
amplitude A+

R of transmitted wave in the right lead aR. It can
be presented as a product of three matrices:

Q̂ = Q̂(ba)Q̂(c)Q̂(ab). (3.1b)

The matrices Q̂(ab), Q̂(c), and Q̂(ba) consequentially convert
the amplitudes 1 and A−

L to amplitudes B±
L , B±

L to B±
R , and

B±
R to A+

R and 0. Following Eqs. (2.3), (2.6) and (2.4), (2.7),
the transfer matrices Q̂(ab) and Q̂(ba) appear to be naturally
factorized into two partial transfer matrices:

Q̂(ab) = 1

2

(
e−κbdb 0

0 eκbdb

)(
1 + ka

iκb
1 − ka

iκb

1 − ka
iκb

1 + ka
iκb

)
; (3.2a)

Q̂(ba) = 1

2

(
1 + iκb

ka
1 − iκb

ka

1 − iκb
ka

1 + iκb
ka

)(
e−κbdb 0

0 eκbdb

)
. (3.2b)

In Eqs. (3.2), the diagonal matrices originate from evanescent
waves (2.6) freely running inside the gap layers bL or bR.
The other matrices are responsible for the wave pass via the
interfaces (aL|bL ) or (bR|aR), respectively. It is useful to note
that

det Q̂(ba) det Q̂(ab) = 1 ⇒ det Q̂ = det Q̂(c). (3.3)

The matrix Q̂(c) describes the wave transfer through the left
interface (bL|c), subsequent wave flight inside the semicon-
ductor slab c interacting with magnetoexcitons of the QW,
and, finally, the wave transfer through the right interface
(c|bR). As a consequence of Eqs. (2.6), (2.7), and (2.17), it
is composed of three relevant matrices:

Q̂(c) = 1

2

(
1 k

iκb

1 − k
iκb

)(
ζdcdc
ζ0dc

ζ0dc ζdc0−ζdcdc ζ00

ζ0dc

− 1
ζ0dc

ζ00

ζ0dc

)

×
(

1 1
iκb
k − iκb

k

)
. (3.4)

Solving the transfer relation (3.1a) allows us to get trans-
missivity T = |A+

R |2, reflectivity R = |A−
L |2, and absorption A

in terms of the total transfer matrix (3.1b):

T =
∣∣∣∣det Q̂(c)

Q22

∣∣∣∣
2

, R =
∣∣∣∣Q21

Q22

∣∣∣∣
2

, A = 1 − R − T . (3.5)

Determinant det Q̂(c) emerges in the expression for transmis-
sivity T due to asymmetric disposition of the QW in the
semiconductor slab c. When the QW is located symmetrically,
i.e., in the middle of slab c (see comment at the end of
Sec. II), det Q̂(c) = 1, giving rise to the standard definition of
transmissivity.

The main notion of our study is the resonant excitation
of guided waves localized on the semiconductor slab c and
their strong coupling with magnetoexcitons of the QW. These
waves are electromagnetic eigenmodes of dielectric or con-
ducting slabs embedded in an infinite medium. They oscillate
inside the slab, however, evanescing in environment. In our
setup displayed in Fig. 1, the model of semiconductor slab c
containing the QW and imposed in medium b is accomplished
by boundless extension of the left and right gap layers, bL and
bR, at db → ∞ (there are no leads aL and aR in this limit).

245309-4



EXCITATION OF WEAK AND STRONG GUIDED WAVES IN … PHYSICAL REVIEW B 105, 245309 (2022)

The wave transfer through such a structure is described by the
transfer matrix (3.4) and looks like(

B+
R

B−
R

)
= Q̂(c)

(
B+

L
B−

L

)
. (3.6)

The mode localization on slab c implies the evanescent waves
(2.6) and (2.7) to contain solely the component outgoing from
the slab. This requires the amplitude of incoming waves to
vanish, i.e., B+

L = 0 and B−
R = 0 in Eq. (3.6). In such a situa-

tion, the only nontrivial solution of Eq. (3.6) exists and equals

B+
R = Q(c)

12 B−
L if and only if Q(c)

22 = 0. (3.7)

The indispensable condition Q(c)
22 = 0 that relates the wave

frequency ω to the wave number kz and the other parame-
ters of the problem serves as the dispersion equation for the
electromagnetic localized modes.

With the use of explicit expression for the matrix element,

Q(c)
22 = ζ00 + ζdcdc

2ζ0dc

− iκb

2kζ0dc

[
det ζ̂ +

(
k

κb

)2]
, (3.8)

the general dispersion relation (3.7) acquires the form proper
for our subsequent analysis:

ζ00 + ζdcdc = iκb

k

[
det ζ̂ +

(
k

κb

)2]
. (3.9)

As one can readily realize, with the absent QW the degen-
erated surface impedances introduced by Eqs. (2.19) reduce
the dispersion relation (3.9) to the conventional one:

cot(kcdc) = α+, α+ = 1

2

(
kc

κb
− κb

kc

)
. (3.10)

It is important to note that dispersion Eq. (3.10) permit
a real-valued solution k = k(kz ) solely for real-valued trans-
verse wave number kc of semiconductor slab c. This fact
provides the basic difference between surface waves and those
discussed here. Indeed, the surface modes are evanescent deep
in the slab. As a result, the electromagnetic field is concen-
trated near both interfaces of the slab. On the contrary, our
localized modes are bulk, or guided, waves. They oscillate
inside the slab so the electromagnetic field is distributed over
whole volume of the slab.

Figure 2 illustrates two principally distinct distributions of
the electric field in the wave transferred through the entire
setup of Fig. 1. The dashed green line shows typical profile of
the electric field decreasing when the wave travels through the
gap layers b. This causes the total reflection at the (aL|bL ) in-
terface giving rise to exponentially small transmissivity (3.5).
On the contrary, the solid red-purple line happens at the reso-
nant transmission when the electromagnetic field in one of the
gap layers b significantly increases and the localized (guided)
mode is excited inside bL-c-bR subsystem. In the last case, the
transmissivity can be substantially enhanced up to unity. What
is remarkable, Fig. 2 demonstrates that the setup proposed in
this paper, see Fig. 1, represents a quite efficient instrument
to observe the strong photon-magnetoexciton coupling inside
the optical range, provided the QW is disposed in the vicinity
of great electric-field extremes inside the semiconductor QW
structure.

