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Dynamics of phase defects trapped in optically imprinted orbits in
dissipative binary polariton condensates
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We study the dynamics of phase defects trapped in a finite optically imprinted ring lattice in binary polariton
condensates, under the influence of the cross interaction (CI) between the condensate fractions in different
spin components and the spin-orbit interaction (SOI). In this configuration, we find that a vortex circulates
unidirectionally in optically induced orbits because of the Magnus force acting in the polariton fluid and the
vortex’ angular velocity is influenced by the SOI and CI. Interestingly, in our system, these two interactions
can also lead to elongated and frozen phase defects, forming a frozen dark solution with similarity to a dark
soliton but with finite size in both spin components. When the dark solution is stretched further to occupy the
entire orbit of a condensate ring, the phase defect triggers a snake instability and induces the decay of the dark
ring solution. The circulation direction of a single vortex is determined by the Magnus force. This situation is
more complex for the group motion of multiple vortices because of significant vortex-antivortex interaction. The
collective motion of such vortex constellations, however, is determined by the SOI.
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I. INTRODUCTION

Vortices carrying quantized orbital angular momenta have
attracted significant attention in a variety of physical systems
such as in nonlinear optics [1], superconductors [2], atomic
condensates [3], and polariton condensates [4–7]. Polaritons
are quasiparticles, formed due to the strong coupling of pho-
tons and excitons in planar semiconductor microcavities. As
half-light half-matter hybrid particles, they can show macro-
scopic coherence or condensation [8,9] under nonresonant
optical excitation and possess strong nonlinearity. Different
from the formation mechanism of vortices in atomic conden-
sates [3], the driven-dissipative nature and short lifetime of
polariton condensates enable the survival of phase defects dur-
ing the pumping, evolving spontaneously into vortices. These
spontaneously formed vortices can be trapped inside local
potential valleys [5]. The nonresonant optical excitation can
also induce a repulsive potential energy landscape resulting
from the interactions with the induced excitation reservoir.
A periodically modulated pump profile imprints a periodic
potential and confines the motion of the vortices. In this
case, even unstable one-dimensional phase defects, known as
dark solitons, can be stabilized [10]. However, dark soliton
stripes in two dimensions are unstable and they finally evolve
into vortex-antivortex pairs because of the snake instability,
which has been widely reported in both atomic (conservative)
[11,12] and polariton (dissipative) condensates [13–15]. The
decay of the two-dimensional dark solitons can be suppressed
by supersonic flow of particles, which is known as oblique
dark solitons formed in the wake of an obstacle that perturbs
the flow of the fluid [16–18].

Polaritons possess a spin degree of freedom that arises
from the two optically active exciton spin states, which are
coupled to the two circular polarizations of the light field.
This spin structure gives rise to novel vortex states such
as half-quantum vortices [5,19,20], i.e., a vortex state in
one spin component and a nonvortex state in the other. The
energy splitting of perpendicularly polarized cavity photon
modes [21], known as photonic TE-TM splitting, leads to
the spin-orbit interaction (SOI) of polaritons and many novel
phenomena such as the optical spin Hall effect [22,23] and
oblique half-dark solitons [24,25]. It also leads to an inter-
action between vortices formed in different spin components
and consequently influence their in-plane trajectories [26,27].
The TE-TM splitting can induce an effective magnetic field in
which half-solitons and half-vortices behave like “magnetic
charges” with their propagation directions depending on the
relative phase between the spin components [28,29].

Condensates with opposite spins can also directly interact
with each other, which induces an attractive nonlinearity [30],
even though its strength is typically much smaller than that
of the intraspecies repulsive interaction. It can be notably
enhanced in a narrow spectral range close to the two-particle
resonance associated with the formation of a bound biexciton
state [31,32].

