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Crucial role of vibrational entropy in the Si(111)-7 × 7 surface structure stability
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We investigate the relative thermodynamic stability of the 3 × 3, 5 × 5, 7 × 7, 9 × 9, and infinitely large
structures related to the dimer-adatom-stacking fault family of Si(111) surface reconstructions by means of
first-principles calculations. Upon accounting for the vibrational contribution to the surface free energy, we find
that the 5 × 5 structure is more stable than the 7 × 7 at low temperatures. While a phase transition is anticipated
to occur at around room temperature, the 7 × 7 → 5 × 5 transformation upon cooling is hindered by the limited
mobility of Si atoms. The results not only flag a crucial role of vibrational entropy in the formation of the 7 × 7
structure at elevated temperatures, but also point to its metastable nature below room temperature.
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I. INTRODUCTION

First-principles electronic structure methods, most notably
density functional theory (DFT), have been widely used as a
powerful tool to solve surface structures and to study their
electronic properties. Due to its technological importance,
semiconductor silicon has been a benchmark for studying sur-
face physics, with several surface structures being extensively
investigated [1–10]. When Si surface structures are composed
of different building blocks as, for example, 2 × 1, 2 × 2, and
7 × 7 reconstructions on Si(111), their surface energy differ-
ences are usually significant (above 1 meV/Å2), facilitating
a reliable identification of the lowest energy atomistic con-
figuration [11,12]. In the above, the 2 × 1 structure consists
of π -bonded chains [13], 2 × 2 consists of Si adatoms on
T4 sites [14], while the lowest energy 7 × 7 reconstruction is
described by the complex dimer-adatom-stacking fault (DAS)
model [15]. The DAS model describes a series of structures
belonging to the (2n + 1) × (2n + 1) family of reconstruc-
tions observed on Si(111) and Ge(111) surfaces (n being a
positive integer): 3 × 3, 5 × 5, 7 × 7, 9 × 9, and so on.

However, if the competing surface structures belong to the
same family of reconstructions, i.e., when they are made of
common building blocks, it becomes difficult to determine
which one has the lowest formation energy, and ultimately
to find the one that should be observed. For instance, the
c(4 × 2) and p(2 × 2) reconstructions on Si(100) are both
composed of Si dimers, but because they buckle with dif-
ferent periodicity, their reported energy difference is as low
as 0.7 meV/dimer (0.02 meV/Å2) [16]. We note that in
spite of such low energy difference, the calculated lowest
energy structure [c(4 × 2)] is in agreement with experimental
scanning tunneling microscopy (STM) data obtained at low
temperature.

The 5 × 5 and 7 × 7 DAS reconstructions on the Si(111)
surface provide us with another example of two structures
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with very close surface formation energies. Two previous
attempts to compare the surface formation energies of DAS
reconstructions on Si(111) within DFT are singled out. In
Ref. [17], formation energies of 3 × 3, 5 × 5, and 7 × 7 re-
constructed Si(111) surfaces were compared, and the 7 × 7
reconstruction was claimed as the most favorable structure.
This result agrees with many experiments demonstrating that
the 7 × 7 is the most frequently observed structure on Si(111)
below the 7 × 7 ↔ 1 × 1 order-disorder transition tempera-
ture at around 1100 K [18]. However, two years later, Needels
[19] provided evidence that the above calculations suffered
from poor Brillouin zone (BZ) sampling, that once adequately
corrected, resulted in a different energy ordering, with the
5 × 5 surface becoming the ground state (more stable than the
7 × 7 reconstruction).

The second attempt to calculate the formation energy
of Si(111) DAS reconstructions was carried out by Solares
et al. [20]. The Si(111)-7 × 7 came out as the one with
lowest formation energy, and once again, was deemed the
most stable. However, the calculated energy difference be-
tween 5 × 5 and 7 × 7 structures of only 4 meV/1 × 1 cell
(0.3 meV/Å2), which combined with a reported accuracy
of about 28 meV/1 × 1 cell (2.2 meV/Å2) [20], make their
conclusions questionable. The large error stems from several
calculation settings, most notably the use of thin 4-bilayer
(BL) slabs, insufficient number of k points to sample the BZ,
and the use of the experimental lattice parameter (5.43 Å)
instead of the calculated one (5.48 Å) in the construction
of the models [20]. The latter factor introduces an artificial
strain field across the slabs which alters the calculated energy
differences of 5 × 5 and 7 × 7 surface structures.