Ey

x

FIG. 2. The principal profiles of electric field in the wave trans-
ferred through the setup shown in Fig. 1. The solid red-purple
curve exhibits the resonant wave transmission due to localized mode
excited inside bL-c-bR subsystem and displayed by solid purple
oscillating curve. The dashed green line is plotted for the typical
(nonresonant) transmission when the electromagnetic flux exponen-
tially decreases while the wave passes two gap layers, bL and bR.

IV. WEAKLY LOCALIZED MODE COUPLING
TO MAGNETOEXCITONS

In this section, we consider the setup with two gap layers,
bL and bR, made from ordinary dielectric with positive per-
mittivity εb > 0. To start, we address the dispersion relation
(3.10) unperturbed by the QW structure. Its real solution k =
k(kz ) exists only for real-valued wave number kc, Eq. (2.11).
Combining this conclusion with the appearance of κb to also
be real, Eqs. (2.8), one can reveal that spectrum k = k(kz ) of
guided waves is confined to

kz/
√

εc < k < kz/
√

εb ⇒ εb < εc. (4.1)

Within interval (4.1), the localized modes oscillate inside slab
c and attenuate in the left bL and right bR gap layers moving
away from the slab over the relatively great scale κ−1

b . There-
fore, we call guided waves localized on slab surrounded by
an optically softer medium with lower permittivity (εb < εc)
weakly localized modes.

The dispersion relation (3.10) can be rewritten in another
suitable form,

kcdc = π p + arccot α+, p = 0, 1, 2, 3, . . . , (4.2)
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FIG. 3. Solid purple spectral curves k = kp(kz ) of localized
(guided) modes obeying dispersion relation (4.2) with p =
0, 1, 2, 3, 4. The red light line corresponds to the right restricting
condition (4.1). The dashed green curves k = kr

p(kz ) demonstrate the
borders of the existence domain (4.3) of k = kp(kz ). Permittivites
used here: εb = 1 (air), εc = 12.5.

from which the localized mode spectrum k = k(kz ) follows
to consist of an infinite set (family) of pth dispersion curves
k = kp(kz ) enumerated by index p and shown in Fig. 3.

In accordance with confinement (4.1), all the dispersion
curves k = kp(kz ) are arranged within a domain between two
light lines, k = kz/

√
εc and k = kz/

√
εb. Then, since by defi-

nition 0 � arccot α+ � π , every pth spectral curve k = kp(kz )
is found in its own domain specified by

kr
p(kz ) < kp(kz ) < kr

p+1(kz ),

with kr
p(kz ) =

√
(π p/dc)2 + k2

z

/√
εc. (4.3)

Note that the lowest border k = kr
0(kz ) coincides with the

light line k = kz/
√

εc from the left restricting condition of
Eq. (4.1).

The spectrum k = k0(kz ) of the lowest guided zero mode
starts at the coordinate origin (kz = 0, k = 0) and, with in-
creasing kz, monotonically increases along the light line k =
kz/

√
εb. Afterward, obeying asymptotics

k ≈ kz√
εb

[
1 − (εc − εb)2

8ε2
b

(kzdc)2

]
for (kzdc)2 
 1,

(4.4)

it is deflected down and at kzdc � 1 approaches from below
its upper border k = kr

1(kz ), Eq. (4.3).
The dispersion curves k = kp(kz ) supporting each of

nonzero modes (p �= 0) start from the threshold

kz = kcr
z ≡ π p

dc

√
εb

εc − εb
, k = kcr

p ≡ kcr
z /

√
εb, (4.5)

which is a crossing point of the upper light line k = kz/
√

εb

and the lower (left) border k = kr
p(kz ) depicted, respectively,

by red line and dashed green curves in Fig. 3. After the
threshold, the behavior of the pth spectral curve k = kp�=0(kz )

FIG. 4. Reflectivity R and transmissivity T , Eqs. (3.5), versus
wave number kz and frequency h̄ω. The dashed white lines dis-
play the dispersion curves of h̄ω versus kz for the localized modes,
Eq. (4.2) and Fig. 3. Parameters used here: εa(ω) (Si) as a function
of ω is varied from 12 to 15, εb = 1 (air), εc = 12.5, db = 157 nm
and dc = 250 nm.

is described by approximation:

k − kcr
p ≈ 2

π p

√
k2

z − kcr2

z

εc − εb

 1. (4.6)

Sufficiently far from the threshold, the spectrum k = kp(kz )
closes to its upper (right) border, see Eqs. (4.3):

k ≈ kr
p+1(kz ) for kz � kcr

z . (4.7)

Remarkably, following Eqs. (4.1) and (4.3), as kz → ∞,
all the dispersion curves k = kp(kz ) of the electromagnetic p
modes localized on the semiconductor slab c, as well as their
borders kr

p(kz ), get thick to the lowest confining light line k =
kz/

√
εc, Eq. (4.1). However, in this tendency, the hierarchy of

modes and borders still remains: the greater the index p, the
higher the corresponding guided mode.

Now let us proceed focusing our study on resonant ex-
citation of weakly localized modes and their coupling to
magnetoexcitons of the QW structure. In the configuration of
our setup, Fig. 1, such an excitation is possible if the dielectric
leads, aL and aR, are optically denser than the dielectric gap
layers, bL and bR:

0 < εb < εa. (4.8)

Indeed, this assumption provides the wave number kb defined
by Eq. (2.8) to be imaginary even under the constitutive re-
striction (2.2) due to which the wave number ka, Eq. (2.5), of
incident, reflected, and transmitted waves is real.

Note, in an experiment, the air with εb = 1 is relevant to
serve as a filling material for the gap layers b. Despite this
circumstance, we keep the notation εb to extend applicability
of our results.

