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Band structure of n- and p-doped core-shell nanowires
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We investigate the electronic band structure of modulation-doped GaAs/AlGaAs core-shell nanowires for both
n and p doping. We developed an 8-band Burt-Foreman k · p Hamiltonian approach to describe coupled conduc-
tion and valence bands in heterostructured nanowires of arbitrary composition, growth directions, and doping.
Coulomb interactions with the electron/hole gas are taken into account within a mean-field self-consistent
approach. We map the ensuing multiband envelope function and Poisson equations to optimized, nonuniform
real-space grids by the finite element method. Self-consistent charge-density, single-particle subbands, density
of states, and absorption spectra are obtained at different doping regimes. For n-doped samples, the large
restructuring of the electron gas for increasing doping results in the formation of quasi-one-dimensional electron
channels at the core-shell interface. Strong heavy-hole (HH)/light-hole (LH) coupling of hole states leads to
nonparabolic dispersions with mass inversion, similarly to planar structures, which persist at large dopings,
giving rise to direct LH and indirect HH gaps. In p-doped samples the hole gas forms an almost isotropic,
ringlike cloud for a large range of doping. Here as a result of the increasing localization, HH and LH states
uncouple, and mass inversion takes place at a threshold density. A similar evolution is obtained at fixed doping
as a function of temperature. We show that signatures of the evolution of the band structure can be singled out in
the anisotropy of linearly polarized optical absorption.
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I. INTRODUCTION

Among III–V compound semiconductor nanostructures,
radially heterostructured nanowires represent an increasingly
investigated, silicon-compatible perspective for applications
in transistor-based electronic devices [1] and optoelectronic
devices [2,3]. From the point of view of material quality,
several issues have already been settled on the route to
technological exploitation of nanowires or as a platform for
coherent quantum phenomena. These include self-assisted
growth [4,5], order and polytypism [6,7], high-quality in-
terfaces [8], and multilayer growth [9]. One critical issue
bridging material science and device nanofabrication is the
control of doping, for example, in modulation doped het-
erostructures [10,11] and radial p-n junctions [12]. This is still
a concern in terms of reproducibility between nanowires and
homogeneity within each nanowire [13,14].

As in the realm of planar heterostructures, GaAs-based
nanomaterials play a special role also for nanowires. Ultra-
high-mobility devices in planar GaAs/AlGaAs heterojunc-
tions build on the modulation doping concept [15], whereby
dopants are incorporated in a higher-gap AlGaAs layer, phys-
ically separated from the lower-gap layers where carriers
are confined, suppressing carrier-ionized impurity scattering.
A corresponding modulation doped radial heterostructure is
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schematically shown in Fig. 1 [10], which can be seen as
a planar heterojunction with wraparound layers. Carriers are
confined in the GaAs core, while dopants are incorporated in
an outer AlGaAs layer. Typically, a thin GaAs capping layer
is included to prevent Al oxidation. While mobility is still
improving in planar systems [16], where background impu-
rities are the limiting factor, high mobility is more difficult
to achieve in core-multishell nanowires though [11,17], and
experimental and theoretical characterization is needed.

Due to comparable kinetic and Coulomb energies, in doped
core-shell nanowires (CSNWs), electronic states [18] and
ensuing response functions [19,20] are determined by the
self-consistent field of free carriers, which in turn depends on
the concentration and type of doping [18] together with the
Fermi-level pinning at surface states [21,22]. Hence different
doping regimes may result in distinct charge localization pat-
terns [23]. The ability to predict the band structure in doped
CSNWs is, therefore, a complex task.

Among the methods used, the envelope function approach
stands out for its versatility and computational efficiency.
Single-band descriptions have been widely used, includ-
ing nonperturbative electric and magnetic fields [18,24–26].
Multiband k · p descriptions, which include spin-orbit cou-
pling arising from valence states that are crucial to describe,
e.g., optical properties [27,28], have been employed for sev-
eral classes of materials, taking into account composition
modulations, crystallographic details and mesoscopic sym-
metries [29–35]. Spin-orbit coupling in the conduction band
has been evaluated also in presence of strong magnetic fields
[36–38]. However, a full description of the band structure
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FIG. 1. (a) Sketch of the section of the simulated CSNWs. The
principal axes of the 2D-coordinate system are directed along the
[112̄] and [1̄10] crystallographic directions. (b) An example of an
optimized FEM grid used to solve the envelope function equation (2)
with superimposed self-consistent charge density (in gray scale ar-
bitrary units). The grid stops at the doping layer, where the charge
density is assumed to vanish. The grid used for the Poisson equa-
tion is different and extends to the outer boundary of the structure.

of doped CSNWs in the different doping regimes including
the self-consistent field arising from the free charge is still
missing.

In this paper we investigate the electronic band struc-
ture of modulation-doped GaAs/AlGaAs CSNWs with n-
or p-type doping. We employ an 8-band Burt-Foreman k · p
Hamiltonian approach, with Coulomb interactions with the
electron/hole gas taken into account within a mean-field
self-consistent approach. The numerical burden arising from
the self-consistent solution of multiband envelope function
and Poisson equations is minimized by the use of the fi-
nite element method (FEM) with nonuniform real-space
grids, optimized to different doping regimes. Self-consistent
charge-density, single-particle subbands, density of states, and
absorption spectra are then obtained. For strong n doping, a
quasi-one-dimensional (1D) channel tends to form at the cor-
ners of the core-shell interface. Heavy-hole (HH)/light-hole
(LH) couplings lead to nonparabolic dispersions with mass
inversion in the valence band, similarly to planar structures,
giving rise to direct LH and indirect HH gaps persisting at any

doping density. In strongly p-doped samples, on the contrary,
the hole gas forms an almost isotropic, ringlike cloud. As a
result of the increasing localization, HH and LH states un-
couple, and mass inversion takes place at a threshold density.
Similar evolutions are obtained at fixed doping as a function
of temperature. We suggest that signatures of the evolution
of band structure can be traced in the anisotropy of linearly
polarized optical absorption.

In Sec. II we outline our theoretical-computational meth-
ods, with detailed derivations reported in the Appendix.
Emphasis is on the generality of the method and mapping on
optimized FEM grids. Band structures, density of states, pro-
jected charge densities, and optical anisotropy are discussed
in Sec. III as a function of the doping density, separately for
both n- and p-doped samples.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. The k · p description

To obtain the band structure of a modulation-doped CSNW,
we have developed an 8-band k · p envelope function ap-
proach. Assuming translational invariance along the nanowire
growth axis z and the position vector r = (r⊥, z), the nth
eigenstate at the in-wire wave-vector kz is written as

�n(r, kz ) =
8∑

ν=1

eikzzψν
n (r⊥, kz )uν (r), (1)

where uν (r) = |J, Jz〉 is a Bloch basis function in the to-
tal angular momentum representation [see Eq. (A18)]. We
choose the quantization axis of J parallel to z. The coefficients
ψν

n (r⊥, kz ) are the νth component of the nth solution of the
multiband envelope-function equation

8∑
ν=1

[
Ĥμν

BF (r⊥, kz ) − eVel (r⊥)δμν
]
ψν

n (r⊥, kz )

= En(kz )ψμ
n (r⊥, kz ), (2)

where ĤBF is the 8 × 8 Burt-Foreman Hamiltonian operator,
with material-dependent parameters and including the band
offsets, and Vel represents the electrostatic potential generated
by free carriers and fully ionized dopants.