In summary, the available picture regarding the stability
ordering of the DAS structures on Si(111) is rather unclear.
In particular, our understanding of the physics that governs
the formation of the most stable Si surface is covered by
error bars. Importantly, both studies described above are based
on calculations of potential (static) energies, i.e., for 0 K
temperature only. It is a general practice to neglect thermal
excitations as well as the contribution of entropy to the free
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energy of formation of surfaces. However, given the small en-
ergy difference between 5 × 5 and 7 × 7 surface structures, it
would be important not only to account for the above referred
sources of uncertainty (slab thickness, BZ sampling, artificial
strain neutralization), but also to assess the effect of entropy,
especially the contribution of vibrational degrees of freedom,
usually the dominant finite-temperature contribution to the
surface free energy of formation of semiconductor surfaces.

The aim of the present work is to find well-converged en-
ergy differences between several members of the DAS family
of structures on the Si(111) surface, size the entropy contri-
bution to the free energy of formation of 5 × 5 and 7 × 7
reconstructions, and finally understand the driving stabiliza-
tion factors. We find that while the 5 × 5 reconstruction is
the most favorable structure at T = 0 K, vibrational freedom
stabilizes the 7 × 7 reconstruction, with a crossover of the
respective free energies of formation taking place close to
room temperature. The observation of metastable Si(111)-
7 × 7 below room temperature can be explained by a large
barrier along the 7 × 7 → 5 × 5 transition that involves the
motion of Si atoms during cooling.

II. CALCULATION DETAILS, RESULTS, AND DISCUSSION

A. Relative formation energies of Si(111) surfaces
with DAS reconstructions at 0 K temperature

The calculations were carried out using the pseudopotential
[21] density functional theory SIESTA code [22,23]. Both the
local density approximation (LDA) of Perdew and Zunger
(PZ) [24], as well as the generalized gradient approximation
(GGA) of Perdew et al. (commonly referred as PBEsol) [25],
were employed for the description of the exchange-correlation
(XC) interactions between electrons. Although it was pre-
viously shown that DAS Si(111) surfaces are diamagnetic
[20], our calculations were spin-unrestricted. The valence
states were expressed as linear combinations of Sankey-
Niklewski-type numerical atomic orbitals [22]. In the present
calculations, polarized double-ζ functions were placed on all
atomic coordinates. This means two sets of s and p orbitals
plus one set of d orbitals on silicon atoms, and two sets of
s orbitals plus one set of p orbitals on hydrogen atoms. The
electron density and potential terms were calculated on a real-
space grid with spacing equivalent to a plane-wave cutoff of
200 Ry.

For total energy calculations we used Si(111) slabs of 6
BLs separated by a 30-Å-thick vacuum layer. Dangling bonds
at the bottom side of the slabs were saturated by hydrogen,
while the top layers were modified according to the DAS
3 × 3, 5 × 5, 7 × 7, and 9 × 9 atomic models [15], as well as
a 2 × 2 model, consisting of adatoms on T4 sites. A graphical
description of the surface structures is presented in Figs. 1(a)
(top view) and 1(b) (cross-sectional view along the [11̄0]
direction).

The total number of Si atoms in the slabs were the fol-
lowing: 106 for 3 × 3, 300 for 5 × 5, 592 for 7 × 7, 982
for 9 × 9, and 49 for 2 × 2. The positions of all slab atoms
(except for the H atoms and Si atoms in the bottom bilayer)
were fully optimized until the atomic forces became less than
1 meV/Å. BZ integration was discretized as summations over

FIG. 1. (a) Top view of 3 × 3, 5 × 5, 7 × 7, and 9 × 9 structures
on Si(111) surface according to the DAS model. Dark-shaded large
circles are adatoms. Light-shaded small circles are atoms in the upper
bilayer and in the surface dimes. Black dots are atoms in the bulk
unreconstructed bilayer. Thick rods edging the perimeter of the cells
are dimers. For the 9 × 9 structure the unit cell is delimited by a
yellow rhombus, triangles outline the 2 × 2 domains in faulted and
unfaulted half unit cells, and the blue rhombus shows a 2 × 2 unit cell
within a faulted half. (b) Sectional view in the (11̄0) plane cutting
the long diagonal of the 9 × 9 surface unit cell, showing the nearest-
neighbor bonding structure.

