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Random band-edge model description of thermoelectricity in high-mobility disordered
semiconductors: Application to the amorphous oxide In-Ga-Zn-O
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Unraveling the dominant charge transport mechanism in high-mobility amorphous oxide semiconductors is
still a matter of controversy. In the present study we extended the random band-edge model suggested before
for the charge transport and Hall-effect mobility in such disordered materials [Fishchuk et al., Phys. Rev. B
93, 195204 (2016)], and also describe the field-effect-modulated thermoelectricity in amorphous In-Ga-Zn-O
(a-IGZO) films under the same premises. The model is based on the concept of charge transport through the
extended states and assumes that the transport is limited by the spatial variation of the position of the band
edge due to the disorder potential, rather than by localized states. The theoretical model is formulated using
the effective medium approximation framework and describes well basic features of the Seebeck coefficient
in disordered materials as a function of energy disorder, carrier concentration, and temperature. Carrier con-
centration dependencies of power factor and thermoelectric figure of merit have been also considered for such
systems. Besides, our calculations reveal a remarkable turnover effect from a negative to a positive temperature
dependence of Seebeck coefficient upon increasing carrier concentration. The suggested unified model provides a
good quantitative description of available experimental data on the Seebeck coefficient and the charge mobilities
measured in the same a-IGZO transistor as a function of the gate voltage and temperature by considering the
same charge transport mechanisms. This promotes a deeper understanding and a more credible and accurate
description of the transport process in a-IGZO films.

DOI: 10.1103/PhysRevB.105.245201

I. INTRODUCTION

Understanding the thermoelectric properties of amorphous
semiconducting materials is important not only for technolog-
ical development of thermoelectric devices, but also from a
fundamental standpoint as it can provide unique and com-
plementary insight into the underlying mechanism of the
electronic transport in these materials. Thermoelectric prop-
erties are conventionally probed via measuring the Seebeck
coefficient α (also referred to as thermopower) that is de-
fined as α = �V/�T , where �V is the thermoelectric voltage
(or electromotive force) generated in a material in response
to an applied temperature differential �T . The Seebeck co-
efficient not only governs the efficiency of thermoelectric
converters—the study of field-effect-modulated Seebeck coef-
ficients has been also suggested as a characterization method
to investigate the charge carrier transport in disordered semi-
conductors [1]. An important advantage is that the Seebeck
voltage is independent of the interfacial contact [2], there-
fore the Seebeck effect is considered as a way to uncover
the intrinsic characteristics of the charge-carrier transport [3].

*Corresponding author: kadash@imec.be

Thus, thermoelectricity in conjunction with the charge mobil-
ity measurements complements the conventional field-effect
transistor (FET) characterization approach and can therefore
promote a more accurate theoretical description of transport
process as both phenomena are to be premised on the same
physical mechanism.

Amorphous metal oxide InGaZnO (a-IGZO), introduced
by Nomura et al. [4] in the early 2000s, has enormous poten-
tial as an n-type semiconductor material for the realization of
the next generation of thin-film transistor (TFT) technology
[5] due to its greatly improved charge transport properties,
superior spatial uniformity, high transparency in the whole
visible range, and relatively low temperature deposition com-
patible with plastic substrates for flexible electronics and
flat-panel displays. Another emerging application of a-IGZO
relates to realization of transparent and flexible thermoelectric
modules [6–9], as e.g., future power supply for the internet
of things [6], for wearable heating and for cooling devices.
Several amorphous metal oxides, including a-IGZO, have re-
cently been proposed as promising thermoelectric materials
due to their mechanical properties, low lattice thermal conduc-
tivity (inherent to amorphous materials) [10], and relatively
large thermopower and electron mobility. A low processing
temperature and possibility of thin-film device fabrication on
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large areas with low cost is another merit for thermoelectric
application. a-IGZO is an intrinsically energetically disor-
dered solid due to the constituting ions being statistically
distributed at the lattice sites. Yet, it features a remarkably
high charge-carrier mobility (μ ∼ 10–50 cm2/Vs) for a dis-
ordered material [4,11] being at least an order of magnitude
greater than in amorphous silicon (<1 cm2/V s). This is due
to the fact that the bottom of the conduction band of a-IGZO is
composed of spatially spread metal s orbitals with spherically
symmetric shape, which are weakly influenced by the amor-
phization and consequently result in a much lower density of
localized states in this material.

In spite of a large amount of work having been done
on the charge transport studies in this material for the last
decade, its theoretical description is still far from complete.
Although a-IGZO films show a well-developed free-electron-
like Hall effect [4,12,13], suggesting thereby that the mobile
charge carriers are actually delocalized, both Hall and drift
FET mobilities typically exhibit a thermally activated be-
havior (dμ/dT > 0) and increase with increasing carrier
concentration, which cannot be rationalized by classical band
transport motion. Furthermore, measurements of the field-
effect-modulated thermopower in a-IGZO have revealed that
the Seebeck coefficient features a remarkably weak tem-
perature dependence, while it decreases significantly with
increasing the carrier concentration in FET devices [14]. The
basic charge transport mechanism in a-IGZO is still a matter
of controversy—several alternative theoretical concepts were
suggested to date, including bandlike transport with random
barriers [4,12–17], trap-limited transport within the multiple
trapping and release (MTR) model [18,19], hopping trans-
port [14], and the random band-edge model based on either
the effective medium approximation (EMA) [20] or percola-
tion concepts [21]. These mechanisms and their combinations
were typically used to describe a limited set of experimental
measurements, while a unified theoretical framework capable
of describing the full properties of charge transport in a-IGZO
(such as drift charge-carrier mobility, Hall mobility, electrical
conductivity, and Seebeck coefficient as a function of disorder,
carrier concentration, and temperature) is still missing.