The operator ĤBF is obtained from the k · p bulk Hamilto-
nian by replacing kx and ky with the corresponding differential
operators. Material modulations are included by keeping track
of the correct nonsymmetrized operator ordering, as described
in Appendix A. This procedure yields a set of second-order
coupled partial differential equations which we numerically
solve using FEM on an appropriate 2D grid [39–41] with
Dirichlet boundary conditions. The strongly nonparabolic
subbands En(kz ) and the corresponding envelope functions
ψν

n (r⊥, kz ) are finally determined on a uniform grid of wave
vectors kz ∈ [−kM , kM].

From the solutions of Eq. (2), we evaluate the total charge
density

ρ(r⊥) = e[nh(r⊥) − ne(r⊥) + nD(r⊥) − nA(r⊥)] (3)

from the fully ionized donor or acceptor profiles, nD(r⊥) or
nA(r⊥), respectively, and the free-electron and hole charge
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densities given by, respectively,

ne(r⊥) =
∑
n∈c.s.

8∑
ν=1

∫ kM

−kM

dk

2π
f (En(k), μ, T )

∣∣ψν
n (r⊥, k)

∣∣2
,

(4)

nh(r⊥)=
∑

n∈v.s.

8∑
ν=1

∫ kM

−kM

dk

2π
[1 − f (En(k), μ, T )]

∣∣ψν
n (r⊥, k)

∣∣2
,

(5)

where the first summation runs over the conduction (valence)
subband indices for electrons (holes). Here f (E , μ, T ) is the
Fermi-Dirac distribution function, μ is the chemical potential,
T is the temperature, and kB is the Boltzmann constant.

In practice, Eq. (2) needs to be solved only in [0, kM ], since
eigenstates at negative wave vectors can be obtained (up to an
arbitrary phase factor) applying the time-reversal symmetry
operator

T = e−iπJy K, (6)

where Jy is the y component of the total angular momentum
and K is the complex conjugate operator.

The electrostatic potential Vel (r⊥) is the solution of the
Poisson equation with the source term given by the total
charge density of the system, possibly with a material and
position-dependent relative dielectric constant,

∇ε(r⊥)∇Vel (r⊥) = −ρ(r⊥)

ε0
. (7)

Again, Eq. (7) is solved using FEM on a 2D grid with Dirichlet
boundary conditions. The potential at the outer boundary of
the CSNW is fixed to zero at the six edges of the outer layer
of the structure. Note that the computational protocol allows
to include arbitrary voltages at gates surrounding the nanowire
[42], although we will not investigate this configuration here.

The steps described above are iterated self-consistently
until convergence in a seemingly Schrödinger-Poisson cycle,
here generalized to a multiband Hamiltonian. We stop itera-
tions when the relative change of the charge density between
two successive iterations falls below 10−3 at any node of the
grid.

To characterize band states, a kz-dependent spinorial anal-
ysis is useful. The contribution of any of the component of the
envelope function can be estimated as

Cν
n (kz ) =

∫ ∣∣ψν
n (r⊥, kz )

∣∣2
dr⊥, (8)

with the normalization condition
8∑

ν=1

Cν
n (kz ) = 1

at each subband index n and wave-vector kz. When analyzing
electronic states, we shall classify states in terms of EL, HH,
and LH characters [see Appendix A, Eq. (A18)], which are
computed as

CEL(kz ) = C1
n (kz ) + C2

n (kz ),

CHH(kz ) = C3
n (kz ) + C4

n (kz ),

CLH(kz ) = C5
n (kz ) + C6

n (kz ).

(9)

FIG. 2. Conduction (a) and valence (c) subbands of an undoped
GaAs/AlGaAs CSNW (see text for parameters). In (c) the hue/color
represents the spinorial character in terms of HH and LH according
to Eq. (9). Conduction (b) and valence (d) PDOS for different spinor
components. The zero of the energy in each panel is taken at the bulk
band edge of GaAs for conduction and valence band, respectively.

We shall also plot the projected probability distributions at
kz = 0 defined as

φEL(r⊥) =
∑

ν∈{1,2}
Cν

n (0)

∣∣ψν
n (r⊥, 0)

∣∣2

ξν
n

,

φHH(r⊥) =
∑

ν∈{3,4}
Cν

n (0)

∣∣ψν
n (r⊥, 0)

∣∣2

ξν
n

,

φLH(r⊥) =
∑

ν∈{5,6}
Cν

n (0)

∣∣ψν
n (r⊥, 0)

∣∣2

ξν
n

,

(10)

where

ξν
n = max

r⊥

∣∣ψν
n (r⊥, 0)

∣∣2
.

Additionally, we compute the projected density of states
(PDOS) for any given component ν of the wave function,

gν (E ) = 1

N

subbands∑
n

∑
k

Cν
n (k)δ(E − En(k)), (11)

where N is the total number of points in k space consid-
ered in the summation. Furthermore, for n/p-doped samples
we evaluate the self-consistent linear charge density of
electrons/holes as

ρlin =
∫

ne/h(r⊥)dr⊥. (12)

The calculation of the optical anisotropy proceeds as fol-
lows. In the dipole approximation, the interband absorption
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FIG. 3. Projected probability distributions [Eq. (10)] of the six
lowest conduction-band (first column) and six highest valence-band
states (second and third column) at � for the undoped material of
Fig. 2.

intensity of photons with energy h̄ω and light polarization
vector ε reads:

Iε(h̄ω) ∝
∑

n∈v.s.

∑
m∈c.s.

∑
k

∣∣Mε
n→m,k

∣∣2

× [ f (En(k)) − f (Em(k))] δ(Em(k) − En(k) + h̄ω),
(13)

where Mε
n→m,k is the interband optical matrix element [45],

Mε
n→m,kz

�
8∑

μν=1

〈uμ|ε · p|uν〉
∫

dr⊥ψμ∗
m (r⊥, kz )ψν

n (r⊥, kz ).

(14)
Note that doping, in addition to determine the envelope func-
tions via the self-consistent field, enters Eq. (13) through
Fermi-Dirac distributions, which accounts for band filling ef-
fects when electron/hole subband edges approach the Fermi

FIG. 4. (a) Linear free charge density [Eq. (12)], (b) conduction
subband energies at kz = 0, and (c) valence subband energies at kz =
0 as a function of the doping density nD. Energies are referred to the
Fermi level.

energy due to doping. For undoped structures, the Fermi en-
ergy is well within the gap, and this term is almost equal
to unity. In heavily doped structures, however, it inhibits
interband transitions to the lowest subbands which may be
nonnegligibly occupied.