Figure 4 illustrates unperturbed by the QW optical spectra
of reflectivity R and transmissivity T on the (kz, ω) plane
within the colored region corresponding to confinement (4.1).
Here and in the further analysis, the prisms aL and aR are
assumed to be made from Si, taking into account not only
the dispersion of Si permittivity εa(ω) but also the fact that
energy losses in Si, within the interval from zero to 2 eV,
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are negligible. In the frequency ranges [0.06,0.6] eV and
[1,2] eV, the data for εa(ω) were taken from Refs. [39,40],
correspondingly. The data for narrow initial and intermedi-
ate intervals, [0,0.06] eV and [0.6,1] eV, were obtained by
extrapolating the data from Refs. [39] and [40]. Thus, due
to frequency dispersion, 12 � εa(ω) � 15 within the whole
frequency range considered in our paper. Due to selected
values of εb < εc � εa, the determinative restrictions (2.2)
and (4.8) are fulfilled automatically. In both panels, the red
color corresponds to the greater values (up to one), whereas
the dark blue color marks the smaller values (up to zero) of
R and T . In addition, the dispersion curves ω = ωp(kz ) of
the localized modes, which are equivalent to k = kp(kz ) with
k = ω/c, are plotted in the dashed white. As expected, the
narrow regions where the reflection almost vanishes (R ≈ 0),
while the transmission happens to be perfect (T ≈ 1), closely
trace the relevant dashed-white dispersion curves. The visible
deviations at small kz are related to the fact that our setup
includes the connecting leads, aL and aR, resulting in a finite
value of thickness db of the gap layers, bL and bR. While the
conventional dispersion relation (3.7) is obtained for semi-
infinite b gaps, in a real setup their thickness db slightly alter
it, see Ref. [31]. Thus, Fig. 4 elucidates the perfect trans-
mission with T = 1 and R = 0 emerging due to excitation
of the electromagnetic modes localized on the semiconductor
slab c.

Figure 5 depicts the reflectivity R, transmissivity T ,
and absorption A spectra, depending on the wave vec-
tor component kz and frequency ω for the nonlocal setup
including a GaAs QW embedded in the semiconductor
slab c (In0.18Ga0.82As|GaAs|In0.18Ga0.82As), which is sand-
wiched between two Si dielectric leads, aL and aR, and
separated from them by two air gap layers, bL and bR

(see Fig. 1). The air gap layers b are characterized by
permittivity εb = 1 and thickness db = 157 nm. The left
QW interface (In0.18Ga0.82As|GaAs) is placed at coordinate
x1 = 42 nm corresponding to the antinode of the elec-
tric field for the localized mode. The coordinate of the
right QW interface (GaAs|In0.18Ga0.82As) is x2 = 47 nm.
The total thickness of slab c is dc = 250 nm. All the other QW
parameters are taken from Refs. [30,37]. In the calculations of
the presented spectra, the electron-hole Coulomb interaction
has been neglected, since the value of external dc magnetic
field, applied to the setup, is taken to be sufficiently great,
B0 = 30 T (see Sec. VI). In addition, the dashed white lines
in Fig. 5 trace the dispersion curve k = kp(kz ) with p = 1
of the waveguide mode for a slab c without the QW, see
Eq. (4.2) and Fig. 3. The spectra are plotted near eigenenergies
(black dotted lines) of the e1 − hh1 magnetoexciton states
(n, m), where integers n and m enumerate, respectively, the
Landau levels and angular momentum of magnetoexciton (see
the Appendix). One can clearly observe the anticrossings of
the waveguide spectral curves with the magnetoexciton lev-
els, which are characteristic of the strong-coupling regime.
Indeed, as seen in Fig. 5, the strong coupling is remarkable
for the localized mode with p = 1 coupled to the magnetoex-
citons of levels (n, m) = (0, 0) and (n, m) = (1, 0), since a
noticeable Rabi splitting arises.

Figure 6 displays the reflection spectra for the semicon-
ductor heterostructure as in Fig. 5, calculated at different

FIG. 5. Reflectivity R, transmissivity T , and absorption A,
Eqs. (3.5), versus kz and h̄ω for GaAs QW embedded in
In0.18Ga0.82As semiconductor slab which is sandwiched between two
Si dielectric leads and separated from them by two air gap layers near
the eigenenergies of magnetoexciton states with (n, m) = (0, 0) (left
panels) and (n, m) = (1, 0) (right panels) and slab localized modes
with p = 1. The applied magnetic field everywhere throughout the
paper is of magnitude B0 = 30 T.

incidence angles θ = arcsin(kz/k
√

εa). At θ = 42.9◦ (blue
line), a prominent dip corresponding to the excitation of the
p = 1 electromagnetic localized mode is observed, whereas
the magnetoexciton states with (n, m) = (0, 0) and (n, m) =
(1, 0) are optically manifested as small dips. At a greater
incidence angle, specifically, at θ = 43.2◦ (purple line), the
spectral curve k = k1(kz ) of the waveguide mode happens to
be found near the eigenenergy of the magnetoexciton (n, m) =
(0, 0). As a result, we see two huge dips whose separation
(Rabi splitting) is around 12 meV. For θ = 43.9◦ (red line),
the mode spectrum k = k1(kz ) is shifted to higher energies
and, consequently, the effect of the magnetoexciton level
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FIG. 6. Reflectivity R versus frequency h̄ω for the same semi-
conductor heterostructure as in Fig. 5 at several values of incidence
angle θ . Blue, purple, red, and green lines correspond to θ = 42.9◦,
θ = 43.2◦, θ = 43.9◦, and θ = 44.5◦, respectively.

(n, m) = (0, 0) becomes weak. Reaching the angle θ = 44.5◦
(green line), the strong coupling of the localized mode with
another magnetoexciton level (n, m) = (1, 0) gives rise to the
appearance of two huge dips with Rabi splitting being about
13 meV.