Recently, Nenashev et al. [21] and Baranovskii et al. [22]
presented a critical analysis of different mechanisms and the-
oretical frameworks that were suggested in the literature for
the description of the charge transport in a-IGZO semicon-
ductor. They can be categorized as follows. Band transport
affected by random potential barriers (RB concept) was sug-
gested as the dominant mechanism by Kamiya and Nomura
[12–15] using percolation arguments proposed by Adler [23]
to describe the temperature- and carrier-concentration de-
pendencies of charge transport, including also thermoelectric
characteristics in a-IGZO [14]. The concept of the band trans-
port via delocalized states is supported by the observations
of a well-developed Hall effect, which points to the essen-
tial occupation of bandlike states [12,13,21]. The RB model
assumes that the charge carriers move above the band edge
εm and their transport is hindered by the presence of random
potential barriers created by the disorder potential above the
εm. However, as pointed out in Ref. [21], if disorder creates
potential barriers above the band edge, it will inevitably create
potential wells below the band edge, which was ignored in

the RB-based Kamia-Nomura model. The statistical distribu-
tion of these wells must be taken into account [21], which
makes εm a random quantity, which is in variance to the RB
model where it has been treated as a constant. Another serious
shortcoming of the Kamia-Nomura approach [12–15] is that,
despite their claim, the percolation nature of the conduction
process has not been properly taken into account in their
formalism, as pointed out in Refs. [21,22]. The percolation
transport problem has been recently thoroughly reinvestigated
withing the RB concept [22], and the results of the Kamia-
Nomura approach were found to be in sharp contrast to that
obtained within an established percolation theory. Besides, the
Kamia-Nomura model overestimates the Seebeck coefficient
in a-IGZO and predicts a much stronger temperature depen-
dence α(T ) as compared to experimental observations [14].

A trap-limited band transport in terms of the multiple
trapping and release (MTR) model has also been considered
as a possible transport mechanism in a-IGZO [18,19,24]. It
assumes that most of the carriers are trapped in the defect-
induced localized states below the εm and that the transport
is controlled by thermal release of carrier to the band states.
However, Germs et al. argued [14] that not the MTR transport,
but rather the interplay between the hopping and the band
transport should be considered as the appropriate transport
mechanism in a-IGZO materials. They claimed that the charge
transport is dominated by variable range hopping below, rather
than by bandlike transport above the mobility edge [14]. An
important drawback of the hopping model description of the
charge mobility measured in a-IGZO is that it requires an
unusually large value of the charge localization length in the
tail states, about 4.8 nm [14], that exceeds by far the estimates
for the localization length of carriers in the band tails of
inorganic semiconductors [21]. Besides, the FET mobility in
a-IGZO virtually coincides with the mobility obtained from
the Hall measurements, which is incompatible with the no-
tion of a dominant hopping transport regime. On the other
hand, the experimentally evaluated activation energies of FET
mobility, which is associated with the energy difference be-
tween the Fermi level and the εm, turned out to be as low
as ∼10–40 meV, i.e., �3kBT , in optimized a-IGZO devices
at sufficiently large gate voltages [13,20,25]. According to
the Fermi-Dirac statistics this implies a significant degener-
ation in such a semiconductor at room temperature as a large
fraction of charge carriers would populate the delocalized
states above εm. Thus, it is obvious that the MTR formalism
can hardly be applicable in the case when the Fermi level is
very close to the conduction band edge. Besides, the MTR
model predicts [26] a markedly stronger increase of See-
beck coefficient in a-IGZO with temperature, as compared
with experiment [14] which shows a very weak temperature
dependence.

Shortcomings of the band-transport Kamia-Nomura model
might be eliminated in the “random band-edge” model re-
cently suggested by Fishchuk et al. [20], which combines
band transport and localized band-tail states. A significant
modification made in this model is that, instead of the dis-
tribution of potential barriers above a constant global band
edge εm postulated in the Kamia-Nomura model [12–15], the
random band-edge model assumes that the disorder potential
causes random long-range variations of the band edge, i.e.,
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the εm is a variable. The latter has been also verified by the
first-principles calculations in a-IGZO [20]. It was further
assumed that spatial fluctuations of εm are described by a
Gaussian distribution with standard deviation δ in terms of the
Thomas-Fermi approximation [27],

g(εm) = 1

δ
√

2π
exp

[
−1

2

(εm

δ

)2
]
, (1)

where the position of the εm is counted from the position
of the band edge without disorder potential. Thus δ can be
considered as a measure of the band-edge disorder. Nenashev
et al. [21] pointed to this concept as the most appropriate
for amorphous oxide semiconductors and used it to formulate
their percolation theory for the description of the drift charge
mobility and conductivity in a-IGZO.

It is worth noting that a similar concept has been widely
applied to heavily doped and highly compensated semicon-
ductors [27,28], and represents an alternative to more common
band-tail state descriptions of the charge transport in chalco-
genide glasses [29] and amorphous silicon α-Si:H [30,31].
Notably, a random band-edge model has been also formulated
to describe the influence of lateral variations of band-gap
energies Eg in semiconductor alloys on radiative efficiency
limits of solar cells [32]. The authors argue that band-gap
nonuniformities can arise, e.g., in compound semiconduc-
tors, because of changes of the material stoichiometry across
the cell or module area, likewise in semiconductors alloys
because of composition variations. A Gaussian distribution,
similar to Eq. (1), was assumed and its standard deviation δEg

was taken as a measure for the fluctuations [32]. It was demon-
strated that fluctuations degrade the achievable efficiency of
solar cells—the calculated maximum efficiency was found to
decrease by about 1.7% and 6.1% with respect to a uniform
band gap when δEg increases from 50 to 100 meV, respectively
[32]. Currently, this approach is widely used to describe the
operation of solar cells made from organic materials, hybrid
organic-inorganic perovskites, etc. [33,34]. Interestingly, for
the lead-halide perovskite cells, δEg varies from 17 to 35 meV,
resulting in smaller corresponding voltage losses [34]. We
recently applied the random band-edge model also to weakly
disordered high-mobility organic semiconductors with delo-
calized nature of charge transporting states [35].