Finally, we compute the relative optical anisotropy β be-
tween linearly polarized light along the wire axis, Iεz and
perpendicular to it along the x direction, Iεx ,

β = Iεz − Iεx

Iεz + Iεx

. (15)

B. Numerical implementation details

The above self-consistent 8-band k · p equations may re-
sult in a computationally intensive task, but a number of
strategies can be implemented to keep the computational
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FIG. 5. Left column: Free charge-density distribution ne (blue) and self-consistent conduction-band profile CB (red) shown along the
edge-to-edge (dashed line) and corner-to-corner (full line) directions of the CSNW section for T = 20 K at selected values of nD, as indicated.
Doping increases from top to bottom. Middle left and middle right columns: Valence subbands and PDOS, respectively, corresponding to
the doping density and self-consistent potential of the left panels. The hue/color represents the spinorial character in terms of HH and LH
according to Eq. (9). Right column: LH character of each subband at �.

burden low and avoid the use of massively parallel architec-
tures. Most of the strategies mentioned below take advantage
of the flexibility of FEM which allows the use of nonuniform
grids, which we generate by the Free FEM library [46].

The k · p Hamiltonian is represented on a 2D hexagonal
domain, partitioned in a D6 symmetry-compliant, unstruc-
tured mesh of triangular elements. Since at different doping
levels the charge density forms substantially dissimilar lo-
calization patterns [18], different density-optimized grids are
used at different doping levels. A typical grid used for a high
density regime is shown in Fig. 1(b), showing that the grid is
denser where the charge density is localized.

We emphasize that the use of the centrosymmetric grid
is critical to correctly reproduce the expected degeneracies
without the need of extremely dense grids. Breaking the in-
version symmetry of the grid would not only artificially split
the orbital degeneracy expected in the conduction band (see
Sec. III A) but also split the spin degeneracy, particularly in
the strongly spin-orbit coupled valence band [47]. The need
to maintain the inversion symmetry discourages the use of au-
tomatic adaptive grid methods. Hence we use fixed, although
optimized, nonuniform grids.

In CSNWs which are at stage here, the charge density is
confined to the GaAs core (although in a nontrivial manner)
and rapidly goes to zero inside the shell material; therefore, we
use larger elements inside the shell with respect to the core and
we require the envelope function to vanish somewhere inside
the shell, typically at the doping layer. A typical grid used in
the calculations is shown in Fig. 1(b). Finally, we found it con-
venient to use coarser grids during the self-consistent cycle,
with the optimized, finer grid used only in the last iterations.

For the 8-band k · p model, the bound states of inter-
est around the gap correspond to interior eigenvalues of
the Hamiltonian matrix. To compute the charge density via
Eqs. (4) and (5), the sum is restricted to a few tens of sub-
bands (usually nmax = 60 for the electrons and nmax = 100
for holes), and iterative methods are preferable. We use the
Arnoldi method [48], implemented in the ARPACK library [49],
together with the shift-and-invert approach, where the original
problem is recast to target the largest eigenvalues. This ap-
proach provides faster convergence and enables the search for
nmax eigenvalues around an energy value Esearch. Thus since
for both n and p doping the occupation of the minority carrier
is negligible, during the self-consistent cycle one needs to
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FIG. 6. Projected probability distributions [Eq. (10)] for the seven lowest conduction and seven highest valence subbands at the same
selected doping densities of Fig. 5, as indicated. Each column corresponds to the EL, LH, and HH components, as indicated.

solve only for the conduction or the valence-band structure,
respectively, by properly choosing Esearch [50]. The full band
structure is then calculated only in the final converged self-
consistent potential.

The Poisson equation is solved on a single specific mesh
extending over the entire 2D domain of the heterostructure.
To go back-and-forth between the grids of the envelope func-
tion and Poisson solver, as well as between different grids
used during the self-consistent cycle, we make use of 2D
linear interpolation. To achieve the convergence of the self-
consistent protocol we rely on the modified second Broyden’s
method [51–54] when updating the electrostatic potential at
the current iteration. The inverse Jacobian is updated using
the information from M = 8 previous iterations. We fixed the
weight corresponding to the first iteration to w0 = 0.01, while
all the other weights wm, with m = 1, ..., M − 1, are com-
puted as suggested in Ref. [52]. The simple mixing parameter
α is fixed to 0.05.

Before the simulation starts, the mesh is processed through
a bandwidth reduction procedure leveraging the reverse
Cuthill–McKee algorithm [55] implemented within the SciPy
library [56]. This is done in order to obtain tightly banded
sparse matrices from the FEM discretization.

The above self-consistent numerical protocol and ancillary
calculations have been implemented in a Python library. A

typical run uses a grid of about 7000 triangular elements and
3500 nodes for the k · p problem and 10–20 self-consistent
iterations. A run on a single node architecture equipped with
16 2.60 GHz Intel Xeon E5-2670 processor cores takes about
6 h CPU time.

III. RESULTS

We simulate a typical modulation-doped structure [11]
consisting of a GaAs hexagonal core with an edge-to-edge
distance of 80 nm surrounded by a 50-nm-wide Al0.3Ga0.7As
shell and a GaAs capping layer of thickness 10 nm [see
Fig. 1(a)]. The 2D-coordinate system has the x and y axes
directed along the [112̄] and [1̄10] crystallographic directions,
respectively. Buried inside the shell, at a distance of 20 nm
from the core-shell interface, a 10-nm-thick layer is doped at
a constant density nD of donors or nA of acceptors. All cal-
culations discussed below are performed at T = 20 K, except
in Sec. III D. The chemical potential μ is fixed at the midgap
value of GaAs [22].

A. Band structure of the undoped material

As a reference for calculations of the band structure of
doped CSNWs to be discussed in the next sections, we first
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FIG. 7. (a) Linear free charge density [Eq. (12)], (b) conduction
subband energies at kz = 0, and (c) valence subband energies at kz =
0 as a function of the doping density nA. Energies are referred to the
Fermi level.

consider an undoped sample and analyze the conduction and
valence-band subbands, which are shown in Fig. 2 (left), to-
gether with the corresponding PDOSs (right). These are best
analyzed together with the projected probability distributions
of the EL, HH, and LH spinor components [see Eqs. (9) and
(10)] at kz = 0, which are shown separately in Fig. 3 [57].

We first consider conduction states. Due to the large gap
of GaAs, which disentangles conduction and valence bands
in the k · p Hamiltonian, conduction subbands [Fig. 2(a)]
show an almost pure EL character with parabolic dispersion
and ensuing 1/

√
energy PDOS [Fig. 2(b)]. In a system with

D6h symmetry, assuming a perfectly isotropic band structure,
we expect the ground state to be nondegenerate, while the
second/third and fourth/fifth doublets are degenerate [58].
Here anisotropic residual interactions with the valence band
remove the degeneracies by ∼10−3meV, a quantity that can-
not be distinguished in Fig. 2. Indeed, the single/double

degeneracy of the levels is easily recognized in the height of
the peaks of the PDOS.