Monkhorst-Pack (MP) k-point meshes [26]. The following
BZ-sampling schemes were applied: MP-6 × 6 × 1 for 3 × 3,
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MP-4 × 4 × 1 for 5 × 5, MP-3 × 3 × 1 for 7 × 7, MP-2 ×
2 × 1 for 9 × 9, and MP-10 × 10 × 1 for 2 × 2 surface slabs.
These sampling schemes lead to approximately the same k-
point density in all BZs. We found that the above calculation
settings provide a relative surface energy convergence within
0.1 meV/Å2.

Although experiments are normally performed under
constant pressure, any theoretical description of surface ther-
modynamics is more conveniently carried out under constant
volume. That avoids dealing with anharmonic effects and the
cumbersome connection between temperature and volume via
thermal expansion coefficients. As demonstrated by Estre-
icher et al. [27,28], the small thermal expansion of crystalline
Si leads to comparable constant-volume and constant-pressure
free energies up to a few hundred degrees Celsius. This is
enough for the present purpose. However, at higher tem-
peratures, anharmonicity and electronic excitations become
important and the results should be considered as qualitative.

The Helmholtz free energy (per unit area) of an infi-
nite and periodic semiconductor surface must account for
electronic and vibrational contributions, f (T ) = felec(T ) +
fvib(T ). Magnetic degrees of freedom are not relevant since
all structures considered are diamagnetic. Rotational motion
and configurational entropy are also excluded for obvious rea-
sons. The magnitude of the electronic term ( felec) is dominant,
although it has a weak T dependence. On the other hand, the
vibrational term accounts for a small zero-point energy (ZPE)
at T = 0 K, but shows a relatively stronger T dependence.

Most often, felec is replaced by the internal electronic sur-
face energy at absolute zero temperature, uelec(T = 0 K) = γ ,
as found from the stationary solution of the many-body elec-
tronic problem within DFT. On the other hand, fvib is usually
neglected, making f (T ) = γ , where for the sake of conve-
nience the electronic potential energy γ is hereafter referred
to as surface energy. This approximation is well justified in
many cases, since γ is usually much larger than the other
terms. However, as will be shown below, this approach has
been hiding an important driving force that determines the
structure of the Si(111) surface.

We are interested in finding relative surface free energies
(� f ) of Si(111) reconstructions. For that we will consider
the Si(111)-5 × 5 (DAS model) as reference. The energy of
a Si(111)-N × N surface relative to that of Si(111)-5 × 5
(� fN×N = fN×N − f5×5) is obtained from

� fN×N = 52FN×N − N2F5×5 − μ(52XN×N − N2X5×5)

N252S1×1
, (1)

where to first approximation we start by assuming that
� fN×N = �γN×N , the slab free energy FN×N = EN×N with
EN×N being the total electronic energy of a particular N × N
relaxed slab made of XN×N Si atoms (N = 3, 5, 7 or 9), and
S1×1 the area of the Si(111)-1 × 1 surface unit cell. Anal-
ogously, the Si chemical potential is approximated to the
internal electronic energy per Si atom in the bulk at T = 0 K,
μ = μ0, accounting for any stoichiometric mismatch between
N × N and 5 × 5 slabs. This quantity was found from a 1 × 1
bulklike slab of 3 BL thickness with MP-20 × 20 × 8 for BZ
sampling.