It is interesting that in Fig. 6 we can also observe reflectiv-
ity features associated with the excitation of magnetoexciton
states (n, m) with nonzero angular momentum m, specifically,
(0,−1), (0,1), and (1,−1). However, their optical mani-
festation is quite weak. Indeed, according to our analytical
results, Eqs. (A9) and (A12), the ratio between the oscillator
strengths for magnetoexcitons with m �= 0 and for those with
m = 0 is of the order of |Gn,m �=0(kzrB)|2/|Gn,0(kzrB)|2 
 1 as
(kzrB)2 
 1. The reason for the coupling between photons
and magnetoexcitons with nonzero azimuthal quantum num-
ber, m �= 0, emerges due to the breaking of the axial symmetry
by the tangential component of wave vector kz. This effect is
similar to that produced by a dc electric field parallel to the
slab plane (see details in Refs. [30,37]).

V. STRONGLY LOCALIZED MODE COUPLING
TO MAGNETOEXCITONS

To proceed further, let us recall that through the entire
investigation we consider the electromagnetic waves of TE
polarization (or the same of s polarization) with configuration
given by Eqs. (2.1).

The other way to achieve the resonant excitation of the
guided waves localized on the semiconductor slab c is to con-
struct the gap layers, bL and bR, from material with negative
dielectric permittivity εb < 0. In such a case, wave number
kb is imaginary by definition (2.8), giving rise to evanescent
waves inside the gap layers b. As a consequence, the ex-
istence domain of the real-valued solution k = k(kz ) of the
unperturbed by the QW dispersion relation (3.10) contains just
restriction from below,

kz/
√

εc < k, (5.1)

that provides wave number kc in the semiconductor slab c,
Eq. (2.11), to also be real valued.

A quite typical and simple in realization example is rep-
resented by a pure metal, whose permittivity εb < 0 given by
the Drude model, within the underplasma frequency ωp range,
reads

εb = −ω2
p/ω

2 = −(kδ)−2, δ = c/ωp

when ω 
 ωp ⇔ kδ 
 1. (5.2)

Here, δ serves as the minimal skin depth of electromagnetic
field penetration in a bulk metal. In the model (5.2), the
decrement of guided wave attenuation κb from Eq. (2.8) looks
like

κb =
√

k2
z + δ−2 (5.3)

and does not depend on the total wave number k = ω/c. Due
to the extremely small value of δ ∼ 10 − 100 nm, we call
guided waves localized on slab surrounded by metal strongly
localized modes.

The dispersion relation (3.10) is proper to rewrite as

kcdc = πs − (π − arccot α+), s = 1, 2, 3, . . . . (5.4)

The guided mode spectrum k = k(kz ), governed by Eq. (5.4),
contains an infinite set (family) of sth dispersion curves k =
ks(kz ) enumerated by index s. Here, we have accepted a mode
classification traditional for waveguides with ideally specular
boundaries, where the lowest mode gets index s = 1. The
evident relation between indices s and p from the dispersion
Eq. (4.2) is s = p + 1.

Since the absolute value of εb is extremely great, it is
reasonable to assume the background permittivity εc of the
semiconductor slab c to be relatively small:

0 < εc 
 |εb| ⇔ kδ
√

εc 
 1. (5.5)

Such an assumption makes evident kc/κb 
 1 and α+ ≈
−κb/2kc. This allows us to change arccot α+ to its approxima-
tion arccot α+ ≈ π − 2kc/κb in the dispersion relation (5.4).
As a result, we realize the desired family of spectral curves
k = ks(kz ) being described by

ks(kz ) =
√(πs

dc

)2
(

1 + 2

κbdc

)−2

+ k2
z

/
√

εc . (5.6)

As could be expected, Eq. (5.6) slightly differs from the spec-
trum of a planar waveguide with perfectly conducting plane
boundaries. The small correction is caused by the finite-valued
high-frequency conductivity of a metal taken into account in
our model.

Figure 7 exhibits spectrum k = ks(kz ) calculated numeri-
cally from the dispersion relation (5.4) in the solid purple and
from asymptotical Eq. (5.6) in the dashed green. As one can
see, due to extremely great plasma frequency ωp of conduc-
tion electrons leading to extremely small electromagnetic skin
depth δ, the distinction between two kinds of the curves is
practically invisible in the scale of the figure. Every spectral
curve k = ks(kz ) of the guided modes starts from the thresh-
old at kz = 0 and monotonically increases with kz following
Eq. (5.6). All the spectral curves run above the light line
k = kz/

√
εc, according to obligatory condition (5.1).
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FIG. 7. Spectrum k = ks(kz ) of guided modes versus kz gov-
erned by dispersion relation (5.4) (solid purple curves) and obeying
asymptotics (5.6) (dashed green curves) for the semiconductor slab c
surrounded by metal medium. The red light line is k = kz/

√
εc from

Eq. (5.1). Parameters: ωp = 15 eV (Al), εc = 12.5.

Our numerics of the reflection and transmission spectra, R
and T , based on exact Eqs. (3.5), for the unperturbed by the
QW setup constructed from Si leads a and Al gap layers b
are drawn in Fig. 8. The characteristic parameters are given
in the figure caption. For the metal permittivity, we employ
the Drude model, in which the displacement current and the
electron relaxation rate νmet is taken into account for more
accuracy:

εb(ω) = 1 − ω2
p

ω(ω + iνmet)
. (5.7)

Nevertheless, we have neglected the magneto-optical effect
in Eq. (5.7) considering that in comparison with the applied
range of high wave-frequency ω, the cyclotron frequency
� = eB0/m∗c of the external dc magnetic field B0 is relatively
small, �2 
 |ω + iνmet|2, where m∗ is the effective electron
mass. To identify the origin of the perfect transmission and
null reflection, we also place the relevant dispersion curves
ω = ωs(kz ) of the guided modes calculated from Eq. (5.4) and

FIG. 8. Reflectivity R and transmissivity T , Eqs. (3.5), versus
wave number kz and frequency h̄ω of the unperturbed setup with
metal gap layers b. The dashed white lines represent the dispersion
curves k = ks(kz ) of localized modes. Parameters: εa(ω) (Si) is the
same permittivity mentioned in Fig. 4; ωp = 15 eV, νmet = 5.55 ·
10−3ωp (Al); db = 20 nm, εc = 12.5, dc = 296 nm.