Here, we study the dynamics of vortices in ring lattices for
polariton condensates imprinted by a spatially structured con-
tinuous wave optical pump beam. Due to the finite size of the
pump spot, a steady condensate outward flow forms, building
up a density gradient and pushing the existing vortices along
the radial direction. Since the vortices are trapped in their
radial position, the condensate flow results in an azimuthal
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orbital motion of the vortices due to the Magnus force [33,34].
In the spinor system, both the SOI and CI affect the orbital
velocity of a single vortex. By slightly varying the curvature
of the radial envelop of the periodic pump, the density gradient
of the condensate along the radial direction can be adjusted,
which influences the circulation velocity and also the size of
the vortex core. When SOI is significant and the condensates
in both spin components are equally excited, i.e., under lin-
early polarized excitation, a new type of dark solution states,
which are strongly deformed vortices along the azimuthal
direction, are found. In the presence of a weak CI, such kinds
of dark solutions can form in only one spin component and
behave like breathers, i.e., their sizes and angular velocities
vary periodically during the propagation. When such dark
solutions are formed in both spin components, they can be
frozen because of their interaction. As the curvature of the
pump’s spatial envelop increases, the dark solution can be fur-
ther elongated along the azimuthal direction until occupying
the whole ring. Interestingly, the phase defect carried by the
dark solution then immediately triggers the snake instability
that breaks the dark solutions in both spin components and
leads to their decay. Besides affecting a single phase defect,
the SOI also influences the collective circular motion of vor-
tex constellations where vortex-vortex and vortex-antivortex
interactions become significant as discussed in detail below.

II. THEORETICAL MODEL

To study the dynamics of binary polariton condensates
under nonresonant excitation, we use the spinor-driven dis-
sipative Gross-Pitaevskii model, including SOI caused by the
TE-TM splitting and CI between different spin components
[35], which reads

ih̄
∂ψ±
∂t

=
(

− h̄2

2meff
∇2 + gc|ψ±|2 + gx|ψ∓|2 + grn±

+ ih̄

2
[Rn± − γc]

)
ψ± + J±ψ∓, (1)

∂n±
∂t

= P± − (γr + R|ψ±|2)n±. (2)

Here, ψ± = ψ±(x, y) is the polariton field and n± = n±(x, y)
is the density of the reservoir. The subscripts ± denote the two
spin components, which correspond to right and left circular
polarization. The two polariton fields with different spins are
coupled to each other through J± = �(∂x ∓ i∂y)2, where �

represents the strength of the TE-TM splitting. meff = 10−4me

(me is the free electron mass) represents the effective polari-
ton mass. gc = 6 μeV μm2 describes the polariton-polariton
interaction in the same spin, while gx represents the CI of
polaritons of opposite spin. gr = 2gc represents the interaction
between the condensate and the reservoir in the same spin
component [6,36]. R = 0.01 ps−1 μm2 denotes the conden-
sation rate from the reservoir into the condensate and γc =
0.2 ps−1 characterizes the loss rate of the condensate. The loss
rate of the reservoir is characterized by γr = 0.3 ps−1. P± is
the nonresonant pump whose profile can be tailored to achieve
the desired spatial distribution of the condensate as well as the
reservoir. In this paper, to confine the phase defects and study
their circular motion, we use a radially modulated continuous

FIG. 1. Principle of vortex circulation. (a) Radially modulated
pump profile with intensity of P0 = 50 ps−1 μm−2, orbit width of
d = 8 μm, a maximum orbit radius of rc = 40 μm, and a flat
envelop with w → ∞. (b) The equivalent one-dimensional pump
profile in ps−1 μm−2 with w → ∞ (red-dashed line) and w =
100 μm (blue-dashed line). (c) Density of the condensate in μm−2

with a confined vortex inside, excited by the pump in (a). The arrows
indicate the circulation directions of the vortex with a specific topo-
logical charge. (d) Principle of the Magnus force (purple and gray
arrows), caused by the outward flow of the condensate (blue arrows),
acting on oppositely charged vortices.

wave pump; see Fig. 1(a), which is governed by

P±(r) =
{

P0
(
cos2

(
πr
d

)
exp

(− r2

2w2

) + C0
)
, |r| � rc

0. |r| > rc
(3)