As shown in Fig. 3 (left column), the lowest conduction
state is 1s-like in the center, while the nearly degenerate dou-
blets are ringlike states with an increasing modulation in the
corners of the hexagonal confining potential. The 6th state is
again a nondegenerate state with a 2s character. Higher levels
(not shown here) have maxima on the corners of the hexagon
and nodes along the facets or vice versa [58,59].

The valence subbands [Fig. 2(c)] are, of course, denser in
energy than conduction subbands due to the larger mass of
holes. The LH-HH mixing, which is small but finite also at
�, leads to a strongly nonparabolic dispersion of the subbands
with kz. As shown by the color code of the lines, the two high-
est subbands have a predominant LH character at �, which
is also shown by the corresponding distribution functions in
Fig. 3 (center and right columns) [60]. In between several
subbands in Fig. 2(c) pointing downward and with a strong
LH character at �, we recognize a mixed character state (the
third subband) and an almost HH subband (the 6th state) (see
also Fig. 3). These two subbands strongly couple at finite
wave vectors (note from the hue that these two subbands
exchange their HH-LH character), causing a strong camel’s
back dispersion of the third subband and a corresponding
peak in the PDOS at ∼ − 0.54 meV with 50% character of
either HH or LH components. All in all, the LH character
dominates the PDOS, which agrees with Ref. [33]. Note that
band crossings of the third subband can be traced to states
belonging to different irreducible representations of the C3v

double symmetry group of [111] oriented nanowires with
hexagonal cross-section [61–63].

The probability distributions of HH and LH states shown in
Fig. 3 are either s-like or ringlike (arising from a quadrupolar
symmetry of the real/imaginary parts of the envelope func-
tions), similarly to corresponding conduction states, although,
of course, the ordering is different, as HH- and LH-like
states interlace. No orbital degeneracies are expected, since
the strongly anisotropic bulk valence-band structure does not
share the hexagonal symmetry of the confinement.

We finally note that all electronic states are doubly spin-
degenerate due to the centro-symmetric symmetry of the
system (which is carefully preserved by the FEM grid), which
will hold true in all calculations throughout [64].

B. n Doping

We now consider n-doped samples with increasing doping
density nD up to high-doping regimes. As shown in Fig. 4(a),
the self-consistent linear charge density [Eq. (12)] increases
almost linearly for large doping, while an increasing num-
ber of conduction subbands fall below the Fermi energy
[Fig. 4(b)]. The evolution of the (unoccupied) valence-band
states at � is also shown in Fig. 4(c).

The evolution of the localization of the self-consistent
charge density and the corresponding electrostatic potential,
shown in Fig. 5 (left), is not trivial. With increasing doping,
the charge density evolves from a small, isotropic charge
distribution in the core of the structure to a larger, ringlike
charge-density distribution and finally to a charge density
which is primarily located in the corners of the core, as can be
inferred by comparing the edge-to-edge and corner-to-corner
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FIG. 8. Left column: Free charge-density distribution nh (blue) and self-consistent valence-band profile VB (red) shown along the edge-to-
edge (dashed line) and corner-to-corner (full line) directions of the CSNW section for T = 20 K at selected values of nA, as indicated. Doping
increases from top to bottom. Middle left and middle right columns: Valence subbands and PDOS, respectively, corresponding to the doping
density and self-consistent potential of the left panels. The hue/color represents the spinorial character in terms of HH and LH, according to
Eq. (9). Right column: LH character of each subband at �.

profiles in Fig. 5. This is in agreement with single-band self-
consistent calculations [18,65], as expected from the nearly
pure EL character of conduction subbands.

Conduction subbands retain a trivial parabolic dispersion
regardless of the doping level (and type), which is therefore
not shown here. However, it is still interesting to consider
the evolution of the localization of the conduction envelope
functions shown in terms of the projected density distribution
φEL(r⊥) in Fig. 6 (left columns in each panel), with increasing
doping (panels from left to right). For each of the seven lowest
levels, the larger the doping the more localized is φEL(r⊥) at
the core-shell interface. For the largest doping shown here,
all subbands feature a clear sixfold symmetry induced by
the heterostructure confining potential. Note that the ordering
of the levels in terms of symmetry depends on the level of
doping, as seen from the “exchange” of the 6th and 7th levels
with increasing doping.

Although for n doping the charge density is determined by
conduction-band states, the valence-band structure does have
an evolution as well due to the restructuring of the free charge
density and ensuing change in the self-consistent confining

electrostatic potential shown in Fig. 5. The valence-band
structure shown in Fig. 5 (second column) shows a downward
shift of the subbands and an increase of the intersubband gaps
due to the increased localization energy at the core-shell inter-
face. The kz = 0 character (Fig. 5, right column) at low doping
is ∼10 ÷ 30% LH for most states, except for the ground level
which is almost completely LH and two states which stand
out with a strong HH character. Increasing doping increases
the gaps but does not change much the subband dispersions.
At the largest doping shown here, the PDOS is dominated by
(i) a LH peak near the gap and (ii) two overlapping peaks,
one arising from a LH band and one from a HH band. Note,
however, that the latter HH peak arises from the camel’s back
subband with a maximum at a finite kz and, therefore, an
indirect gap with the conduction band.

Figure 6 shows that as doping increases holes tend to be
more localized in the center, with a mostly isotropic distribu-
tion. This differs from conduction states which move toward
the GaAs/AlGaAs interface at larger doping densities, and it
is due to the opposite sign of the electrostatic energy. Note
that, as already noted for EL states, also for HH and LH states,
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FIG. 9. Projected probability distributions [Eq. (10)] for the seven lowest conduction and seven highest valence subbands at the same
selected doping densities of Fig. 8, as indicated. Each column corresponds to the EL, LH, HH component, as indicated.

the order in terms of symmetry is not preserved as doping is
swept. For example the 7th level changes both character and
orbital symmetry as nD moves from 1.75 to 1.80 1018 cm−3.

C. p Doping

We next discuss the results for p-doped materials, focusing
on the effects of an increasing acceptor density nA on the band
structure and the hole charge-density localization.

Figure 7 shows a linear increase of the free charge density
after a threshold density of dopants. Note that the range of
densities is similar with respect to the n-doping case despite
the very different parameters and, as we shall see below,
charge localization.

Indeed, the free charge nh, shown in Fig. 8 (left) at se-
lected values of the acceptor density nA, shows a dip in
the center already at weak doping, which is consistent with
the larger mass and a lower confinement energy of holes
with respect to conduction electrons. As the acceptor dop-
ing density nA increases, the charge progressively moves
toward the interfaces to minimize Coulomb energy, analogous
to the n-doping case. However, different from the latter case,
the hole gas remains remarkably isotropic, as seen by com-
paring the edge-to-edge and corner-to-corner profiles which
nearly coincide in Fig. 8 (left). In other words, the hole
charge forms a uniform gas with a cylindrical shape and little

resemblance to the host hexagonal confining potential up to
these doping densities.