FIG. 9. Reflectivity R, transmissivity T, and absorption A,
Eqs. (3.5), versus kz and h̄ω for GaAs QW embedded in
In0.18Ga0.82As semiconductor slab which is surrounded by two Si
dielectric leads and separated from them by two Al layers, near
the eigenenergies of magnetoexciton states with (n, m) = (0, 0) (left
panels) and (n, m) = (1, 0) (right panels) and guided modes with
s = 2. The magnitude of the applied magnetic field everywhere is
B0 = 30 T.

shown by the dashed white lines. Even a passing glance on
Fig. 8 ensures that the perfect transmission with T = 1 and
R = 0 arises as a consequence of the resonant excitation of the
electromagnetic modes localized on the semiconductor slab c
sandwiched between the metal gap layers b, which are, respec-
tively, connected to the light emitter and receiver (leads a).

Figure 9 illustrates reflectivity R, transmissivity T , and
absorption A spectra as functions of the wave number kz and
frequency ω for the setup including metallic (Al) microcavity
with a slab c composed of two In0.18Ga0.82As barriers and a
GaAs QW. The left QW boundary is placed at the position
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FIG. 10. Reflectivity R versus frequency h̄ω (eV) for the QW
structure c surrounded by metal (Al) gap layers b at the incidence
angles θ = 39.8◦ (blue line), θ = 40.4◦ (purple line), θ = 41.5◦ (red
line), and θ = 42.7◦ (green line).

of antinode of the electric component for the localized mode,
which is x1 = dc/3. The QW width is x2 − x1 = 5 nm. The
other parameters are provided in the caption to Fig. 8. The
whole metallic microcavity is embbeded in a Si medium (the
leads a in Fig. 1). As in the previous section, our numerical
results correspond to the case when the Coulomb interac-
tion between the electron-hole pair is negligible. The optical
spectra were calculated near the magnetoexciton resonances
(n, m) = (0, 0) and (n, m) = (1, 0) (black dotted lines). The
dashed white line traces the dispersion curve k = ks(kz ),
Eq. (5.4), of the localized mode with index s = 2 also drawn
in Fig. 8. In Fig. 9, we can clearly see significant anticrossings
(Rabi splitting) of the spectral curves of localized mode and
magnetoexciton levels, which are attributed to the strong-
coupling regime.

Figure 10 shows the reflection spectra of the metallic
(Al) microcavity with an embedded GaAs QW mentioned
above, which were calculated for several incidence angles
θ = arcsin(kz/k

√
εa), under the same conditions as in Fig. 9.

At θ = 39.8◦ (blue line), a huge dip associated with excitation
of guided mode is revealed while the magnetoexciton levels
with (n, m) = (0, 0) and (n, m) = (1, 0) produce very small
dips. At θ = 40.4◦ (purple line), the spectrum k = k2(kz ),
Eq. (5.4), of localized mode coincides with magnetoexciton
state (n, m) = (0, 0). As a result of strong coupling, the com-
mon dip increases and splits into two bright ones. Here, we see
that the Rabi splitting is around 9 meV. For θ = 41.5◦ (red
line), the localized-mode dip has been shifted to an energy
higher than that of the magnetoexciton (n, m) = (0, 0). As
a consequence, the magnetoexciton (n, m) = (0, 0) feature
turns into a small single dip. At an incidence angle θ as
large as 42.7◦ (green line), the resonance between the elec-
tromagnetic guided mode of s = 2 and the magnetoexciton
(n, m) = (1, 0) emerges. Therefore, the corresponding enor-
mous dip splits into two bright dips with the Rabi splitting
being around 9 meV. In addition, the reflectivity spectra shown
in Fig. 10 manifests the very weak and practically imper-
ceptible coupling between the localized wave mode and the
magnetoexcitons with nonzero azimuthal quantum number
(m �= 0).

VI. DISCUSSION

The model and results presented above neglect the
Coulomb interaction between the electron and hole. Such
a limiting case in semiconductor QW heterostructures is
good enough to obtain physical insight of the studied phe-
nomena with mathematical transparency (see, for example,
Refs. [30,37,41]). In our paper, this approximation allowed
us to derive closed and explicit analytical expressions for
the elements of the surface-impedance matrix ζ̂ , Eqs. (2.18),
providing a deep understanding of the coupling between either
weakly or strongly localized modes and magnetoexcitons. The
approximation is valid when the magnetoexciton cyclotron
energy h̄ωc is much larger than the binding energy Eb as-
sociated with the Coulomb interaction. However, for typical
values of the magnetic field applied in experiments, which are
lower than a few tens of Teslas, the cyclotron and binding
energies turn out to be comparable. For this reason, it is
necessary to carry out numerical calculations. As established
in Refs. [30,37], the main effect of the Coulomb interaction
is a redshift of the magnetoexciton low-energy levels. Our
numerics performed for the here-considered setup, being com-
pared with the presented analytical predictions, confirm the
above conclusion. Indeed, for B0 = 30 T, and a GaAs QW
width x2 − x1 = 5 nm, h̄ωc ≈ 69 meV, Eb ≈ 19 meV [42],
the redshift is ≈15 meV. Being comparable with the binding
energy Eb, the shift, however, turns out to be about five times
smaller than the cyclotron energy h̄ωc. As a consequence,
the incidence angle θ range inside which the strong coupling
between the localized mode and magnetoexciton occurs, is
slightly shifted to lower values.