Here, P0 is the pump intensity, d = 8 μm is the radial mod-
ulation constant, and w represents the size of the pump spot
and it also determines the curvature of the pump’s envelop.
For example, when w → ∞, the envelop of the pump along
the radial direction shows a flat top; see the red-dashed profile
in Fig. 1(b). The curvature of the pump’s envelop increases
as the value of w decreases; see the blue-dashed profile in
Fig. 1(b). The compensation constant C0 = 0.25 strengthens
the intensity of the pump to modulate the contrast of the
density distribution of the condensate to better confine the
vortices. We note that for different parameter combinations,
the pump profile needs to be tuned accordingly to tightly
trap the vortices. To create an outgoing flow of polaritons,
we reshape the pump profiles by cutting the outer rings at
|r| > rc, where rc represents the boundary of the pump. The
finite number of the concentric rings in the pump is then given
by Nc = rc/d − 1. Recently, it was found that phase defects
[37] and Josephson vortices [38] can be created and propa-
gate in polariton condensate channels. In our simulations, we
also introduced a disorder potential with correlation length
of about 1–2 μm and a mean depth of about 0.15 meV and
found that all the results presented below remain unchanged,
evidence that the dynamics presented are very robust. We
would further like to note that for the nonlinear dynamics
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observed and solution classes reported in this paper, we find a
certain interdependence of the different system and excitation
parameters. While one specific set of parameters, guided by
literature [6,36,39,40], was initially fixed, crucial parameters
such as TE-TM splitting are systematically varied below. For
other parameters, if one parameter is changed (e.g., the non-
linearity), changes in other parameters (e.g., the pump profiles
and loss rates) can often lead to the observation of the same
types of solutions again. For a relatively wide range of differ-
ent parameter combinations, we actually find the observations
reported here to be very robust and universal, as also further
discussed below.

III. SINGLE VORTEX CIRCULATION

Due to the condensate density differences within and out-
side the pumping region as well as the repulsive nonlinearity,
polaritons spontaneously flow radially outward. This results
in a density gradient inside the pumping area, which also
depends on the curvature of the pump’s spatial envelop, i.e.,
the larger the curvature, the faster the outflow. A vortex can be
initialized by placing a predefined phase defect at the desired
target location in the corresponding vortex-free background
solution of the system. Due to the effective potential caused by
the radially modulated excitation, the vortex is trapped in the
radial direction in a specific orbit. Importantly, the net radial
outflow of the condensate causes a rotation of the vortex in
its orbit due to the Magnus force. Note that the vortex does
not circulate in its orbit if the Magnus force is absent. In other
words, the vortex is pinned where it initially forms without the
net outflow of the condensate. For a vortex with topological
charge m in a homogeneous condensate with density nc the
explicit expression for the Magnus force reads [33,34]

FM = 2π h̄mncez × vrel (4)

where vrel is the relative velocity between the vortex and
the surrounding condensate. In our case, an initially placed
vortex inside a specific orbit starts to rotate either clockwise
or counterclockwise depending on the sign of its topological
charge. As the orbital velocity of the vortex increases the
effective Magnus force becomes weaker since its component
tangential to the orbit decreases. Finally, a stationary orbital
velocity is reached indicating a balance of all forces (i.e.,
the outgoing flow induced by the density gradient, the con-
finement from the modulated pump, and the Magnus force)
acting on the vortex. The principle of the Magnus effect is
illustrated in Fig. 1(d) where we simply consider the scalar
model of Eqs. (1) and (2), that is � = 0 and gx = 0, under a
pump intensity of P0 = 50 ps−1μm−2. For a counterclockwise
rotating vortex, i.e., topological charge m = +1, the outward
flow of the condensate [blue arrows in Fig. 1(d)] results in a
Magnus force, which is tangential to the orbit [grey arrow in
Fig. 1(d)], acting on the vortex. Conversely, if the topological
charge of the vortex is m = −1, the direction of the Magnus
force is flipped, as indicated by the purple arrow in Fig. 1(d).
In our system, the radially modulated condensate prevents the
outgoing propagation of the vortices, which are placed into
the density valley of the background lattice, so that they can
only circulate in the corresponding orbit and the circulation
direction depends on the sign of the topological charge; see

FIG. 2. Orbital velocities of vortices. Orbital velocities of differ-
ently charged vortices (m = +1 for the blue lines and m = −1 for
the red lines) on the third orbit from the center, in dependence of
the TE-TM splitting for circularly polarized excitation. Additionally,
crosses refer to a CI of gx = 0 and triangles to gx = −0.1 gc.

the arrows in Fig. 1(c) and also the video in [41]. We note that
for different densities of the background condensates we see
the same kind of circulation of the vortices as long as they
are stably trapped. The pump profiles, providing the trapping
potentials, need to be slightly adjusted by changing the radial
period or the depth of the intensity valleys to better confine the
radial motion of the vortices, because of the changes in size of
the vortex core at different pumping rates [27].