As nA is swept, the conduction levels [Fig. 7(b)] shift in
energy with respect to the Fermi level and finally stabilize,
while an increasing number of hole subbands approach the
Fermi energy and contribute to the free charge. Note that
at large dopings, hole levels separate in a low-energy and a
high-energy branch, which correspond to increasingly LH-
and HH-like levels, respectively.

At difference with the n-doping case, the hole band struc-
ture is strongly affected by p doping, as exemplified in Fig. 8.
This is due to the different localization energies of HHs and
LHs in the increasingly localizing self-consistent potential.
A prominent effect can be seen by comparing Figs. 8 and
9. The only strongly HH level (the 6th level in Fig. 9, left
panel) moves to lower energy due to the light mass. As a
result, HH-LH mixing and related anticrossings are removed,
the mass of the camel’s back subband changes sign, and all
bands point downward with a small mass at the large densities.
Note that the PDOS at large doping is dominated by far by
LH states. Furthermore, as a consequence of the reduced k · p
coupling in the valence band at high doping densities, the
hole energy levels at � tend to group in sixfold clusters [see
Fig. 7(c)] separated by gaps that increase with increasing nA

[58].

245303-9



VEZZOSI, BERTONI, AND GOLDONI PHYSICAL REVIEW B 105, 245303 (2022)

FIG. 10. Left column: Free charge-density distribution ne (blue) and self-consistent conduction-band profile CB (red) shown along the
edge-to-edge (dashed line) and corner-to-corner (full line) directions of the CSNW section for T = 10 K (top row) and T = 30 K (bottom
row) at the single doping density nD = 1.76 × 1018 cm−3. Middle left and middle right columns: Valence subbands and PDOS, respectively,
corresponding to the doping density, temperature and self-consistent potential of the left panels. The hue/color represents the spinorial character
in terms of HH and LH, according to Eq. (9). Right column: LH character of each subband at �.

Figure 9 shows that all highest valence subbands become
strongly localized at the interfaces at high doping. Contrary to
conduction electrons, however, which always tend to localize
at the six corners, holes alternate subbands localized at the
corners and at the facets, which is again in agreement with
single-band calculations in Ref. [18]. Since the charge density
is a convolution of these levels, the isotropy of the hole cloud
noted above is justified.

We also note that, as doping is increased, there is
no definite order of LH- and HH-like levels in term of
symmetry/localization due to the increasing hole confinement
energy toward the core-shell interface which is different for
HH and LH components.

Finally, we note that, similarly to n-doped samples, mi-
nority carriers localize in the opposite direction due to the
opposite sign of the self-consistent potential. However, con-
duction electrons are much more rigid and stable due to the
light mass hence showing little evolution with doping density,
and in particular no symmetry inversion takes place.

D. Temperature dependence

The electronic states discussed above are the result of the
competition between comparable energy scales in the meV
range. As temperatures of ∼10 K are in the same energy
range, we expect that small changes in temperature at this
scale may bring about strong restructuring of the electronic
system. As we shall see below, in general the effect of a
temperature variation on the free-carrier charge density and
the valence-band structure are qualitatively analogous to the
effects of a varying doping density.

In Fig. 10 we consider an n-doped sample with donor
density nD = 1.76 × 1018 cm−3 at T = 10 K (top row) and
T = 30 K (bottom row), which are above and below the
temperature used in Sec. III B. Such temperature variations,
respectively, increase or decrease the bulk band-gap values
of 1 meV with respect to the values in Table I for both the

TABLE I. Material parameters used in the simulations at T =
20 K. Eg is the energy gap; �Ec, �Ev are the conduction and valence-
band offset values at the GaAs/Al0.3Ga0.7As interface; �so is the
split-off energy; Ep is the bare Kane energy; E rsc

p the rescaled Kane
energy [Eq. (A6)]; me is the effective conduction electron mass; γi are
the bare Luttinger parameters; γ̃i are the rescaled values [Eq. (A9)];
εr is the relative dielectric constant; and alc is the lattice constant.
The band-structure parameters are taken from Ref. [43] except for
the band offset values. The latter have been determined assuming an
offset ratio of �Ec : �Ev = 63 : 37, as recommended in Ref. [44]

GaAs Al0.3/ Ga0.7/As

Eg [eV] 1.518 1.936
�Ec [eV] 0.263
�Ev [eV] 0.155
�so [eV] 0.341 0.323
Ep/E rsc

p [eV] 28.8 / 20.9 26.5 / 18.0
me 0.067 0.092
γ1/γ̃1 6.98 / 2.39 6.01 / 2.91
γ2/γ̃2 2.06 / −0.235 1.69 / 0.138
γ3/γ̃3 2.93 / 0.635 2.48 / 0.928
εr 13.18 12.24
alc [nm] 0.56
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FIG. 11. Left column: Free charge-density distribution nh (blue) and self-consistent valence-band profile VB (red) shown along the edge-
to-edge (dashed line) and corner-to-corner (full line) directions of the CSNW section for T = 10 K (top row) and T = 30 K (bottom row) at the
single doping density nA = 1.75 × 1018 cm−3. Middle left and middle right columns: Valence subbands and PDOS, respectively, corresponding
to the doping density, temperature, and self-consistent potential of the left panels. The hue/color represents the spinorial character in terms of
HH and LH, according to Eq. (9). Right column: LH character of each subband at �.

core and the shell materials. As a result, the band offsets are
unchanged, while the band-structure parameters that are af-
fected by a rescaling procedure are slightly modified. Starting
at the lower temperature, the electronic charge density (left
column) evolves from an isotropic charge density centered
in the core to a ringlike density. This is similar to the effect
of increasing doping, as in Fig. 5, as the occupation prob-
ability of the levels above the chemical potential increases
with temperature and more charge populates the nanowire.
Consistent with Fig. 5, the valence-band structure and PDOS
are little affected by temperature in this range. However, the
subbands are shifted in the opposite direction with respect
to Fig. 5.

In Fig. 11 we consider a p-doped sample with acceptor
density nA = 1.75 × 1018cm−3 at the same two temperature as
above. Again, increasing the temperature results in a greater
hole charge density and a more pronounced charge depletion
in the center due to the Coulomb interaction. Clearly, valence-
band states are more sensitive to changes in the charge density
for p doping. Indeed, Fig. 11 shows that as temperature
is increased, HH-like states move to lower energies, while
HH-like subbands change their curvature downward. As a
consequence, the PDOS undergoes a substantial restructuring,
as all main features are LH-like. Note that in contrast to the
case of a doping density variation, the valence-band structure
is shifted downward when the temperature increases.

E. Optical anisotropy

Optical absorption in quasi-1D systems is dominated by
excitonic and polarization effects induced by Coulomb inter-
actions, not included in Eqs. (13) and (14) [66,67]. However,

the optical anisotropy between linearly polarized light along
and transverse the nanowire axis should be less sensitive to
Coulomb effects [27,28]. On the other hand, while x-polarized
light couples to HH states [see Eq. (A18)], z-polarized light
does not. Hence β is a sensitive probe of the orbital composi-
tion of valence-band states [27].