The possible reason for band-edge disorder in a-IGZO
might be envisioned as follows. The spatial spread of the
s orbitals is sufficiently large in a-IGZO exceeding the in-
tercation distance, which gives rise to direct overlap among
s orbitals of neighboring metals [4]. Due to the spherical
shape of these orbitals, the overlap is basically insensitive
to structural-randomness-induced distribution of bond angles
and is maintained in the disordered amorphous structure. This
leads to charge delocalization within electron pathways domi-
nantly constituted by the metal orbitals in a-IGZO. One might
imagine that a variation in delocalized electron pathway size
results in a corresponding variation in their conduction band-
edge energies. This is reminiscent of organic semiconducting
conjugated polymers where the variation in the effective con-
jugation lengths of segments, over which the excitation can
delocalize in a coherent manner, gives rise to variation in their
electronic state energies [36].

Fishchuk et al. [20] have applied the random band-edge
concept to formulate a theoretical framework based on the
effective medium approximation (EMA) method to describe
universally effective drift and Hall mobility in heteroge-
neous materials as a function of disorder, temperature, and
carrier concentration within the same theoretical formalism.
The EMA description has been successfully applied to de-
scribe experimental results on the charge transport measured
in a-IGZO. In particular, the model reproduces well both
the conventional Meyer-Neldel compensation behavior for
the charge-carrier mobility and an inverse-MN effect for
the conductivity observed experimentally in a-IGZO TFTs.
The band-edge disorder parameter δ = 40 meV and the
conduction-band mobility μ0 = 22 cm2/V s has been inferred
by fitting experimental results using the EMA approach [20],
which turned out to be quite close to the values δ = 50 meV
and μ0 = 36 cm2/V s obtained by Nenashev et al. [21] using
their percolation theory. This shows that there is not much
difference between the results of the percolation theory and
those of the EMA for the range of parameters relevant to
the experimental situation studied in Ref. [20]. Therefore, we
consider these approaches as complementary.

In this paper, the random band-edge concept is applied to
develop a theoretical description of the thermoelectric prop-
erties of amorphous oxide semiconductors using the EMA
approach. We find that our model can describe well the
available experimental data on both Seebeck coefficients and
the drift charge-carrier mobilities measured as a function of
charge-carrier density and temperature in the same a-IGZO
transistor. Previously this concept was used to also describe
the Hall mobility in this material [20]. This implies that the
suggested EMA framework can describe the full properties of
the charge transport in the a-IGZO semiconductor, premised
on the same concept of the random band-edge variation and
the same material parameters.

II. THEORETICAL FORMULATIONS

To consider field-effect-modulated thermoelectric proper-
ties of a-IGZO films, we adopt the random band-edge model
suggested before in Ref. [20]. The model assumes that the
position of the band edge εm varies in space due to disorder
potential according to a Gaussian distribution given by Eq. (1).
The density of extended (band) states at ε > εm is usually
approximated as

D(ε) = D0
√

ε − εm, (2)

where the coefficient D0 = (2m∗)3/2/2π2h̄3 is defined by
the effective mass m∗. For a-IGZO thin films, D0 =
1021 cm−3 eV−3/2 has been reported before [37]. Following
Ref. [20], in our treatment we only take into account delo-
calized states and energy distribution of εm in the form of
Eq. (1), while the presence of localized states below ε < εm

is neglected for simplicity.
For a given value εm, in the general case of applied electric

field and a sufficiently small temperature gradient, a corre-
sponding local electric current density J(εm) can be presented
as a linear function of both local electric field E(εm) and
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temperature field (gradient) G(εm) [38,39],

J(εm) = σ (εm)E(εm) + β(εm)G(εm). (3)

where σ (εm) is the local electrical conductivity and β(εm)
is a scalar coefficient independent of either E(εm) or G(εm).
Configurational averaging in the left and right parts of Eq. (3)
over the energy distribution of εm [Eq. (1)] yields

〈J(εm)〉 = σe〈E(εm)〉 + βe〈G(εm)〉. (4)

Here σe is the effective electrical conductivity and βe is
an effective coefficient introduced above phenomenologically.
Under an open circuit condition 〈J(εm)〉 = 0, Eq. (4) leads to
〈E(εm)〉 = αe〈G(εm)〉, where αe is the effective Seebeck coef-
ficient defined as αe = −βe/σe. Thus, to obtain the effective
Seebeck coefficient, we need to calculate the effective values
of σe and βe, and for that we employ the effective medium
approximation (EMA) formalism.

The EMA approach suggested earlier by Kirkpatriсk [40]
and also verified by our group [41] is a particularly useful
method for calculating the effective conductivity in weakly
and moderately disordered systems. It is based on the fol-
lowing self-consistency equation allowing determining the
effective conductivity σe from its local values σ (εm),

〈
σ (εm) − σe

σ (εm) + (d − 1)σe

〉
= 0, (5)

where d is the spatial dimension. Hereafter we consider a
three-dimensional (3D) system. Here the angular brackets
mean the averaging over the density distribution function
g(εm):

〈Am〉 ≡
∫ ∞

−∞
dεmg(εm)Am. (6)

The local electrical conductivity σ (εm) can be calculated
from the energy integral as [38,39]

σ (εm) = −e2

3

∫ ∞

εm

D(ε)τ (ε)v2(ε)
∂ f (ε)