The orbital velocity of a vortex is influenced by the TE-TM
splitting and the CI as illustrated in Fig. 2 where the pump is
circularly polarized with P− = 0. It shows the velocities of the
vortices with different topological charges m as a function of
the TE-TM splitting �. The orbital velocities are calculated
as vo = 2πR/T where R is the orbit’s radius and T is the
period. Both of the vortices with opposite topological charges
can be accelerated by the TE-TM splitting; see the blue
and red lines. Their velocities increase slowly and linearly
with increasing SOI as long as � < 0.12 meV μm2 and they
are unchanged by introducing weak CI in this regime. The
increase of their velocities is because the TE-TM splitting
induces an effective magnetic field that accelerates differ-
ently charged vortices towards opposite directions [28,29].
However, when � > 0.12 meV μm2, their velocities become
more sensitive to the TE-TM splitting as well as the weak CI.
They increase drastically with the TE-TM splitting because
the larger TE-TM splitting leads to changes in the environ-
ment of the vortex, which influences the shape of the vortex
core and consequently makes it feel a stronger Magnus force.
The CI further accelerates the circulating vortices. Larger
velocities result in vortices not being trapped inside the orbits
any longer; instead they completely escape from the pumping
area.

IV. BREATHING VORTICES AND NOVEL
DARK SOLUTIONS

Apart from the orbital velocities of the standard vortices
being affected by the TE-TM splitting and the CI, their shapes
and behavior almost remain unchanged under circularly
polarized excitation. In this section we study the dynamics of
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FIG. 3. Elongated dark solutions. (a) Condensate density in
μm−2 (upper row) and phase (lower row) distributions of the
elongated half-vortex with an m = −1 charged vortex in the �+
component with w = 160 μm, � = 0, and gx = 0. (b) Density in
μm−2 (upper row) and phase (lower row) distributions of the frozen
dark solution with w = 280 μm, � = 0.1 meVμm2, and gx = −0.1
gc. The spatial intervals shown range from −80 μm to +80 μm for
all panels.

vortices for linearly polarized excitation. In this case, due to
the strong interaction of polaritons and vortices in different
components, the vortices may escape from their orbits and
consequently disappear at the edge of the excitation area.
For a more efficient trapping of vortices in their own orbits
and avoiding the influence from the edges, the radius of the
excitation area is increased to rc = 80 μm, resulting in Nc = 7
concentric orbits as shown in Fig. 3. Here, the confinement
of the vortices is further enhanced by reducing the pump
intensity to P0 = 45 ps−1 μm−2 and increasing the modula-
tion constant to d = 10 μm. Simultaneously, to strengthen
the Magnus force, we slightly increase the curvature of the
pump’s envelop, that is the pump’s envelop possesses a more
pronounced slope with w = 160 μm. Remarkably, this elon-
gates the cores of the vortices only along the azimuthal
direction; see Fig. 3(a). The size of this elongation is propor-
tional to the curvature of the pump’s envelop, but the curvature
cannot be increased insignificantly, otherwise the outer rings
becomes too weak to prevent the outgoing propagation of the
vortices. It is worth noting that the elongation of the vortices
is observed in the scalar case as well as under circularly
polarized excitation.

When the TE-TM splitting is present and the CI is ab-
sent, the motion of the vortex in the �+ component can
be perturbed by the nonvortex phase in the �− component.
As a result, the elongated vortex changes its orbital velocity
and size periodically during the circulation, behaving like a
breather; see the videos in the Supplemental Material [41].
Since the phase defect is only in one spin component, it can
also be regarded as a breathing half-vortex. Including the CI
the minimum velocity of the breathing half-vortex is reduced.
Furthermore it enables the creation of the dark solution state in
the �− component as shown in Fig. 3(b). We note that initially
a vortex is imprinted in only the �+ component in Fig. 3(b).
Surprisingly, the dark solution in the �− component reacts
to that in the �+ component, such that the CI elongates the
dark solutions in both components. If the TE-TM splitting is
slightly increased, the dark solutions are further elongated to
occupy a larger proportion of their respective orbits; see the

video in the Supplemental Material [41]. These dark solution
states are special in the sense that (i) they are frozen at the
fixed position where they form, that is they do not move as
time evolves, (ii) even though the dark state in the �+ com-
ponent shows a 2π phase winding, which is a typical property
of a vortex, the phases between the two sides of the dark gap
shows a clear π phase difference, indicating a dark soliton,
and (iii) circulation around the edge of the dark solution in
the �− component still gives a zero phase difference, i.e.,
there is no phase defect enclosed. However, there is still a π

phase shift between the two sides of the dark gap in the �−
component.