In order to estimate the error bar due to different imple-
mentations of DFT, including basis, pseudopotentials, and
exchange-correlation functionals, we also calculated γ for
Si(111)-7 × 7 and Si(111)-5 × 5 using the VASP code [29,30].
These calculations were carried out within the GGA to spin-
unrestricted density functional theory, both without and with
a correction for dispersion forces (PBE [31] and PBE-D3
[32,33], respectively). Both VASP and SIESTA calculations used
identical conditions, except that in the former case, being a
plane-wave code, the Kohn-Sham states were described with
plane waves with kinetic energy up to 250 eV.

It is possible to calculate the formation energy of an in-
finitely large DAS surface. To do this, we note that the upper
bilayer of the DAS unit cell consists of two halves: One of
them with and the other without stacking faults (faulted and
unfaulted halves in short), as represented in Fig. 1. These
halves are linked together by dimers on the surface [15]. They
also contain adatoms on top, arranged according to a 2 × 2
periodicity. With increasing size of the DAS unit cell, the con-
tribution of dimers to the surface energy scales with N , while
that from faulted and unfaulted areas scales with N2. Hence,
for N ∼ ∞, the contribution of dimers can be neglected and
the surface energy is simply the average between energies
of two (111)-2 × 2 surfaces composed of adatoms: with and
without stacking faults, respectively.

The surface energy difference between 9 × 9 and 7 × 7
reconstructed Si(111) surfaces was estimated from experi-
mental STM data in Ref. [34] as less than 4 meV/1 × 1 cell
(0.3 meV/Å2). This figure is somewhat lower but comparable
to the calculated energy differences of 0.42 meV/Å2 (LDA)
and 0.47 meV/Å2 (GGA) as derived from Table I. Accord-
ing to Table I, the 3 × 3 reconstructed Si(111) surface has a
significantly higher surface energy than the 5 × 5, 7 × 7, and
9 × 9 reconstructed surfaces. The Si(111)-5 × 5 surface has
the lowest surface energy, and that increases monotonically
with increasing size of the unit cell. The surface energy of
the infinitely large DAS reconstruction is substantially (about
1.5 meV/Å2) higher than that of 3 × 3.

It is well known from experiments that 7 × 7 is the most
frequently observed surface reconstruction of Si(111) at tem-
peratures below the 7 × 7 ↔ 1 × 1 order-disorder structural
transition. Therefore, the data of Table I are in seeming
disagreement with the experimental results. However, consid-
ering the small energy difference between 5 × 5 and 7 × 7
reconstructed surfaces, it is important to inspect the relative
stability of both surfaces at finite temperatures, accounting for
contributions of vibrational and electronic excitations to the
surface free energy.

B. Contribution of vibrational and electronic excitations
to the free energies of Si(111)-5 × 5 and Si(111)-7 × 7 surfaces

The vibrational free energy of 5 × 5 and 7 × 7 recon-
structed Si(111) surfaces was obtained within the quasi-
harmonic approximation, according to the usual procedure
employed for defects and surfaces in semiconductors and
metals [27,28,35,36]. This approach is applicable to silicon
up to few hundred Kelvin [28,37], and in particular to Si(111)
DAS surfaces, which form unique and stable minimum energy
structures. For surfaces with structural degrees of freedom,
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TABLE I. Relative surface energies (�γN×N ) of DAS-reconstructed Si(111) surfaces (meV/Å2) calculated according to Eq. (1) from first
principles, using local basis and plane-wave DFT software packages, and several XC functionals. The energy of the Si(111)-5 × 5 surface was
taken as reference.

�γN×N

DFT software XC functional 3 × 3 5 × 5 7 × 7 9 × 9 Infinity

SIESTA [22] LDA (PZ [24]) 2.58 0 0.15 0.57 3.95
GGA (PBEsol [25]) 2.32 0 0.23 0.7 4.16

VASP [29,30] GGA (PBE [31]) 0 0.31
GGA (PBE-D3 [32,33]) 0 0.36

e.g., Si(100) [16] and Si(331) [38], one would have to con-
sider configurational entropy and anharmonicity [36,39]. For
those cases, the potential energy surface contains multiple
minima separated by low energy barriers due to twofold buck-
ling of small Si structures [forming double well potentials for
the case of buckled dimers on Si(100)].