In Fig. 12 we show the calculated relative optical
anisotropy β [Eq. (15)] at selected doping concentrations for
n- (left) and p-doped (right) samples, respectively. Doping
concentration increases from top to bottom in both panels.
To emphasize the anisotropy of the more intense absorption
peaks, the line darkness is modulated with the intensity of the
absorption spectrum at the given photon energy. For reference,
we also show in the inset single-particle absorption spectra in
the two polarizations (for the undoped sample) with optical
transitions from the nth valence state to the mth conduction
state labeled mn .

As a reference, we shall first describe the spectral
anisotropy of the undoped sample [top panels in Figs. 12(a)
and 12(b)]. The first positive structure, labeled a , arises from

the fundamental optical transition 11 [see inset of Fig. 12(a)]
which involves the almost purely LH state. This is also an
intense transition due to the overlapping envelope functions
components (see Fig. 3, first row). The positive anisotropy
is β � 3/5, which is expected from the ratio between the
momentum matrix element in the z and x directions,

∣∣〈S,± 1
2

∣∣pz

∣∣ 3
2 ,± 1

2

〉∣∣2 = 4
∣∣〈S,± 1

2

∣∣px

∣∣ 3
2 ,± 1

2

〉∣∣2
,

hence β = 4−1
4+1 .
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FIG. 12. (a) Optical anisotropy β [Eq. (15)] for n-doped samples at different donor concentrations. From top to bottom: Undoped, 1.75,
1.77, 1.79, 1.82, 1.87, 1.90 × 1018 cm−3. Horizontal dashed lines indicate the zero reference; each panel extends vertically from −1 to +1. The
gray hue represents the intensity of the corresponding absorption spectrum [Eq. (13)] at the given photon energy. Eg = 1.518 eV is the band
gap of GaAs at T = 20 K. Inset: Calculated absorption spectra of the undoped structure for linearly polarized light. Peaks are labeled with
mn , where m is the index of the final conduction subband and n is the index of the initial valence subband involved in the optical transition.
(b) Same as panel (a) but for p-doped samples. From top to bottom: Undoped, 1.73, 1.75, 1.77, 1.79, 1.80, 1.82 ×1018 cm−3.

The next two negative dips in the anisotropy structure a
involve the m = 1 EL subband and arise from the HH compo-

nents of transitions 13 and 16 (see Fig. 3, third and sixth
rows). As HH components do not couple to EL states for light
linearly polarized along z, we indeed expect the anisotropy to
be negative for these optical transitions.

A second, positive anisotropy set of structures at higher
photon energies, labeled b , involves transitions to the m =
2 conduction subband with predominantly LH initial states,

namely, 22 and 24 transitions (see also Fig. 3, second and
fourth rows).

As the optical anisotropy discriminates specific transitions,
it is interesting to discuss how the anisotropy spectra evolve
with doping concentration. As seen in Figs. 12(a) and 12(b) in
both n- and p-doped samples, the absorption edge experiences
a red-shift with increasing doping due to band-gap renormal-
ization. In Fig. 13 we compare the energy difference �E
between the ground-state energy of the conduction and the
valence band, respectively, showing that the effective energy
gap decreases almost linearly for both kinds of samples in the
range of a few meV as doping concentration rises.

FIG. 13. Effective energy-gap �E as a function of doping con-
centration for n- and p-doped samples.
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In n-doped samples, Fig. 12(a), the absorption intensity of
the lowest transitions gradually vanishes with doping, which
is due to two concomitant effects, (i) band filling due to elec-
tron subbands falling below the Fermi level, which inhibits
interband absorption to these levels, and (ii) optical matrix
element reduction, which is due to Coulomb repulsion; the
free charge distribution in the occupied band tends to localize
toward the core-shell interfaces as doping concentration is
increased while confining states in the center in the other
band, lessening the optical matrix element between initial
and final states [Eq. (14)]. Both effects contribute to sup-
press low-energy absorption at high-doping, finally moving
the absorption edge to the strongly anisotropic structure c
originated by transitions to the m = 7 EL subband, namely,
71 mainly LH with positive anisotropy, and 73 mainly HH,
hence with negative anisotropy.

For p-doped samples, see Fig. 12(b), the band-filling effect
is less pronounced within the examined range of doping. In
fact, even at the highest acceptor density shown in Fig. 12(b),
the highest valence subband does not cross the Fermi level
(see Fig. 7). Here the suppression of the absorption intensity
with positive anisotropy at a is mainly due to reduction
of the initial and the final states’ overlap due to an increas-
ing localization toward the core-shell interfaces of the hole
ground-state envelope function (see Fig. 9, first row). The first
negative dip gradually disappears because the third valence
subband loses its HH character with increasing doping (see
Fig. 9, third row and Fig. 8, second column). The opposite
occurs for the second negative anisotropy peak, which persists
at high doping due to the increasing HH character of the
sixth hole subband with doping, as already pointed out in
Sec. III C, which in turn increases the optical matrix element
for x-polarized light.

IV. CONCLUSIONS

We have thoroughly investigated the band structure of
doped GaAs-based CSNWs, with an emphasis on the evolu-
tion of spin-orbit coupled valence-band states with doping of
either n or p type. This is an important piece of information
for the characterization of such materials where doping is still
an issue.

Our calculations, performed with a state-of-the-art Burt-
Foreman 8-band k · p description, treat many-body effects
at the mean-field level and extend previous investigations to
realistic descriptions of doped materials. The use of a flexible
FEM approach, which allows to use nonuniform grids, proved
to be numerically efficient at different doping levels. This is
clearly an advantage in view of multiparameter optimization,
e.g., by stochastic methods [35,68,69].

In particular, we have investigated a prototypical CSNW
with remote doping. As in corresponding planar heterojunc-
tions, the conduction subbands feature a parabolic in-wire
dispersion, while hole subbands have a complex dispersion,
with inverted masses, which has been rationalized in terms of
HH-LH mixing. In large core nanowires, with small confine-
ment energies, increasing doping density moves the majority
carriers to the core-shell interface in order to reduce the
Coulomb energy. Correspondingly, the states of the minority

carrier band are confined to the core by the self-consistent
electrostatic field, and in general the overlap of conduction
and valence states decreases. While this is qualitatively true
for both types of dopings, our calculations allow to identify
several differences between the two type of samples which
may have an impact, in particular, on optical absorption. In
particular, for p doping the valence-band structure is strongly
reshaped by confinement of holes at the core-shell interface,
and all low-energy excitations have a strong LH character.