∂ε
dε, (7)

where e is the charge of the electron, τ (ε) is the energy-
dependent scattering relaxation time, and v(ε) is electron
velocity. Here f (ε) is the Fermi-Dirac distribution:

f (ε) = 1

1 + exp
(

ε−εF
kBT

) , (8)

where εF is the Fermi level, which is determined by solving
the following equation for the total charge-carrier concentra-
tion n:

n =
∫ ∞

−∞
dεmg(εm)

∫ ∞

εm

dεD(ε) f (ε). (9)

Equation (7) can be rewritten as follows:

σ (εm) = 2e2

3m∗
D0

kBT

∫ ∞

εm

(ε − εm)3/2τ (ε) f (ε)[1 − f (ε)]dε

(10)

Then we represent Eq. (10) in the form

σ (εm) = 2e2

3m∗
D0

kBT
〈τ (εm)〉1

×
∫ ∞

εm

(ε − εm)3/2 f (ε)[1 − f (ε)]dε, (11)

where

〈τ (εm)〉1 =
∫ ∞
εm

(ε − εm)3/2τ (ε) f (ε)[1 − f (ε)]dε∫ ∞
εm

(ε − εm)3/2 f (ε)[1 − f (ε)]dε
. (12)

Generally, if the functional dependence for the energy-
dependent scattering time τ (ε) is known, one can calculate
the effective conductivity by substituting Eq. (11) in (5). How-
ever, the τ (ε) may also depend on temperature and carrier
concentration in the case of degeneracy, therefore its deter-
mination is not a trivial task and requires a separate thorough
study of the mechanism of the electron scattering in the mate-
rial of interest. Therefore, following Refs. [20,21] we assume
for simplicity a constant 〈τ (εm)〉1 = τ1 under the applied elec-
tric field. This can be done by setting εm = 0 in Eq. (12),
analogously to an ordered system. We further consider τ1 as a
fitting parameter.

Further, the effective coefficient βe can be calculated using
an alike EMA self-consistency equation:〈

β(εm) − βe

β(εm) + (d − 1)βe

〉
= 0. (13)

In this case coefficient β(εm) can be expressed as [38,39]

β(εm) = − e

3

∫ ∞

εm

D(ε)τ (ε)v2(ε)
∂ f (ε)

∂ε

ε − εF

T
dε. (14)

It can be then rewritten in the form

β(εm) = 2ekB

3m∗
D0

(kBT )2 〈τ (εm)〉2

∫ ∞

εm

(ε − εm)3/2(ε − εF )

× f (ε)[1 − f (ε)]dε, (15)

where

〈τ (εm)〉2 =
∫ ∞
εm

(ε − εm)3/2τ (ε)(ε − εF ) f (ε)[1 − f (ε)]dε∫ ∞
εm

(ε − εm)3/2(ε − εF ) f (ε)[1 − f (ε)]dε
.

(16)

Similarly to electrical conductivity, the effective
temperature-induced conductivity βe can be calculated
by substituting Eq. (15) in Eq. (13). However, due to the lack
of information about material-specific electron scattering
mechanism, we assume a constant electron scattering
time 〈τ (εm)〉2 = τ2 by setting εm = 0 in Eq. (16), and
consider τ2 also as a fitting parameter. It is worth noting
that energy-independent τ was also assumed in Refs. [14,42]
where the authors use τ (ε) = τ0 and thereby τ1 = τ2 = τ0.
Note that since Eqs. (12) and (16) are not equivalent, it
is obvious that in the general case τ1 	= τ2 provided that
the dependence τ (ε) is considered. To account for such a
difference, we further introduce a parameter q = τ2/τ1 and
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consider it hereinafter as a fitting parameter. In this case we
obtain the following transcendental equations to calculate

the effective electrical conductivity σe and the effective
coefficient βe, respectively:

∫ ∞

−∞
dt exp

(
−1

2
t2

) ∫ ∞
t dt1

(2/3)x5/2(t1−t )3/2

1+exp [x(t1−xF )]

[
1 − 1

1+exp [x(t1−xF )]

] − Xe∫ ∞
t dt1

(2/3)x5/2(t1−t )3/2

1+exp [x(t1−xF )]

[
1 − 1

1+exp [x(t1−xF )]

] + 2Xe

= 0 (17)

and
∫ ∞

−∞
dt exp

(
−1

2
t2

) ∫ ∞
t dt1

(2/3)x7/2(t1−t )3/2(t1−xF )
1+exp [x(t1−xF )]

[
1 − 1

1+exp [x(t1−xF )]

] − Ye∫ ∞
t dt1

(2/3)x7/2(t1−t )3/2(t1−xF )
1+exp [x(t1−xF )]

[
1 − 1

1+exp [x(t1−xF )]

] + 2Ye

= 0. (18)

Here Xe = σe/σ0, σ0 = eμ0D0(kBT )3/2, μ0 = eτ1/m∗, x =
δ/kBT , xF = εF /δ, Ye = βe/β0, β0 = (kB/e)qσ0, q = τ2/τ1.

The effective Seebeck coefficient αe can then be obtained
as

αe = −βe

σe
= −α0

Ye

Xe
, (19)

where α0 = (kB/e)q. The effective mobility μe = σe/en in
this system can be defined by the following expression:

μe = μ0D0(kBT )3/2Xe/n. (20)

It worth noting that in the limiting case of the absence
of random band-edge variations (δ → 0), i.e., for the system
devoid of the disorder, the present model yields the result ap-
proaching the well-known relation for the Seebeck coefficient
αe for a crystalline material [38,39]:

αe = −kB

e

{
− εF

kBT
+ q

1

kBT

∫ ∞
0 ε5/2 f (ε)[1 − f (ε)]dε∫ ∞
0 ε3/2 f (ε)[1 − f (ε)]dε

}
,

(21)

where εF is determined from

n = D0

∫ ∞

0
dε

√
ε

1 + exp
(

ε−εF
kBT

) . (22)

Such a coincidence with the classical result for disorder-
free crystalline materials [38,39] provides an additional
validation of the present EMA model.