The relative surface free energy can be calculated using
Eq. (1), where � fN×N = �γN×N + � fN×N,vib now includes a
vibrational contribution (in addition to the electronic potential
difference �γN×N already reported in the previous section).
The quantity � fN×N,vib can be calculated by replacing FN×N

in Eq. (1) by the vibrational contribution to the Helmholtz free
energy of a slab [40],

FN×N,vib =
∑

k

h̄ωk

2
+ kBT

∑
k

ln

[
1 − exp

(
− h̄ωk

kBT

)]
, (2)

and μ = μvib is now the vibrational part of the Si chemical
potential (see below). The summation of Eq. (2) runs over
all vibrational mode frequencies, ωk , of the slab (excludes 3
translational modes), and kB is the Boltzmann constant. The
first term on the right side of Eq. (2) gives the ZPE. This is a
T -independent quantity, which could in principle be regarded
as a potential term, and alternatively be considered as a small
correction to the γ values of Table I.

The phonon frequencies were calculated using the frozen
phonon scheme as implemented in the VIBRA utility of the
SIESTA software package [23]. Only zone-center phonons
(q = �) were calculated. This is justified by the large lateral
dimensions of 5 × 5 and 7 × 7 reconstructions (a5×5 ≈ 19 Å,
a7×7 ≈ 27 Å), corresponding to small BZ surface areas and
rather weak phonon dispersion. For the calculation of the
dynamical matrix, we employed 4-BL-thick slabs (≈10 Å
thickness). All Si atoms of the three topmost BLs were dis-
placed by 0.02 Å from their relaxed positions along all three
Cartesian coordinates. These correspond to a total of 150 and
298 dynamical atoms for the 5 × 5 and 7 × 7 reconstructions,
respectively. Thicker slabs would require a computational
power out of our reach. However, as we will show below,
the calculated vibrational free energy of a 64-atom supercell
[with a (super)lattice spacing a ≈ 11 Å)] is already converged
and the corresponding vibrational entropy agrees well with the
measurements.

The vibrational contribution to the Si chemical potential,
μvib, was calculated using Eq. (2) for a cubic bulk Si cell. In
order to test the convergence with respect to the cell size, we
performed calculations using Si8 (a ≈ 5 Å), Si64 (a ≈ 11 Å),

and Si216 (a ≈ 16 Å) bulk cubic cells. Results within GGA
PBEsol are shown in Fig. 2; the LDA PZ results are com-
parable. It is clear from this figure that the values for Si64

and Si216 clusters are very close: Their difference amounts to
�μvib = 4 meV/atom at T = 800 K, which translates into an
error bar of only 0.03 meV/Å2 in the calculation of � f7×7,vib

using Eq. (1). These findings are corroborated by the results
of Estreicher et al. [28] and by convergence tests reported by
Gomes et al. [37], who found no significant improvement in
the calculated specific heat of Si when moving from a 64-atom
cell to a 216-atom cell.

We also calculated the ZPE and vibrational entropy per
Si atom, svib = −(∂μvib/∂T )V , for bulk Si. The results per
molar unit are shown in Table II and they are close to both
experimental data [41,42] and previous calculations [27].

The calculated relative energy � f7×7,vib = f7×7,vib −
f5×5,vib as a function of T is shown in Fig. 3 for LDA PZ
[24] and GGA PBEsol [25] XC functionals; a Si216 super-
cell was used for the calculation of μvib. At a glance, LDA
and GGA results are very similar and indicate a decrease
of � f7×7,vib (stabilization of the 7 × 7 reconstruction) with
increasing temperature. We can only explain this feature with
a faster increase of vibrational entropy with temperature for

FIG. 2. Calculated vibrational contribution to the Si chemical
potential μvib(T ) using different supercell sizes (see legend) as a
function of temperature. The XC functional employed was GGA
PBEsol.
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TABLE II. Calculated (Calc.) and experimental (Expt.) values of
ZPE (kJ/mol) and vibrational entropy svib (J/K mol) of crystalline Si.
The first two rows of calculated data correspond to the present work.