It may be expected that band structure affects optical
absorption and, in particular, optical anisotropy for light po-
larized along or normal to the nanowire axis. Hence we have
evaluated the doping density-dependent optical anisotropy,
which is able to distinguish the spin-orbital character of the
transition. In addition to the expected band-filling effects,
specific signatures can be identified in the anisotropy patterns
which distinguish between n and p doping.
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APPENDIX A: k · p HAMILTONIAN

In this Appendix we show how to obtain the operator ĤBF

in Eq. (2). In the Cartesian basis

λ = {|S ↑〉, |S ↓〉, |X ↑〉, |Y ↑〉, |Z ↑〉, |X ↓〉, |Y ↓〉, |Z ↓〉},
(A1)

the Burt-Foreman Hamiltonian with the principal axis along
the [001] direction can be written as

Hλ = H0 + V + Hso. (A2)

The k · p Hamiltonian H0, neglecting bulk inversion asymme-
try terms, is given by [70]

H0 =

⎛
⎜⎜⎝

kTAck 0 iPkT 0T

0 kT Ack 0T iPkT

−ikP 0 Hv 03×3

0 −ikP 03×3 Hv

⎞
⎟⎟⎠ (A3)

where k = (kx, ky, kz )T, P is the optical matrix parameter re-
lated the the Kane energy parameter by

P =
√

h̄2

2m0
Ep, (A4)

and Ac is the renormalized conduction-band effective mass
parameter,

Ac = h̄2

2me
− 2

3

P2

Eg
− 1

3

P2

Eg + �so
. (A5)

For many relevant semiconductors, including the present case,
the standard parameters lead to a negative value for Ac. This
fact induces spurious solutions [71] that bend within the band
gap for large wave vectors. To avoid these unphysical results,
we set Ac = h̄2

m0
and rescale the Ep parameter in order to still
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get the correct conduction-band dispersion [72,73]

E rsc
p = Eg(Eg + �so)

Eg + 2
3�so

(m0

me
− 2

)
. (A6)

Foreman rigorously showed that this approach is not an ap-
proximation and is equivalent to a change of the Bloch basis

[74]. We checked that for the regimes investigated and with
the relatively coarse grids permitted by the use of FEM,
no highly oscillatory, discretization-related spurious solutions
appears in our calculations [71].

In the above expression the matrix Hv reads

Hv = h̄2k2

2m0
I3×3 +

⎛
⎝kxLkx + kyMky + kzMkz kxN+ky + kyN−kx kxN+kz + kzN−kx

kyN+kx + kxN−ky kxMkx + kyLky + kzMkz kyN+kz + kzN−ky

kzN+kx + kxN−kz kzN+ky + kyN−kz kxMkx + kyMky + kzLkz

⎞
⎠, (A7)

where L, M, N+, and N− are the Dresselhaus-Kip-Kittel pa-
rameters which read

L = h̄2

2m0
(−γ̃1 − 4γ̃2 − 1),

M = h̄2

2m0
(2γ̃2 − γ̃1 − 1),

N+ = h̄2

2m0
[−6γ̃3 − (2γ̃2 − γ̃1 − 1)],

N− = h̄2

2m0
(2γ̃2 − γ̃1 − 1). (A8)

Here the modified Luttinger parameters γ̃i are

γ̃1 = γ1 − E rsc
p

3Eg
,

γ̃2 = γ2 − E rsc
p

6Eg
,

γ̃3 = γ3 − E rsc
p

6Eg
,

(A9)

where Eg is the bulk band gap and E rsc
p the rescaled Kane

energy.
In Eq. (A2) the last two terms represent, respectively, the

in-plane potential profile due to different band edges of adja-
cent layer materials

V = diag[Ec, Ec, Ēv, Ēv, Ēv, Ēv, Ēv, Ēv], (A10)

with Ēv = Ev − �so
3 , and the spin-orbit interaction Hamilto-

nian

Hso = �so

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 1
0 0 i 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 −1 0 i 0
0 0 0 0 −i −i 0 0
0 0 1 i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A11)
The Hamiltonian Hλ can be rewritten in the form

Hλ =
∑

α,β=x,y,z

kαDαβkβ +
∑

α=x,y,z

Fα
L kα + kαFα

R + G, (A12)

where Dα,β , Fα
L(R) and G are 8 × 8 matrices that can be di-

rectly obtained from Eq. (A2) by properly collecting terms
involving the same powers of the wave vector’s components.
In particular, Dα,β �= Dβ,α and Fα

L �= Fα
R . It should be also

noted that these matrices are not Hermitian. Nevertheless, the
sums Dα,β + Dβ,α and Fα

L + Fα
R are indeed Hermitian.

To treat nanowires oriented along an arbitrary direction we
define k in Eq. (A12) in the rotated coordinate system. We
have r′ = R r and k′ = R k, where R is the orthogonal rotation
matrix

R(θ, φ) =
⎛
⎝cos θ cos φ sin φ cos θ − sin θ

− sin φ cos φ 0
cos φ sin θ sin φ sin θ cos θ

⎞
⎠. (A13)

The matrices in Eq. (A12), when expressed in terms of the
rotated wave vector, k′ = R k, transform according to

Dαβ (θ, φ) =
∑
α′β ′

Rαα′Dα′β ′
R−1

β ′β, (A14)

Fα
L(R)(θ, φ) =

∑
α′

Fα′
L(R)R

−1
α′α, (A15)

where Dαβ and Fα
L(R) are the matrices defined in the original

coordinate system with principal axis directed along the [001]
direction. For convenience, from now on we will omit the
(θ, φ) notation, implicitly assuming that each of the matrices
Dαβ and Fα

L(R) is defined in the rotated coordinate system.
The transformation that connects the Cartesian basis {λ}

to a new one with the principal axis directed along the (θ, φ)
direction is given by {γ } = AU {λ},

{γ } = {|S′ ↑′〉, |S′ ↓′〉, |X ′ ↑′〉, |Y ′ ↑′〉, |Z ′ ↑′〉,
|X ′ ↓′〉, |Y ′ ↓′〉, |Z ′ ↓′〉}, (A16)

where U = diag[1, 1, R, R] is a standard rotation operator and
A = diag[Ā, Ā ⊗ I3×3], where

Ā =
(

e−iφ/2 cos θ/2 eiφ/2 sin θ/2
−e−iφ/2 sin θ/2 eiφ/2 cos θ/2

)
(A17)

rotates the spin.
We now chose the following symmetry adapted basis that

diagonalizes spin-orbit interaction [75]:

{χ} = {∣∣ 1
2 , 1

2

〉
EL = |S′ ↑′〉,∣∣ 1

2 ,− 1
2

〉
EL = i|S′ ↓′〉,∣∣ 3

2 , 3
2

〉
HH =

√
1/2|(X ′ + iY ′)↑′〉,
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∣∣ 3
2 ,− 3

2

〉
HH = i

√
1/2|(X ′ − iY ′)↓′〉,∣∣ 3

2 , 1
2

〉
LH = i

√
1/6|(X ′ + iY ′)↓′〉 − i

√
2/3|Z ′ ↑′〉,∣∣ 3

2 ,− 1
2

〉
LH =

√
1/6|(X ′ − iY ′)↑′〉 +

√
2/3|Z ′ ↓′〉,∣∣ 1

2 , 1
2

〉
SO =

√
1/3(|(X ′ + iY ′)↓′〉 + |Z ′ ↑′〉),∣∣ 1

2 ,− 1
2

〉
SO = −i

√
1/3(|(X ′ − iY ′)↑′〉 − |Z ′ ↓′〉)

}
.