III. RESULTS AND DISCUSSION

A. Results of theoretical calculations

Let us first consider general behaviors of the Seebeck co-
efficient predicted within the present EMA model. Here we
restrict our consideration to the case of a three-dimensional
transport system by using d = 3 in Eqs. (5) and (13).
Figure 1(a) shows the carrier-concentration dependence of
Seebeck coefficient αe calculated within the present model
using Eqs. (17)–(19) for different energy disorder parameters
δ at T = 300 K. The carrier concentration dependence αe

calculated by Eq. (21) for a disorder-free (crystalline) system
is depicted by curve 1 in Fig. 1(a). Since intrinsically the EMA
approach has no constraints on very weak energy disorder, we
have also calculated the αe(n) dependence in the δ → 0 limit
using Eqs. (17)–(19) [cf. curves 2–5 in Fig. 1(a)]. It turned out
the result is remarkably close to that obtained for a crystalline

material by Eq. (21) [cf. curve 1 in Fig. 1(a)]. Note that since
EMA calculations are applicable to arbitrarily small yet finite
values of δ, we cannot use δ = 0 in Eqs. (17)–(19). Therefore
curve 2 in Fig. 1 was calculated using δ = 25 meV, that is a
sufficiently small energy disorder to effectively approach the
δ → 0 limit symptomatic of a crystalline material. Moreover,

FIG. 1. (a) Carrier concentration dependencies of Seebeck co-
efficient αe calculated using Eqs. (17)–(19) for different disorder
parameters δ at T = 300 K and q = 1 (curves 2–5). Curve 1 is
calculated by Eq. (21) at δ = 0 for an ordered (disorder-free) sys-
tem. (b) Seebeck coefficient αe vs δ calculated parametric in carrier
concentrations n.
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the present model correctly reproduces an almost linear de-
crease of αe versus the logarithm of carrier concentration n,
although some deviation from the linearity can be seen for the
case of a large disorder, δ [curve 5 in Fig. 1(a)].

Such a decrease with charge-carrier density αe ∝ −log(n)
is a usual behavior of Seebeck coefficient and agrees well
with many experimental results [43,44]. It has been typically
interpreted by different models in terms of exponential trap
density of states (DOS) filling upon increasing gate voltage.
We demonstrate here that this is a rather general behavior
which can be reproduced in our model without invoking tail
states distribution below the band edge. This seems to be well
understandable because in our model the Fermi level increases
within a Gaussian distribution given by Eq. (1) with increasing
carrier concentration, which leads to the lowering αe. At very
high carrier concentrations (>1019 cm−3) all curves merge
[Fig. 1(a)] due to strong degeneracy of the semiconductor.

Further, as expected, the Seebeck coefficient increases with
increasing the energy disorder parameter δ [Fig. 1(b)] that
is typically observed experimentally and predicted by other
theoretical models as well. It is normally explained by a low-
ering of the Fermi level as the disorder increases. However, the
effect αe(δ) becomes progressively less pronounced as carrier
concentration increases [Fig. 1(b)] and virtually vanishes at
n > 1019 cm−3. This is due to strong degeneracy of the semi-
conductor at very large carrier concentration.

Carrier concentration dependence of the Seebeck coeffi-
cient αe(n) calculated at different temperatures within the
present model at δ = 75 meV are presented in Fig. 2(a). First,
the present model does predict a rather weak temperature de-
pendence of the Seebeck coefficient within the range of large
carrier concentrations (of the order of 1018 cm−3—a typical
concentration for operating FETs), which is consistent with
experimental results for a-IGZO. Second, Fig. 2(a) reveals
an amazing effect, namely a crossover of Seebeck coefficient
from a negative temperature dependence (dαe/dT < 0) ob-
served at lower carrier densities to a positive temperature
dependence (dαe/dT > 0) at higher concentrations [a tem-
perature change from 200 to 350 K is indicated by red arrows
in Fig. 2(a)]. This crossover occurs at concentration ncr ∼
2 × 1018 cm−3 for a system with δ = 75 meV, implying thus
an existence of a certain carrier density at which the Seebeck
coefficient is virtually temperature independent [the turnover
point ncr is shown in Fig. 2(a)].

Although both temperature dependencies of αe(T ) have
been demonstrated in the literature for different materials
[45–47], the emergence of the above turnover effect in the
same material upon increasing carrier density [Fig. 2(a)] still
needs experimental verification. We believe this result is not
an artifact of the calculation. Interestingly, a similar effect has
been predicted by the thermoelectric model of Kim and Pipe
[47] for organic semiconductors. The authors found a similar
turnover in α(T ) from a αe ∼ 1/T dependence inherent in
the low carrier concentration regime and strong localization,
to approximately linear dependence αe ∼ T in the high
carrier concentration regime and larger delocalization. This
was associated to a different α(T ) dependence that has been
observed experimentally in different organic materials. Con-
sequently, a temperature independent αe ∼ const is found in
the intermediate regime [47]. It is noteworthy that Germ et al.

FIG. 2. (a) Seebeck coefficient αe vs carrier concentration [αe ∝
log(n)] calculated at different temperatures for an amorphous system
using Eqs. (17)–(19) at δ = 75 meV and q = 1 (solid lines) and
for a crystalline system (δ = 0) using Eq. (21) (thin dashed lines).
Temperature change from 200 to 350 K in 50-K steps is shown by
arrows. The turnover of the calculated dependencies at ncr is marked
by a vertical dashed line. Inset: the turnover point ncr vs δ. (b) Electri-
cal conductivity vs carrier concentration (in log-log representation)
calculated for the same amorphous system using Eq. (17).

