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Large cumulant eigenvalue as a signature of exciton condensation
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The Bose-Einstein condensation of excitons into a single quantum state is known as exciton condensation.
Exciton condensation, which potentially supports the frictionless flow of energy, has recently been realized in
graphene bilayers and van der Waals heterostructures. Here we show that exciton condensates can be predicted
from a combination of reduced density matrix theory and cumulant theory. We show that exciton condensation
occurs if and only if there exists a large eigenvalue in the cumulant part of the particle-hole reduced density
matrix. In the thermodynamic limit we show that the large eigenvalue is bounded from above by the number of
excitons. In contrast to the eigenvalues of the particle-hole matrix, the large eigenvalue of the cumulant matrix has
the advantage of providing a size-extensive measure of the extent of condensation. Here we apply this signature
to predict exciton condensation in both the Lipkin model and molecular stacks of benzene. The computational
signature has applications to the prediction of exciton condensation in both molecules and materials.
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I. INTRODUCTION

Exciton condensation—condensation of particle-hole pairs
to a single quantum state—has captured considerable ex-
perimental and theoretical interest because of the potential
applications to energy efficiency. The phenomenon occurs
through a type of Bose-Einstein condensation and exhibits
superfluidity [1–4]. Rather than transferring charge or mass,
superfluid transfer of excitons allows for dissipationless trans-
port of energy [5,6], which presents the possibility for
uniquely energy-efficient materials. Unfortunately, exciton
condensation has proven difficult to realize experimentally;
however, evidence has been found in polaritons (excitons
coupled to photons) [7–9], and quantum wells formed
from two-dimensional structures like semiconductors [10,11],
graphene bilayers [12,13], and van der Waals heterostructures
[14–17]. Theoretical exploration using a signature found in
the particle-hole reduced density matrix (RDM) has also re-
vealed that exciton condensation is possible in quantum and
molecular systems [18–22].

Information about many molecular properties and charac-
teristics related to correlation is contained in the two-electron
reduced density matrix (2-RDM) and related particle-hole
RDM. Density matrices are formed by multiplication of an
N-electron wave function |�〉 by the adjoint 〈�|, yielding a
matrix that contains the same molecular information as the
original wave function [23]. The 2-RDM, which comes from
integration of the density matrix over all but two electrons, ex-
panded as a sum of a wedge product of the one-electron RDMs
(1-RDMs) and a cumulant, or “connected,” part [24,25]. The
cumulant, which cannot be written as a product of the lower-
order RDMs, is size extensive in that it scales linearly with
system size [24,26]. Unlike its cumulant part, the 2-RDM is
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not size extensive because it contains the wedge product of
the 1-RDM with itself which scales quadratically. Cumulants
are considered to be the “connected” part of the RDM be-
cause they disappear in the absence of correlation between
the one-electron matrix variables [24,27]. A wave function
is correlated (meaning, that it cannot be written as a single
Slater determinant) if and only if its 2-RDM’s cumulant is
nonvanishing. Correlation corresponds to entanglement, or
off-diagonal order, meaning the N-electron density matrix
cannot be written as a product of one-electron density ma-
trices. Much of the correlation information contained in the
RDM can be obtained without the complete 2-RDM from
the cumulant. In quantum chemistry and condensed-matter
physics, cumulants have important applications because of
their size-extensive properties and their inherent connection
to correlation. Cumulants have been used to measure many
types of correlation and entanglement in molecular systems
[28–34], including those associated with superconductiv-
ity [35,36]. Fermion-pair condensation, a requirement for
Bardeen-Cooper-Schrieffer superconductivity, is detectable in
the 2-RDM with a definite signature, the appearance of a
large eigenvalue [37,38]. The large eigenvalue, arising from
off-diagonal long-range order in the 2-RDM in which fermion
pairs are strongly coupled, corresponds to the population of
fermion pairs in the condensate. Raeber and Mazziotti [35]
showed that the same signature of condensation also exists in
the cumulant of the 2-RDM. Moreover, the eigenvalues of the
cumulant and the 2-RDM share the same upper bound in the
thermodynamic limit.