(A18)

Note that here the total angular momentum is defined with
respect to the principal axes in the rotated coordinate system.
It follows that the transformation matrix to go from {γ } to {χ}
is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 1√
2

i 1√
2

0 0 0 0

0 0 0 0 0 i 1√
2

1√
2

0

0 0 0 0 −i
√

2
3 i 1√

6
− 1√

6
0

0 0 1√
6

−i 1√
6

0 0 0
√

2
3

0 0 0 0 1√
3

1√
3

i 1√
3

0

0 0 −i 1√
3

− 1√
3

0 0 0 i 1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A19)
Defining P = QAU to be the transformation matrix from

{λ} to {χ}, the matrices in Hλ expressed in terms of the rotated
wave-vector k′ transform according to [33]

Dαβ → P∗DαβPT ,

Fα
L(R) → P∗Fα

L(R)P
T ,

G → P∗GPT .

(A20)

To obtain the operator ĤBF appearing in the envelope
function equations we now perform the replacements (kx →
−i ∂

∂x , ky → −i ∂
∂y ) in Eq. (A12) paying attention to preserve

the correct operator ordering. Since kz is now just a param-
eter, the Hamiltonian operator after the replacement has the
following form

ĤBF =
∑

α,β=x,y

∂αD̄αβ∂β +
∑
α=x,y

F̄α
L ∂α + ∂αF̄α

R + Ḡ, (A21)

where

D̄αβ = −Dαβ,

F̄α
L = −i

(
Fα

L + kzD
zα

)
,

F̄α
R = −i

(
Fα

R + kzD
αz

)
,

Ḡ = G + k2
z Dzz + kz

(
F z

R + F z
L

)
. (A22)

APPENDIX B: FEM IMPLEMENTATION

Equations (2) and (7) are solved within the FEM frame-
work [39]. Here one writes the proper action integral A
that generates the above set of coupled differential equa-
tions through a variational procedure. For the multiband k · p

equations we have [35,70]

A =
∑
μν

∫
dr⊥ψ∗

μ

[ ∑
αβ=x,y

− ←
∂αD̄αβ

μν
�∂β

+
∑
α=x,y

(
F̄α

L,μν
�∂α − ←

∂αF̄α
R,μν

) + Ḡμν − E δμν

]
ψν, (B1)

where μ and ν indicate the components of the envelope
function. Here the correct operator ordering is retained if we
take the differential operator to act on the left (right) when
k̂x,y multiplies F x,y

R (F x,y
L ). It is easy to check that Eq. (B1)

is equivalent to the original eigenvalue problem Eq. (2) by
performing a functional variation of A with respect to ψ∗

μ

and invoking the principle of least action. Here surface terms
arising from the integration by parts can be eliminated using
the continuity of the envelope function and of the probability
current across the interfaces [76,77]. If the wave function is
set to zero on the domain boundaries, the boundary surface
term vanishes too.

The action integral A is discretized into nel triangular finite
elements of the 2D domain,

A =
nel∑
iel

A(iel ). (B2)

Within the iel element, each component of the unknown
envelope function is approximated using Lagrange linear in-
terpolation polynomials [40] Nj (r⊥) so that

ψμ(r⊥) =
3∑

j=1

ψμ jNj (r⊥), (B3)

where the expansion coefficients ψμ j represent the value of
the μ-th component of the envelope function at the j-th trian-
gle’s vertex, also called nodal point.

Using Eqs. (B1) and (B3), we obtain

A(iel ) =
∑
μν

3∑
i j=1

ψ∗
μi

[∫
dr⊥Ni(r⊥)LμνNj (r⊥)

]
ψν j

=
∑
μν

3∑
i j=1

ψ∗
μiM

(iel )
μνi jψν j, (B4)

where Lμν represents the operators appearing in the integrand
of Eq. (B1), namely, the Lagrangian density.

The total action is given by the sum of each element’s
contribution. This can be written in a very natural manner
in matrix form by imposing interelement continuity through
carefully overlaying the element matrices M(iel ) [39]. To
understand how to construct a global matrix starting from
element matrices it is convenient to make a simple example.
Let us consider a single component of the envelope function
ψμ = ψ and two adjacent triangular elements (iel = 1, 2) hav-
ing two nodes (and one edge) in common. The action integral
for these two elements reads

A =
3∑

i j=1

ψ
(1)∗
i M(1)

i j ψ
(1)
j +

3∑
i j=1

ψ
(2)∗
i M(2)

i j ψ
(2)
j . (B5)
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Since the two elements share two nodes and we require in-
terelement continuity, we set ψ

(1)
1 = ψ

(2)
1 , ψ

(1)
2 = ψ

(2)
2 , where

it is implicitly assumed that the first and the second node of
both elements, respectively, overlap. Using the above condi-
tions, it is possible to rewrite Eq. (B5) in the global form

A =
4∑

IJ=1

ψ∗
I MIJψJ , (B6)

where I and J now stand for global node indices and M is
obtained from M(1) and M(2) by summing the contributions
from the same nodes and collecting the envelope functions
on common vertices, e.g., for I, J = 1, 2 we have MIJ =
M(1)

IJ + M(2)
IJ .

From this example it is now easy to see that the action
integral in its global form can be written as

A =
∑
μν

nglob∑
IJ

ψ∗
μIMμνIJψνJ , (B7)

where nglob is the total number of nodes on the discretization
domain. We now invoke the principle of stationary action and
obtain the equation of motion in algebraic form. We vary
the action integral with respect to ψ∗

μI to obtain simultaneous
equation for the coefficients ψνJ ,

δA
δψ∗

μI

=
∑

ν

nglob∑
J

MμνIJψνJ = 0. (B8)

Given the particular form of the integrand in Eq. (B1), the
above expression results in a generalized eigenvalue problem

∑
ν

nglob∑
J

[HμνIJ − E δμνSμνIJ ]ψνJ = 0. (B9)

Here HμνIJ represents the discretized form of the Burt-
Foreman operator Ĥμν

BF in Eq. (2), while SμνIJ is an overlap
matrix which is present due to the nonorthogonality of the
basis functions Nj . From Eq. (B9) it is clear that the dimension
of the problem is given by the number of nodes nglob in the
simulation domain, times the number of components of the
envelope function.

For the Poisson equation the energy functional to be mini-
mized is given by

A =
∫

dr⊥
1

2
[ε(r⊥) ∇Vel (r⊥) · ∇Vel (r⊥) − 1

ε0
Vel (r⊥)ρ(r⊥)].

(B10)

A functional variation of A with respect to Vel followed by
an integration by parts gives the Poisson equation Eq. (7).
Expressing the electrostatic potential again in terms of La-
grange linear interpolation polynomials inside each triangular
element,

Vel (r⊥) =
3∑

j=1

V j
elNj (r⊥), (B11)

and following the same procedure described for the k · p
problem, a linear system of nglob equations is obtained:

nglob∑
J

CIJV J
el = bI . (B12)

After the inclusion of proper boundary conditions,
Eqs. (B9) and (B12) are finally solved with standard library
routines.
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