[48] have experimentally observed a similar changeover in
the temperature dependence of Seebeck coefficient measured
in the same pentacene TFT at different gate voltages. The
authors of Ref. [47] considered a hopping charge transport
within a Gaussian DOS, but the present calculation offers a
more general explanation for a similar behavior in α(T ). In-
deed, the Seebeck coefficient presented in Fig. 2(a) was found
to follow a perfect α ∝ 1/T 2 temperature dependence for
carrier densities below ncr ∼ 2 × 1018 cm−3 (not shown here)
and features an approximately linear increase with increasing
temperature in the range of higher carrier concentrations. It
should be mentioned that Monte Carlo simulations of α(T )
by Tessler [46] for a hopping transport organic system with
carrier density n = 1017 cm−3 yielded a Seebeck coefficient
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FIG. 3. Dependence of the effective FET mobility μe on the gate
voltage (VG − VTH) parametric in temperatures. Symbols: experimen-
tal data from [14]. Solid lines: calculated using the present model
[Eq. (17)].

decreasing with temperature as α ∝ 1/T p, where p is between
1 and 2 [cf., Fig. 2(a) in [46]].

The above turnover effect for the temperature dependence
of α(T ) (Fig. 2) in our model is directly related to the presence
of energy disorder in the material. We checked it for different
δ parameters, and the effect becomes progressively less and
less pronounced upon reducing the disorder and practically
vanishes at δ as small as 25 meV, when α(n) dependencies no
longer intersect (not shown here). In this case, αe(T ) features
just a weak positive temperature dependence, as expected for
disorder-free crystals [thin dashed lines in Fig. 2(a)]. Interest-
ingly, the turnover point (ncr) of the temperature dependence
α(T ) clearly changes with energy disorder [inset in Fig. 2(a)],
because ncr shifts towards higher carrier concentration with
increasing δ. This offers a possibility to infer the energy
disorder parameter from the ncr. Figure 2(b) shows a log-log
plot of normalized electric conductivity (σe/σ0) versus carrier
concentrations calculated by Eq. (17) at different temperatures
in the same amorphous system with δ = 75 meV. As expected,
the calculated conductivity features a stronger dependence on
carrier concentration when temperature is lower, which is due
to the carrier-concentration dependence of the charge-carrier
mobility that becomes progressively stronger with lowering
temperature (not shown here).

B. Comparison with experimental results

Further, to verify the applicability of the present model
to a-IGZO, we fit the model to representative experimental
results on the FET mobility and Seebeck coefficient measured
in the same TFT device by Germs et al. [14]. Figure 3 shows
the charge-carrier mobility as a function of the gate voltage
(VG − VTH), where VTH is the threshold voltage. The FET
mobility was obtained in the linear regime (VD = 2 V) from
the transfer characteristics measured in an a-IGZO TFT (sym-
bols) at different temperatures [14]. The mobilities calculated

FIG. 4. Comparison between calculations and experimental
field-effect-modulated Seebeck coefficient vs (VG − VTH) measured
in a-IGZO TFT at different temperatures. Symbols: experimental
data from [14]. Solid curves are calculated using Eqs. (17)–(19) and
parameter q = 0.78. All fitting parameters were the same as in Fig. 3
for the charge mobility.

by the present model using both Eq. (17) for the electri-
cal conductivity and the relation μe = μ0D0(kBT )3/2Xe/n are
presented by red solid lines in Fig. 3. The total carrier concen-
tration n is assumed to depend linearly upon the applied gate
voltage VG as n = φ(VG − VTH), where φ = 2 × 1017 cm−3/V
is a coefficient relating effective carrier concentration to the
gate voltage, and D0 = 1021 cm−3 eV−3/2 was taken follow-
ing [37]. The only fitting parameters in Fig. 3 were the
band-edge disorder δ = 70 meV (the same as in Ref. [21]), the
conduction-band mobility μ0 = 19.4 cm2/V s taken for sim-
plicity as a constant, and the coefficient φ. We did not consider
here temperatures below 200 K, as the EMA approach is ap-
plicable at not too large a degree of the energy disorder δkBT .
For large δkBT , percolation theory is commonly believed to
be the most appropriate method [21]. Figure 3 demonstrates
that, despite the above simplifications, the present model re-
produces correctly the relative change in the charge mobility
value with changing temperature from 200 to 350 K and an
increase of μe with increasing gate voltage at (VG − VTH) >

VD assuming a very reasonable carrier concentration range
around ∼1018 cm−3.

Next, we use the same parameters, as obtained above from
the analysis of the FET mobility in Fig. 3 and fit our model to
the Seebeck coefficient data measured in the same a-IGZO
TFT [14]. Both measurements (symbols) and calculations
using Eqs. (17)–(19) (solid lines) of the Seebeck coefficient
vs gate voltage for different temperatures are presented in
Fig. 4. As can be seen, the present model provides a good
quantitative description for the decrease of αe measured in
a-IGZO with increasing VG using q = 0.78, while the rest
of fitting parameters were the same as in Fig. 3. It also
reproduces reasonably well a weak temperature dependence
of the Seebeck coefficient, in particular at large VG where a
weak positive αe(T ) dependence is observed. Unfortunately,
because of significant data scattering for the measured αe
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values, especially at lower VG, it is hard to judge whether or
not the turnover from a positive temperature dependence of αe

to a negative one really occurs in a-IGZO. This issue requires
a more systematic experimental study which is beyond the
scope of the present study.