For the frozen solutions, the question arises whether such
a dark solution can fully occupy its orbit. For this purpose,
we slightly increase the curvature of the pump’s envelop
and the results are shown in Fig. 4. It is clear that the two
ends of each dark solution start to extend to occupy more
of the orbit until it is completely filled; see Figs. 4(a)–4(c).
After the dark solutions close and form a ring, it becomes a
ring-shaped dark soliton in the �+ component as shown in
Fig. 4(c). Dark solitons in 2D are unstable, such that they split
into vortex-antivortex pairs in the homogeneous background
[13] or show snake instability if they are confined along one
direction [14,15]. In our case, the dark soliton ring is also
unstable, so that the snake instability is triggered immediately;
see Fig. 4(d). At the same time, the initially imprinted phase
defects in the �+ component drives the vortex-antivortex pairs
to start to annihilate, leading to the decay of the dark solutions.
Finally, only a part of the dark solution survives due to the
initially imprinted phase defect; see Fig. 4(e). Thereupon,
the above process repeats robustly as time evolves; see the
video in the Supplemental Material [41]. During the evolution,
the behavior of the dark solutions in both components are
nearly synchronized. From Fig. 4(c) one can see that the dark
solution in the �− component is quite different from a dark
soliton, because of the clear π phase difference at both sides
of the density minimum vanishes.

In Fig. 5, the orbit filling mechanism of the dark solution
referring to Figs. 4(a)–4(c) is illustrated. One can see that
the orbit filling velocity is associate with the TE-TM split-
ting and the curvature of the pump’s envelope. For the same
pump, a stronger TE-TM splitting accelerates the filling of
the dark solution, while for the same TE-TM splitting, the
filling mechanism becomes fast when the pump’s envelope
has a larger curvature. It can be seen that due to the presence
of the TE-TM splitting the orbit filling process is nonlinear
over time, because the SOI caused by the TE-TM splitting is
a quadratic function of the wave vector. It is worth highlight-
ing that the emergence of the frozen and dark ring solutions
depends on the absolute value of the CI. Especially, when the
polariton-polariton interaction gc is reduced, the value of the
CI relative to gc has to be increased to a more significant value
to support these solutions. For example, when gc is reduced to
three times smaller, the absolute value of gx needs increased
to 0.15gc.

V. COLLECTIVE MOTION OF VORTICES

In this section, we study the collective motion of multiple
phase defects trapped in different orbits. To this end, we use
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FIG. 4. Dynamic evolution of dark solution states. Density in μm−2 (upper row) and phase (lower row) distributions of dynamic dark
solutions at different times: (a) t = 150 ps, (b) t = 466 ps, (c) t = 799 ps, (d) t = 818 ps, and (e) t = 1118 ps. The spatial intervals shown
range from −80 μm to +80 μm for all panels. A video showing the entire time evolution can be found in the Supplemental Material [41].

white noise as initial condition and a circularly polarized
pump. In this case, multiple vortex-antivortex pairs can form
from the initial noise, and the interaction between different
pairs results in the formation of a fixed vortex constellation.
After the constellation stabilizes, it starts to circulate as a
whole, either clockwise or counterclockwise. Without TE-TM
splitting and CI, the probabilities for the clockwise rotation pc

and the counterclockwise rotation pcc = 1 − pc are equal, i.e.,
pcc = pc = 0.5, as illustrated in Fig. 6(a). These probabilities
are derived by determining the proportions of clockwise and
counterclockwise rotating constellations and each probability
is calculated by averaging over 40 simulations by using a
different noise realization as initial condition for each simula-
tion. Note that the spontaneous formation of the vortices from
noise results in that they can build up either in the density
valleys or at the density peaks [10]. Since the vortices in the
density valleys have larger sizes, so that their interaction leads
to recombination for most of them before the group motion
establishes, more vortices survive in the density peaks with
smaller sizes.