ZPE svib(300 K) svib(800 K)

Calc.: LDA PZ, Si216 5.980 18.896 40.847
Calc.: GGA PBEsol, Si216 5.871 19.327 41.350
Calc.: LDA PZ, Si64 [27] 6.201 18.395 40.308
Expt. [41,42] 6.008 18.820 41.568

the Si(111)-7 × 7 surface [compared to that of Si(111)-5 × 5].
The identification of specific vibrational modes and surface
bonds at the origin of this effect may not be simple. As shown
by Murali et al. [35] for the case of defects in metals, the
change in vibrational entropy is not necessarily accounted
for by well-identifiable localized defect modes, but mostly
by resonant modes associated with vibrations in the strained
regions surrounding the defects. The lower their frequency,
the more likely it is for such resonances to become thermally
populated at a certain temperature, and therefore the higher
their contribution to the entropy change.

Our results suggest a relative softening of the Si(111)-7 ×
7 surface and subsurface bonds when compared to Si(111)-
5 × 5. That would make the excited vibrational spectrum of
the Si(111)-7 × 7 more dense and accessible with temperature
raising.

At this point, an obvious question is whether electronic
entropy also has a role to play. It has been shown that gap
states deeper than ∼0.1 eV from the band edges impact no
more than a few tens of meV to the electronic free energy
of formation, even at several hundred Kelvin [27,28]. Ex-
plicit calculations of the electronic free energy of the TiN
semiconductor surface confirms that electronic excitations are
only significant above T ≈ 600–700 K [39]. Sommerfeld’s

FIG. 3. Calculated � f7×7,vib = f7×7,vib − f5×5,vib and
� f SOM

7×7,elec = f SOM
7×7,elec − f SOM

5×5,elec as a function of temperature
obtained within LDA PZ and GGA PBEsol. The dashed lines
highlight the ranges of temperatures and � f7×7,vib values where the
phase transition 5 × 5 ↔ 7 × 7 is expected to take place.

approximation to the electronic free energy of metals [43],

f SOM
elec (T ) = −π2

6
(kBT )2D(EF), (3)

provides us with an approximate and simple quantification
of electronic entropy of a metallic or semimetallic surface.
Accordingly, f SOM

elec is proportional to the density of electronic
states at the Fermi level, D(EF). Even for a Si(111)-7 × 7
reconstruction, where the gap between highest occupied and
lowest unoccupied surface states can be as narrow as few tens
of meV [44], D(EF) is rather small, implying that the differ-
ence �D(EF) between D(EF) of two close surfaces (such as
5 × 5 and 7 × 7 members of the DAS family) should be also
small. Sommerfeld’s electronic free energy of Si(111)-7 × 7
with respect to the same quantity for Si(111)-5 × 5, namely
� f SOM

7×7,elec, was calculated using Eqs. (1) and (3), assuming a
vanishing electronic entropy from the bulk Si chemical poten-
tial (μ = μ0). We applied a 0.1-eV-wide Gaussian broadening
to the Kohn-Sham energy levels in the evaluation of D(EF).
The results obtained within GGA PBEsol are shown in Fig. 3
as open triangles. Like � f7×7,vib, the electronic surface free
energy decreases with increasing temperature (also working
toward a stabilization of the 7 × 7 reconstruction). This is
explained by approximately 8% higher density of dangling
bonds on the 7 × 7 reconstructed surface than on the 5 × 5
surface, and therefore by a higher density of states of the 7 × 7
reconstruction within the Si gap. However, as anticipated, the
calculated values of � f SOM

7×7,elec are at least one order of magni-
tude lower than � f7×7,vib, suggesting that electronic entropy
can be safely neglected. Hence, to a good approximation, the
free-energy difference between 7 × 7 and 5 × 5 reconstructed
surfaces is simply given by � f7×7 = �γ7×7 + � fvib,7×7.