The results presented in our paper elucidate that generation
of electromagnetic localized (guided) modes, strongly cou-
pled to magnetoexcitons of a semiconductor slab with a QW,
can be accomplished with the use of the optical technique
based on the phenomenon of breaking of the TIR. Such a
phenomenon can result either from the resonantly enhanced
transmission (called frustrated TIR) in the case of unilateral
wave excitation [33,43–45] or from a resonant increase of
the light absorption (called attenuated TIR) at both unilateral
[33] and bilateral [31,32] wave excitations of an experimental
setup. For a metal microcavity (the setup with metallic gap
layers), the results might look unsurprising because the exci-
tation and strong coupling of those modes has been observed
in Refs. [17–21] as well as in Refs. [29,30] for the well-known
semiconductor quantum microcavities. However, the results
presented in our paper for a semiconductor slab covered by
dielectric (air) gap layers turn out to be rather unexpected,
since in such a heterostructure the electromagnetic modes
are weakly localized and their coupling to magnetoexcitons
confined to a QW is believed to be also weak [37]. Despite
this opinion, the here-calculated (kz, ω) spectra of reflection,
transmission, and absorption show that the resonant excita-
tion of weakly guided modes can be accompanied by their
strong coupling with magnetoexcitons of a QW. Moreover,
the energy splitting (≈13 meV, see Sec. IV) in the setup
composed of a semiconductor slab embedded in air, is greater
than those in the cases of semiconductor [30] and metal micro-
cavities (≈9 meV, see Sec. V). It should be commented that
the predicted coupling between magnetoexciton and guided
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modes has been classified as strong because of the appear-
ance of Rabi splitting. In the case of magnetoexcitons, the
appearance of very strong coupling requires the Rabi splitting
to be comparable with the magnetoexciton cyclotron energy.
In our paper, the Rabi splitting is 9 − 13 meV whereas the
magnetoexciton cyclotron energy is 69 meV at B0 = 30 T.

It is important to emphasize that our analytical results
and numerics reveal the notable sensitivity of the coupling
strength to the QW location with respect to the distribution
of a guided mode field inside the semiconductor. Due to this,
for any given mode the strong coupling can be achieved by
proper tuning of the QW position. Considering that there is
no energy losses in air, unlike metal, the air gap layers b can
have larger thickness that provide the localized modes to be
more pronounced. At the same time, the metal layer thickness
db should not be much larger than the corresponding electro-
magnetic skin depth δ to observe the resonant transmission.
From the experimental point of view, the latter is an advantage
of using air gap layers. In addition, the air gap layers b can also
be substituted by a low-refractive-index dielectric provided
conditions εb < εa and εb < εc are fulfilled to guarantee the
excitation of localized modes with breaking the TIR.

VII. CONCLUSIONS

We have analyzed the excitation of electromagnetic modes
localized on a semiconductor guiding slab and being strongly
coupled with magnetoexcitons of a QW included in the slab.
To this end, we consider the setup arranged for the application
of an optical technique based on the breaking of the TIR that
requires the use of two external leads (or prisms) and two gap
layers covering the semiconductor waveguide.

In the case of metallic gap layers, the setup can be re-
garded as the so-called metal microcavity (a metal involves
QW structure that serves as a microcavity). Here, the electro-
magnetic modes occur to be strongly localized. The calculated
spectra exhibit a resonant structure associated with the exci-
tation of the localized modes and their strong coupling with
confined magnetoexcitons. On the other hand, in a semicon-
ductor slab sandwiched between dielectric (air) gap layers, the
guided modes turn out to be weakly localized. Notwithstand-
ing, the resonant excitation of guided modes and their strong
coupling to confined magnetoexcitons is attained. It is note-
worthy that the Rabi splitting is greater for a semiconductor
slab covered by a dielectric (air) in comparison with that ob-
served in metal and semiconductor microcavities. Employing
gap layers of air or low-refractive-index dielectrics together
with two external leads/prisms can be useful in designing low
losses and simpler optical devices.

Our results are verified by comparing the unperturbed
by coupling dispersion curves of localized modes obtained
analytically and the numerically calculated resonant optical
spectra of reflectivity, transmissivity, and absorption.

There exists a common belief that almost all fundamental
electrodynamic phenomena, especially within terahertz and
optical frequency range, manifest themselves mostly in the
TM polarization. The classical examples are surface waves in
nonmagnetic media and plasmons. In our paper, we choose
the TE polarization to claim that it can also support interest-
ing and significant optical effects. Undoubtedly, the resonant

excitation of guided waves localized on semiconductor QW
structures and their strong coupling with magnetoexcitons
must be observed in TM polarization as well. However, an-
alytical treatment of the magnetoexciton-photon interaction
turns out to be more straightforward in the TE polarization due
to existence of the only component of electric field. In addi-
tion, as known, surface waves do not exist in TE polarization,
while localized waves are allowed. Therefore, it seems to us
that in the TE polarization, the effects analyzed in our paper
can be realized more apparently without accompaniment of
other effects. Thus, the TE polarization may be more suited
for experiments.
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APPENDIX: ON ELECTROMAGNETIC FIELD
DISTRIBUTION IN SEMICONDUCTOR SLAB WITH

QUANTUM WELL

Here, we reveal more details in deriving Eqs. (2.16) for the
electromagnetic field in slab c including the QW.

We start from explanation of the structure of the two-band
Hamiltonian Heh entering the basic Eq. (2.14). In Eq. (2.15),
the one-dimensional Hamiltonians H jx ( j = e, h) are respon-
sible for the quantization of the electron/hole motion along
the x axis (see Fig. 1),

H jx = − h̄2

2mjx

∂2

∂x2
j

+ Vj (x j ), j = e, h, (A1)

with mjx and Vj (x j ) being, respectively, the effective mass
and the steplike confining potential. Specifically, Vj (x j ) =
0 inside the QW where x1 < x j < x2 and Vj (x j ) = V j

0 > 0
otherwise.

The bidimensional Hamiltonian H2D in Eq. (2.15) for the
electron and hole under the quantizing action of the dc mag-
netic field B0 ‖ x, has the form

H2D = 1

2me‖

(
ih̄∇ρe

− e

c
Ae

)2

+ 1

2mh‖

(
ih̄∇ρh

+ e

c
Ah

)2

,

(A2)

where the elementary charge is denoted as e > 0, and mj‖
( j = e, h) implies the electron/hole effective mass in perpen-
dicular to B0 direction (parallel to the QW plane). In Eqs. (A1)
and (A2), it was assumed that the effective masses (mjx, mj‖)
are constants in the entire semiconductor slab c (0 � x �
dc). The vector potential A j of the dc magnetic field B0 =
{B0, 0, 0} is chosen in the following calibration:

A j = 1

2
B0 × ρ j, j = e, h. (A3)

The quantity My(rr ) that appears in Eqs. (2.13) and (2.14)
indicates the interband-transition dipole density, which is
taken within the so-called shell model [46]. Specifically,

My(rr ) = M0

2πρr
δ(xr )δ(ρr − 0), (A4)
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where factor M0 is called the integrated dipole transition ma-
trix, δ(. . .) implies the Dirac delta-function.