Turning on the TE-TM splitting shifts the probability of the
rotation directions of the constellation. A right (left) circularly
polarized pump increases the probability of the collective
clockwise (counterclockwise) movement in the presence of
the TE-TM splitting. Figure 6(a) shows the possibility of the
clockwise rotation pc in the ψ+ component in dependence
of the TE-TM splitting. For a value of � = 0.15 meV μm2

FIG. 5. Dark ring evolution. Percentage of the third orbit filled by
the dark solution as a function of time, in dependence of the TE-TM
splitting � and the curvature of the pump’s envelope w.

the probability gets quite close to pc = 1, whereas the prob-
ability decreases as the TE-TM splitting increases further.
The reason is that at larger TE-TM splitting, the density of
the condensate in the ψ− component is enhanced, so that it
strongly affects the vortex and the surrounding environment
in the ψ+ component. Another reason is that the stronger
TE-TM splitting induces a prominent effective magnetic field,
which leads vortices that carry different topological charges

FIG. 6. Rotation of vortex constellations. (a) Probability of the
clockwise rotation pc of the constellation in the �+ component
depending on the TE-TM splitting. (b) Density in μm−2 (upper
row) and phase (lower row) distributions of a vortex constellation
at � = 0.15 meV μm2, corresponding to the red point in (a) under
a pump intensity of P0 = 50 ps−1 μm−2. The spatial intervals shown
range from −40 μm to +40 μm for all panels. A video showing the
time evolution can be found in the Supplemental Material [41].

245302-5



WINGENBACH, PUKROP, SCHUMACHER, AND MA PHYSICAL REVIEW B 105, 245302 (2022)

to propagate in opposite directions [28,29]. Consequently, the
nearly unidirectional circulation of the vortex constellation is
broken.

Besides affecting the collective motion of the vortices, the
SOI also induces the formation of bright vortices or localized
vortices in the ψ− component where the pump is inactive as
shown in Fig. 5(b). One can see that each smaller vortex in
the ψ+ component corresponds to a bright vortex in the ψ−
component, and their topological charges satisfy the relation
|m+ − m−| = 2, agreeing with the relation of two coupled
nonlocalized vortices [42]. For example, in the ψ+ component
the smaller vortex with topological charge m+ = 1 (m+ =
−1) has a bright counterpart at the same position in the ψ−
component with topological charge m− = −1 (m+ = −3), as
marked by the circles (rectangles) in Fig. 6(b). Note that the
circulating directions of the vortex constellations in different
spin components are synchronized due to the phase coupling,
originated from the SOI, of the paired vortices in different spin
components. The association of these two kinds of vortices in
different spin components provides a method to control the
bright vortices by manipulating the dark vortices [10] in the
other spin component.

We note that the values of the nonlinearity parameters may
be different in different microcavities [39]. As the presence
of the nonlinearity is essential for the observed effects, we
have checked that for changes in the nonlinearity parameters,
the dynamics observed in our paper remains robust if other
parameters are varied accordingly. For example, when the
nonlinearities become several times weaker (gc = 2 μeV μm2

and gr = 2gc, for instance), to obtain the similar dynamics
throughout this paper, the pump intensity, the number of the
orbits, as well as the loss rate must be increased.

VI. CONCLUSIONS

In summary, we have studied the dynamics of phase defects
trapped in concentric rings in spinor polariton condensates.
We find that for circularly polarized excitation, the single
vortex circulatory motion, driven by the Magnus force, can
be influenced by the CI and the SOI. The collective motion
of vortex constellations are also be affected by the SOI. For
the creation of the novel frozen dark solution states, besides
the SOI, the CI also becomes essential for linearly polarized
excitation. We find that the size of the frozen dark solution
is related to the curvature of the pump’s spatial envelop as
well as the SOI. In some cases, the frozen solutions can even
occupy the whole ring, which is an unstable scenario, and
then a snake instability is triggered. All these phenomena are
very robust in a broad parameter range as long as a sufficient
nonlinearity exists, while in the linear regime they cannot sur-
vive. Our results demonstrate control of phase defects through
SOI and CI, which may also be of interest to the conservative
atomic condensates, nonlinear optics, and other binary physi-
cal systems.
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