We reported already (see Table I) that the electronic sur-
face energy �γ7×7 is positive and dominates the surface free
energy at low temperatures (favoring the 5 × 5 structure).
On the other hand, � fvib,7×7 (Fig. 3) is increasingly nega-
tive with temperature (favoring the 7 × 7 structure), meaning
that there is a phase transition temperature above which
the Si(111)-7 × 7 becomes more stable. Considering that
�γ7×7 ≈ 0.2–0.3 meV/Å2 (Table I) the transition tempera-
ture is found at Ttrans ≈ 300–400 K, i.e., slightly above room
temperature (Fig. 3).

The usual way to prepare a clean Si(111) surface involves
sample flashing at 1250 ◦C for about 1 min followed by cool-
ing to the desired temperature [10]. Above the 7 × 7 ↔ 1 × 1
order-disorder phase transition temperature at T ≈ 1100 K,
the Si(111) surface contains a high density of mobile Si
adatoms [34] and exhibits a 1 × 1 diffraction pattern reflect-
ing the Si substrate below the moving adatoms. The 7 × 7
reconstruction forms at around the transition temperature
and persists at lower temperatures. Our results are in agree-
ment with these well-established observations; namely, the
Si(111)-7 × 7 reconstruction is the most stable across a wide
temperature range up to T = 1100 K.

However, the 7 × 7 structure on Si(111) was also observed
below room temperature with no sign of structure change to
5 × 5 [44]. The most likely explanation for this experimental
fact is the existence of a high kinetic barrier making the
5 × 5 ↔ 7 × 7 transformation unlikely. The hindered diffu-
sion of Si atoms on 5 × 5 and 7 × 7 reconstructed surfaces
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below room temperature provides an example of an effective
slowing factor. Other effects, including a barrier for Si atom
detachment, may be invoked as well. Indeed, the 5 × 5 and
7 × 7 reconstructions have different surface atomic density
[34]. Hence, the 5 × 5 ↔ 7 × 7 structural transformation re-
quires the removal (or addition) of excessive (or deficient) Si
surface atoms from Si(111) terraces, for instance by moving
them to the always-existing step edges on the sample surface.
Si surface diffusion on Si(111)-7 × 7 at room temperature
is strongly hindered due to the high energy barrier (Eb =
1.14 eV) that separates the two halves of the 7 × 7 unit cell
[45]. This experimental figure is in agreement with DFT cal-
culations showing that there is an energy barrier of about 1 eV
separating faulted and unfaulted 7 × 7 half cells for diffusing
Si adatoms [46]. The height of energy barriers for adatom
migration depends on the local atomic arrangement of surface
atoms within the DAS structures. This is essentially identical
for 5 × 5 and 7 × 7 reconstructions, suggesting that the en-
ergy barriers on (111)-7 × 7 and -5 × 5 surfaces should be
similarly high. Such a conclusion was also drawn from exper-
imental STM data obtained on Ge(111)-7 × 7 and -5 × 5 re-
constructed surfaces [47]. Thus, according to our calculations
the 7 × 7 reconstruction is metastable below room tempera-
ture, being frozen-in upon cooling from high temperatures.

III. CONCLUSIONS

The relative thermodynamic stability of the 3 × 3, 5 × 5,
7 × 7, 9 × 9, and infinitely large DAS reconstructions on the

Si(111) surface was investigated by means of first-principles
calculations within density functional theory. It was found
that the surface energy ordering (from lowest to highest) at
T = 0 K is 5 × 5, 7 × 7, 9 × 9, 3 × 3, infinitely large. The
vibrational entropy contribution to the free energy of forma-
tion was evaluated for the (111)-7 × 7 and -5 × 5 surfaces
in the temperature range T = 0–1100 K. The contribution of
electronic entropy was shown to be negligible. Accordingly,
the 5 × 5 reconstruction is energetically more favorable than
7 × 7 at low temperatures, with the 5 × 5 ↔ 7 × 7 phase
transition anticipated to occur at around room temperature.
The invariable observation of the 7 × 7 phase is explained
by the low mobility of Si atoms on the surface, effectively
freezing it in a metastable state during cooling. Our study
shows that vibrational entropy plays a crucial role in the
stabilization of 7 × 7 reconstruction at elevated temperatures,
and reveals the metastable nature of this structure below room
temperature.
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