The signature of fermion-pair condensation in the 2-RDM
has an analogous signature of exciton condensation in the
particle-hole RDM. In the particle-hole RDM, one large
eigenvalue trivially corresponds to the action of the number
operator applied to the ground state while the appearance
of an additional large eigenvalue reveals collective excita-
tions that are also known as exciton condensation, with the
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magnitude indicating the extent of condensation [18,39].
Here, we explore the large eigenvalue of the particle-hole
cumulant as a measure of exciton condensation. We de-
rive a relationship between the nontrivial large eigenvalue
of the particle-hole RDM and the large eigenvalue of the
particle-hole cumulant, showing that the cumulant captures
the signature of exciton condensation. Additionally, we use
this relationship to find an upper bound on the value of
the large eigenvalue of the cumulant. Importantly, the large
eigenvalue of the cumulant RDM has a significant advantage
over the nontrivial large eigenvalue of the particle-hole RDM
because unlike the particle-hole RDM, the cumulant RDM
is size extensive. For example, for two exciton condensates
separated by an infinite distance, the large eigenvalue of the
cumulant RDM is the sum of the large eigenvalues of each
of the condensates while the equivalent eigenvalue of the
non-size-extensive particle-hole RDM is generally unequal to
the sum. Finally, we examine this relationship in quantum and
molecular systems using the Lipkin model and a system of
stacked benzene molecules. We use the Lipkin model—a stan-
dard test Hamiltonian first proposed in the context of nuclear
physics [40–42] that is capable of demonstrating the maximal
degree of exciton condensation [19,20]— to prepare an exci-
ton condensate on IBM’s QASM Simulator, which conducts
probabilistic classical computations that approximate an ideal
quantum device, and demonstrate that the results are con-
sistent with the theory we derive. Using variational 2-RDM
theory [23,25,26,43–45], we explore the eigenvalues of the
particle-hole RDM and the particle-hole cumulant for stacked
benzene molecules and find that the correlation present in
the particle-hole RDM is also present in the particle-hole
cumulant.

II. THEORY

We begin by relating the cumulant to the particle-hole
RDM for a quantum system of N fermionic particles in a finite
basis set of r orbitals. The elements of the particle-hole RDM

2Gi, j
k,l = 〈�|â†

i â j â
†
l âk|�〉 (1)

can be written in terms of the elements of the 2-RDM

2Di,l
k, j = 〈�|â†

i â†
l â j âk|�〉, (2)

where â†
i and âi are the second-quantized creation and annihi-

lation operators for a fermion in orbital i and |�〉 is the wave
function. Using a simple transformation from the rearrange-
ment of second-quantized operators [26] yields

2Gi, j
k,l = 1I j

l
1Di

k − 2Di,l
k, j, (3)

where 1D is the 1-RDM, 1I is the identity matrix, and the
integer indices i, j, k, l ∈ [1, r] correspond to the orbitals.
Combining this transformation with the cumulant expansion
of the 2-RDM [24]

2Di,l
k, j = 2 1Di

k ∧ 1Dl
j − 2�

i, j
k,l (4)

in which the Grassmann wedge product [25] is defined as

1Di
k ∧ 1Dl

j = 1
2

(1Di
k

1Dl
j − 1Di

j
1Dl

k

)
, (5)

we obtain the particle-hole RDM (2G
i, j
k,l ) as a function of the

cumulant, 2�
i,l
k, j :

2Gi, j
k,l = 1Di

j
1Dk

l + 1Di
k

(
1I j

l − 1D j
l

) + 2�
i, j
k,l , (6)

where the cumulant vanishes if and only if the wave function
|�〉 is a single Slater determinant. We note that the definition
of the cumulant 2-RDM in Eq. (4) uses an unconventional
index ordering and sign to match the index ordering and sign
of the particle-hole RDM in Eq. (6) rather than those of the
2-RDM [24]. This selection of index order and sign, which
facilitates the computation of the large eigenvalue associated
with exciton condensation, is employed throughout the paper.

One trivial large eigenvalue is always present in the
particle-hole matrix, independent of exciton condensation,
representing ground-state–to–ground-state projection. There-
fore, the particle-hole matrix is replaced with a modified
particle-hole matrix. The modified particle-hole matrix,

2
G̃, re-

moves the trivial large eigenvalue such that a large eigenvalue
present in the matrix corresponds to exciton condensation.

2
G̃

is defined as
2G̃i, j

k,l = 2Gi, j
k,l − 1Di

j
1Dl

k . (7)

For
2
G̃, Garrod and Rosina [39] derived an upper bound for

the eigenvalue, λG̃:

λG̃ � N (r − N )

r
. (8)

In the thermodynamic limit as r → ∞, the upper bound tends
to N .