C. Power factor consideration

Having calculated the Seebeck coefficient αe and electrical
conductivity σe [cf. Figs. 2(a) and 2(b)], it is of obvious
interest to also consider the power factor (PF) within the
present random band-edge model. PF represents the electri-
cal contribution to the thermoelectric generation, and it is
defined as the product of the square of the Seebeck coeffi-
cient and the electrical conductivity: PF = α2

e σe. Results in
Figs. 2(a) and 2(b) suggest that there should be a tradeoff
between the αe and σe under variation of the carrier concen-
tration, in order to maximize PF. This implies an existence
of the “optimal carrier density” at which PF has a maximum
value. Figure 5(a) shows the calculated carrier-concentration
dependence of PF(n), parametrized by the energy disorder
parameter δ. From these results, PF increases along with n
and reaches a maximum at the carrier concentration ranging
from 2 × 1019 to 7 × 1019 cm−3 [indicated by vertical ar-
rows in Fig. 5(a)] when the energy disorder increases from
δ = 25 to 125 meV, respectively. Interestingly, this calcu-
lated optimal carrier density is consistent with the value of
7.7 × 1019 cm−3 obtained experimentally for a-IGZO films
sputtered under various oxygen flow ratios [8,42]. Figure 5(b)
presents the power factor calculated at different temperatures,
while fixed δ = 75 meV. These results demonstrate that the
PF value increases significantly with increasing temperature
[Fig. 5(b)], while the optimal carrier concentration appears to
be almost independent on temperature. Note that very similar
temperature behavior of PF has been observed experimentally
in a-IGZO films prepared under various oxygen flow ratios to
modulate free carrier concentration in the films [42].

Further, Fig. 5(a) demonstrates a clear increase of the PF
with decreasing δ, and the effect is relatively more pronounced
at lower carrier concentrations as compared to the very high
concentration (e.g., 1020 cm−3) where the calculated PF(n)
curves tend to merge. This suggests that the reduction of the
energy disorder in amorphous oxide films leads to a twofold
benefit for the power factor, namely (i) to increasing PF value,
and (ii) reducing the optimal carrier concentration [Fig. 5(a)].
Such a phenomenon is well known for disordered materials
and has been already documented for alloy thermoelectric
materials [49]. Moreover, a similar effect of the energy disor-
der on PF(n) dependence was observed in calculations within
the thermoelectric model of Kim and Pipe [cf. Fig. 3(a) in
[47]] in the regime of hopping transport inherent to organic
semiconductors. It is gratifying that predictions of the present
EMA model, which are based on a random band-edge concept
ignoring any localized states, agree qualitatively well with the
results obtained for disordered materials by previous theoreti-
cal treatments.

Finally, we should comment that, although the reduction
in the energy disorder in a-IGZO films leads to an increase
in the power factor, a certain disorder might still be bene-
ficial to maximize the efficiency of thermoelectric material

FIG. 5. The normalized power factor (solid curves) calculated as
a function of carrier concentration for different energy disorder (δ)
at constant T = 350 K (a), and for different temperatures at constant
δ = 75 meV (b). δ change in 25-meV steps and temperature change
from 200 to 350 K in 50-K steps are shown by arrows in (a) and
(b), respectively. Dashed curve in (a) depicts the power factor for a
crystalline system (δ = 0).

(by improving its figure of merit) via a desired reduction of
its lattice thermal conductivity. It is known that glassy ma-
terials exhibit lowest compared to crystalline system thermal
conductivity due to disrupting the phonon path, whereas their
charge mobilities are typically significantly lower compared
to their crystal counterparts. It is believed that an ideal ther-
moelectric material should be capable of scattering phonons
(phonon-glass requirement of reaching as low lattice ther-
mal conductivity as possible) without significant disruption
of electrical conductivity (the electron-crystal requirement
of preserving a crystalline electronic structure to reach a
maximal power factor) [49]. A unique feature of a-IGZO is
that its charge transport is less prone to disruption by material
amorphization. This makes this material particularly promis-
ing for thermoelectric application as it might potentially allow
realization of the concept of a “phonon-glass electron-crystal”
system [49].

245201-8



RANDOM BAND-EDGE MODEL DESCRIPTION OF … PHYSICAL REVIEW B 105, 245201 (2022)

D. Thermoelectric figure of merit

The thermoelectric performance of a material is generally
benchmarked by the dimensionless thermoelectric figure of
merit (zT ) which corresponds to the generated power per the
dissipated heat. The effective figure of merit (zT )e can be
expressed as

(zT )e = σeα
2
e T

kL + ke
, (23)

where kL and ke are the lattice and electronic thermal con-
ductivity, respectively. The electronic thermal conductivity ke

being determined under open circuit conditions can be repre-

sented as ke = k0e − σeα
2
e T , where ke0 is the same quantity

determined under short circuit conditions [50]. The effective
value k0e can be calculated within the framework of EMA
using the following self-consistency equation:〈

k0(εm) − k0e

k0(εm) + (d − 1)k0e

〉
= 0. (24)

In this case

k0(εm) = 2kB

3em∗
D0

(kBT )2 〈τ (εm)〉3

∫ ∞

εm

(ε − εm)3/2(ε − εF )2

× f (ε)[1 − f (ε)]dε, (25)

where

〈τ (εm)〉3 =
∫ ∞
εm

(ε − εm)3/2τ (ε)(ε − εF )2 f (ε)[1 − f (ε)]dε∫ ∞
εm

(ε − εm)3/2(ε − εF )2 f (ε)[1 − f (ε)]dε
. (26)

As a result, we obtain the following transcendental equation to calculate the effective value k0e:

∫ ∞

−∞
dt exp

(
−1

2
t2

) ∫ ∞
t dt1

(2/3)x9/2(t1−t )3/2(t1−xF )2

1+exp [x(t1−xF )]

[
1 − 1

1+exp [x(t1−xF )]

] − Ze∫ ∞
t dt1

(2/3)x9/2(t1−t )3/2(t1−xF )2

1+exp [x(t1−xF )]

[
1 − 1

1+exp [x(t1−xF )]

] + 2Ze

= 0. (27)

Here Ze = k0e/k0, where k0 = σ0(kB/e)2q1T and q1 =
τ3/τ1. Similar to the calculations presented above in Sec. II,
we assume a constant electron scattering time 〈τ (εm)〉3 = τ3

by setting εm = 0 in Eq. (26) and consider q1 also as a fitting
parameter. One can rewrite Eq. (23) using Eqs. (17), (19), and
(27) in the following form:

(zT )e = Y 2
e /Xe

1/B + Ze(q1/q2) − Y 2
e /Xe

, (28)

where B = [σ0(kB/e)2q2T ]
kL

is the dimensionless thermoelectric
material quality factor (also called the B factor) [50–52] which
is inversely proportional to the lattice thermal conductivity kL.
Since theoretical consideration of the lattice thermal conduc-
tivity kL in an amorphous semiconductor is beyond the scope
of the present study, we calculate (zT )e parametric in the B
factor.