In line with the procedure proposed in Ref. [37], the so-
lution of the problem consisting of Eqs. (2.13) and (2.14)
is found as an expansion in the eigenfunctions of magne-
toexcitonic Hamiltonian Heh, Eq. (2.15), with the use of
Eqs. (A1)–(A4). After explicitly deriving the emerging inte-
grals and a little bit cumbersome algebra, we arrive at the
nonlocal relation between the excitonic polarization Py(x) and
the electric field Ey(x) of the electromagnetic wave:

Py(x) = 8πM2
0

∑
k,l,n,m

ψek (x)ψhl (x)
|Gn,m(kzrB)|2

εk,l,n,m − h̄(ω + iν)

×
∫ dc

0
ψ∗

ek (x′)ψ∗
hl (x

′)Ey(x′)dx′. (A5)

Here, the asterisk stands for complex conjugation.
As one can see, Eq. (A5) contains the electron/hole eigen-

functions, ψek (x) and ψhl (x), of Hamiltonians H jx, Eq. (A1).
They have different values depending on which region of
semiconductor slab c the electron/hole is located: inside the
cap-layer barrier (0 < x < x1), inside the QW (x1 < x < x2),
or inside the buffer-layer barrier (x2 < x < dc), see Fig. 1,

ψ jk =

⎧⎪⎪⎨
⎪⎪⎩

2Ajk sinh
(
�

j
kx

)
, 0 < x < x1

BjkeiK j
k x + Cjke−iK j

k x, x1 < x < x2

2Djke−�
j
k dc sinh

[
�

j
k (dc − x)

]
, x2 < x < dc.

(A6)
The discrete wave numbers K j

k and �
j
k in the QW and its

barriers, respectively, meet the standard definition via the
corresponding energy levels E j

k of the spatial quantization of
electron and hole:

K j
k =

√
2mjxE j

k

/
h̄, �

j
k =

√
2mjx

(
V j

0 − E j
k

)/
h̄. (A7)

The amplitudes Ajk , Bjk , Cjk , Djk and the eigenenergies E j
k

are numerically calculated from the set of homogeneous equa-
tions which are conventionally obtained from the boundary
conditions of continuity for ψ jk and its derivative at the QW
interfaces x j = x1 and x j = x2 and normalizing the respective
eigenfunction. In particular, the eigenenergies E j

k are derived
from transcendental dispersion relation:

K j
k

�
j
k

tanh
[
�

j
k (dc − x2)

]

=
cos

[
K j

k (x2 − x1)
] + �

j
k

K j
k

coth
[
�

j
kx1

]
sin

[
K j

k (x2 − x1)
]

sin
[
K j

k (x2 − x1)
] − �

j
k

K j
k

coth
[
�

j
kx1

]
cos

[
K j

k (x2 − x1)
] .

(A8)

The function Gn,m(kzrB) is directly related to the eigen-
function of the bidimensional Hamiltonian H2D, Eq. (A2),
providing quantization of the electron-hole pair state by the
external dc magnetic field B0:

Gn,m(kzrB) = (2π )−1/2

rB

(
n!

2|m|(n + |m|)!
)1/2

eiπm/2

× (kzrB)|m| L|m|
n [(kzrB)2/2]e−(kzrB )2/4. (A9)

The characteristic magnetic length rB is defined by

rB = (ch̄/eB0)1/2, (A10)

and L|m|
n represents the associated Laguerre polynomials.

In accordance with Eq. (A9), the quantum number m =
0,±1,±2,± . . . defines the angular momentum of the exci-
ton center-of-mass along the magnetic field B0. Both quantum
numbers n = 0, 1, 2, . . . and m determine the Landau levels
corresponding to the relative motion of the electron-hole pair
in the QW plane as follows from the expression for the total
quantum magnetoexciton energy εk,l,n,m:

εk,l,n,m = Eg + Ee
k + Eh

l + h̄ωc

[
n + 1

2
(mγ + |m| + 1)

]
;

ωc = eB0

cμ
, μ = me‖mh‖

me‖ + mh‖
, γ = mh‖ − me‖

me‖ + mh‖
,

(A11)

with the magnetoexciton cyclotron frequency ωc containing
the reduced excitonic mass μ.

In this parer, for definiteness, we consider the effect of
magnetoexcitons whose electrons and holes occupy the lowest
levels of the spatial quantization, respectively, with quantum
numbers k = 1 and l = 1. In such a case, Eq. (A5) for the
polarization transforms into

Py(x) = 8πM2
0

∑
n,m

ψe1(x)ψh1(x)
|Gn,m(kzrB)|2

ε1,1,n,m − h̄(ω + iν)

×
∫ dc

0
ψ∗

e1(x′)ψ∗
h1(x′)Ey(x′)dx′, (A12)

which significantly simplifies the problem. Indeed, the inte-
gral Eq. (2.12) for the electric field Ey(x) with Py(x) in the
form of Eq. (A12) is readily resolved, giving rise to the ana-
lytical expressions (2.16) for the electric and magnetic fields.
The introduced functions, I (x) and J (x), are defined by

I (x) = k2

kc
W D1

(
1 + k2

kc
WV

)−1

sin(kcdc)F(x), (A13a)

J (x) = k2

kc
W D2

(
1 + k2

kc
WV

)−1

sin(kcdc)F(x), (A13b)

F(x) =
∫ x

0
ψe1(x′)ψh1(x′) sin[kc(x − x′)]dx′

+ cos(kcx)

sin(kcdc)

∫ dc

0
ψe1(x′)ψh1(x′) cos[kc(dc − x′)]dx′,

(A13c)

with following auxiliary notations:

W = 8πM2
0

∑
n,m

|Gnm(kzrB)|2
ε1,1,n,m − h̄(ω + iν)

; (A14a)

V =
∫ dc

0
ψ∗

e1(x)ψ∗
h1(x)F(x)dx; (A14b)

D1 =
∫ dc

0
ψ∗

e1(x)ψ∗
h1(x) cos[kc(dc − x)]dx; (A14c)

D2 =
∫ dc

0
ψ∗

e1(x)ψ∗
h1(x) cos(kcx)dx. (A14d)
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Note that I ′(0) = J ′(0) = 0 and I ′(dc) = J ′(dc) = 0 by defi-
nition (A13), providing the identity of Eq. (2.16b) at borders
x = 0 and x = dc.