Figure 6 presents the carrier-concentration dependence of
the effective thermoelectric figure of merit (zT )e calculated
by Eq. (28) at T = 300 K for different fixed values of B at a
constant energy disorder δ. As expected, (zT )e significantly
enhances with increasing B factor (i.e., with a decrease of
the lattice thermal conductivity kL). It is evident from Fig. 6
that the (zT )e(n) dependencies feature a maximum at a certain
optimal carrier concentration, which somewhat shifts towards
lower concentrations as the B factor increases. A similar
behavior has been commonly observed for various thermo-
electric materials [50,52]. Finally, we should note that (zT )e

is expected to depend significantly on the energy disorder
δ. However, such a calculation would require assessing the
impact of the disorder on the lattice thermal conductivity kL,
which is not a trivial task and is beyond the scope of the
present study.

IV. CONCLUSIONS

A relatively simple physical analytic model based on an
EMA framework and the random band-edge concept has
been suggested to describe simultaneously both the charge-
carrier mobility and thermopower in high-mobility disordered
semiconductors as a function of carrier concentration, energy
disorder, and temperature. Our model considers a delocalized
charge transport in the presence of variations of the conduc-
tion band edge and neglects localized tail states in the gap.
The above concept is premised on the assumption that the
disorder potential causes random long-range variations of the
band edge, which can be described by a Gaussian distribution

FIG. 6. The effective thermoelectric figure of merit (zT )e calcu-
lated as a function of carrier concentrations in an amorphous system
at T = 300 K for different B factors at δ = 100 meV. For simplicity,
we assume q = q1 = 1 in these calculations.
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with standard deviation δ, which is the key parameter of the
model and is a measure of the band-edge energy disorder.
The principal predictions of this model are the following: (i)
the charge mobility and Seebeck coefficient can be well de-
scribed within the same theoretical formalism using the same
material parameters; (ii) the Seebeck coefficient αe decreases
directly with the logarithm of the carrier concentration [αe ∝
−log(n)]; (iii) since the EMA approach has no constraints
on very weak energy disorder, in the δ → 0 limit our model
yields the αe(n) dependence approaching that for disorder-
free crystals; (iv) αe increases significantly with increasing
δ carrier densities, while pronunciation of the effect depends
significantly on carrier concentration and it almost vanishes
at very large carrier density; (v) there is a remarkable carrier-
density mediated turnover effect from a negative temperature
dependence (dαe/dT < 0) of Seebeck coefficient to a positive
one (dαe/dT > 0) observed at relatively low and high carrier
concentrations, respectively, the turnover effect in the αe(T )
dependence being directly related to the energy disorder, and
vanishes at sufficiently small δ; (vi) a very weak temperature
dependence of Seebeck coefficient is found for the range of
carrier concentrations (of order of 1018 cm−3 at δ = 75 meV),
relevant for TFT device operation; and (vii) the present model
predicts a decrease in the optimal carrier concentration for the
power factor upon reducing δ and for the thermoelectric figure
of merit as the B factor increases.

The present EMA model has been applied to a-IGZO and
was able to describe quantitatively well the available exper-
imental results on charge mobilities and Seebeck coefficient
measured in the same a-IGZO TFT device as function of
gate voltage and temperature. It provides superior description
of the thermoelectric properties in a-IGZO as compared to
previous theoretical models applied to this material. Indeed,
the Kamiya-Nomura model based on percolation approach
of Adler [23] was already demonstrated [14] to overestimate
significantly the Seebeck coefficient measured in the same a-
IGZO TFTs and it predicts too strong temperature dependence
αe(T ). Likewise, a significantly stronger αe(T ) dependence,

as compared to the considered a-IGZO experimental data,
was also obtained by MTR model [26]. The hybrid model of
Germs et al. [14], which combines delocalized transport in
the conduction band and charge hopping through the localized
states, yields a similarly good description of the thermo-
electric properties of a-IGZO. Yet, one has to postulate the
dominance of hopping transport over the delocalized one in
this high-mobility material, which is incompatible with ob-
servation of a well-developed Hall effect inherent for a-IGZO.
Our model avoids such a shortcoming. It is unified in the sense
that it has a good representation of the Hall and drift mobility,
electric conductivity, and Seebeck coefficient.

Finally, it should be noted that the present EMA model
can potentially be applied to describe the field-effect mod-
ulated thermoelectricity in weakly disordered high-mobility
organic semiconductors with delocalized nature of charge
transporting states, as evidenced by observation of a well-
developed Hall effect. The random band-edge concept has
been already applied to explain a negative field dependence
coupled with a positive temperature dependence of the charge
mobility μ(T) observed in 2,7-dioctyl[1]benzothieno[3,2-
b][1]benzothiophene (C8-BTBT) highly crystalline films
[35]. Generally, a positive μ(T) dependence for both drift
and Hall mobility is not an unusual phenomenon for organic
band-transport materials with weakly disordered systems has
been reported earlier in the literature [53,54].
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