The values of functions I (x) and J (x) at x = 0 and x = dc

determine the matrix ζ̂ of surface impedances (2.17), (2.18).
According to Eqs. (A13) and (A14), such values read

I (0) = k2

kc
W |D1|2

(
1 + k2

kc
WV

)−1

, (A15a)

I (dc) = k2

kc
W D1D∗

2

(
1 + k2

kc
WV

)−1

, (A15b)

J (0) = k2

kc
W D∗

1D2

(
1 + k2

kc
WV

)−1

, (A15c)

J (dc) = k2

kc
W |D2|2

(
1 + k2

kc
WV

)−1

. (A15d)

[1] J. A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand,
C. Genet, V. Palermo, P. Samorì, and T. W. Ebbesen, Adv.
Mater. 25, 2481 (2013).

[2] A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta,
and F. Nori, Nat. Rev. Phys. 1, 19 (2019).

[3] Y. Yamamoto, Coherence, Amplification, and Quantum Effects
in Semiconductor Laser (Wiley, New York, 1991), Chap. 13,
p. 561.

[4] V. Savona, L. C. Andreani, P. Schwendimann, and A.
Quattropani, Solid State Commun. 93, 733 (1995).

[5] Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael,
and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).

[6] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys.
Rev. Lett. 69, 3314 (1992).

[7] G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S.
Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R.
Vladimirova, and M. A. Kaliteevski, Phys. Solid State 41, 1223
(1999).

[8] R. Houdré, Phys. Status Solidi B 242, 2167 (2005).
[9] B. Deveaud, The Physics of Semiconductor Microcavities

(Wiley-VCH, Weinheim, 2007).
[10] H. M. Gibbs, G. Khitrova, and S. W. Koch, Nat. Photonics 5,

275 (2011).
[11] J. B. Khurgin, Solid State Commun. 117, 307 (2001).
[12] D. S. Citrin and J. B. Khurgin, Phys. Rev. B 68, 205325 (2003).
[13] A. Vasanelli, Y. Todorov, and C. Sirtori, C. R. Phys. 17, 861

(2016).
[14] C. R. Gubbin, S. A. Maier, and S. Kéna-Cohen, Appl. Phys.

Lett. 104, 233302 (2014).
[15] G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De

Liberato, C. Ciuti, D. Schuh, C. Reichl, W. Wegscheider, M.
Beck, and J. Faist, Science 335, 1323 (2012).

[16] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano,
A. Marx, and R. Gross, Nat. Phys. 6, 772 (2010).

[17] P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M.
Whittaker, M. S. Skolnick, and S. Walker, Appl. Phys. Lett. 81,
3519 (2002).

[18] A. Macridin, M. Jarrell, T. Maier, P.R.C. Kent, and E.
D’Azevedo, Phys. Rev. Lett. 97, 036401 (2006).

[19] M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani,
Phys. Status Solidi C 6, 288 (2009).

[20] T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen,
Phys. Rev. Lett. 106, 196405 (2011).

[21] G. H. Lodden and R. A. Holmes, Appl. Phys. Lett. 98, 233301
(2011).

[22] T. Ellenbogen, P. Steinvurzel, and K. B. Crozier, Appl. Phys.
Lett. 98, 261103 (2011).

[23] C. Brimont, L. Doyennette, G. Kreyder, F. Réveret, P. Disseix,
F. Médard, J. Leymarie, E. Cambril, S. Bouchoule, M.
Gromovyi, B. Alloing, S. Rennesson, F. Semond, J. Zúñiga-
Pérez, and T. Guillet, Phys. Rev. Appl. 14, 054060 (2020).

[24] P. M. Walker, L. Tinkler, M. Durska, D. M. Whittaker, I. J.
Luxmoore, B. Royall, D. N. Krizhanovskii, M. S. Skolnick,
I. Farrer, and D. A. Ritchie, Appl. Phys. Lett. 102, 012109
(2013).

[25] J. Ciers, J. G. Roch, J. F. Carlin, G. Jacopin, R. Butté, and
N. Grandjean, Phys. Rev. Appl. 7, 034019 (2017).

[26] R. Yan, D. Gargas, and P. Yang, Nat. Photonics 3, 569 (2009).
[27] P. Paniagua-Domínguez, R. Grzela, J. Gómez-Rivas, and J. A.

Sánchez-Gil, Nanoscale 5, 10582 (2013).
[28] D. R. Abujetas, J. Feist, F. J. García-Vidal, J. G. Rivas, and J. A.

Sánchez-Gil, Phys. Rev. B 99, 205409 (2019).
[29] J. Wilkes and E. A. Muljarov, Phys. Rev. B 94, 125310 (2016).
[30] P. L. Valdés-Negrin, B. Flores-Desirena, M. Toledo-Solano, and

F. Pérez-Rodríguez, AIP Adv. 10, 065223 (2020).
[31] S. S. Apostolov, N. M. Makarov, and V. A. Yampol’skii, Phys.

Rev. B 97, 024510 (2018).
[32] N. Kvitka, S. S. Apostolov, N. M. Makarov, T. Rokhmanova,

A. A. Shmat’ko, and V. A. Yampol’skii, Phys. Rev. B 103,
104512 (2021).

[33] S. Cortés-López and F. Pérez-Rodríguez, Low Temp. Phys. 46,
531 (2020).

[34] A. Stahl and I. Balslev, Electrodynamics of the Semiconductor
Band Edge (Springer, Berlin, Heidelberg, 1987).
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