Rearranging Eq. (6) and substituting the modified particle-
hole matrix for the particle-hole matrix, we obtain the
cumulant RDM

2�
i, j
k,l = 2G̃i, j

k,l − 1Di
k

(1I j
l − 1D j

l

)
. (9)

The cumulant RDM differs from the modified RDM in
its unconnected terms to establish the cumulant’s size
extensivity—a difference that is reflected in changes in its
eigenvalues and eigenvectors. For example, unless they van-
ish, these unconnected terms prevent the large eigenvalue of
the modified particle-hole RDM from being additive for two
or more exciton condensates separated by an infinite distance.

In the case of wave functions exhibiting maximum
long-range order, the 1-RDM becomes the identity matrix
multiplied by a constant factor of N/r for N electrons and rank
r of the orbital basis set. With this additional substitution, the
cumulant RDM expression in Eq. (9) becomes

2�
i, j
k,l = 2G̃i, j

k,l − N

r

(
1 − N

r

)
1I i

k
1I j

l . (10)

Given that λG̃ = −→v ∗ 2
G̃ −→v , where λG̃ is the large eigenvalue

of the modified particle-hole matrix and −→v is its eigenvector,
the cumulant eigenvalue, λ�, in terms of λG̃ is found in the
limit of maximum condensation by taking the expectation
value of both sides of Eq. (10) with respect to the eigenvector−→v . Note that in the limit of maximum condensation, because
the cumulant matrix differs from the modified particle-hole
matrix by only a scaled identity matrix in Eq. (10), both
the cumulant and modified particle-hole matrices share the
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same set of eigenvectors including −→v . This yields the follow-
ing expressions for λ� in terms of λG̃:

λ� =
∑

i, j,k,l

−→v i
j
∗(2�

i, j
k,l

)−→v k
l (11)

= λG̃ − N

r

(
1 − N

r

)−→v i
j
∗(1I i

k
1I j

l

)−→v k
l (12)

= λG̃ − N

r

(
1 − N

r

)
(13)

= λG̃ − N (r − N )

r2
. (14)

Thus, in the thermodynamic limit as r goes to infinity, λ� =
λG̃, meaning that in the infinite basis set limit, the value of λ�

also yields the same maximum possible extent of condensa-
tion. From Eqs. (14) and (8), we obtain an upper bound for
the value of λ�:

λ� � N (r − N )(r − 1)

r2
(15)

for the largest eigenvalue, λ�, of the cumulant.

III. RESULTS

We use two systems to examine the relationship of the
large eigenvalue of the modified particle-hole matrix to that
of the particle-hole cumulant. The first uses the Lipkin model
[40–42,46–50], a well-known model Hamiltonian, to illustrate
application of the theory to an exactly solvable quantum sys-
tem that is capable of demonstrating the maximal degree of
exciton condensation, which allows us to directly probe the
behavior of the eigenvalue of the cumulant in the limit of
maximum particle-hole condensation. Our prior investigation
into exciton condensation [20] has established a protocol for
the construction of an exciton condensate with the maximal
degree of condensation—as evinced by the largest possible
eigenvalue of the modified particle-hole RDM—for a given
number of fermions through use of quantum state preparation.
Here, we expand this protocol to additionally include the de-
termination of the largest eigenvalue of the cumulant matrix.
While we use quantum simulation—i.e., classical computa-
tions that use a probabilistic approach to model the behavior
of an ideal quantum computer—to compute the particle-hole
and cumulant matrices of the Lipkin model for convenience
as this protocol was easily adapted from prior work, these
calculations can also be performed directly without the sim-
ulator in a manner similar to that described in Ref. [19].
Further, having a quantum state preparation approach could
allow for direct implementation on a real-world quantum sim-
ulator in order to observe how the large eigenvalue of the
cumulant could change with different degrees and types of
errors on real-world quantum devices. To prove consistency
with the derivation, however, we restrict our analysis to the
ideal QASM simulator.

Second, we computationally explore a molecular system
recently shown to exhibit exciton condensation using the mod-
ified particle-hole matrix. Prior results reveal that for a system
of stacked benzene molecules, the degree of exciton conden-
sation increases with the number of layers in the benzene
stack, measured using the eigenvalue of the particle-hole ma-

trix [22]. We use the same system to examine the eigenvalue of
the particle-hole cumulant as the number of layers in the stack
increased, and compare the results with those of the modified
particle-hole matrix.

A. The Lipkin model

The Lipkin model describes a quantum system composed
of two, N-degenerate energy levels with energies of the lower
and upper levels being − ε

2 and ε
2 , respectively. Each orbital in

the lower level is particle-hole paired with an orbital in the up-
per level, which allows for excitations or deexcitations within
a given pair but prohibits transitions between particle-hole
pairs. A Hamiltonian representing such a quantum system is
given by [40–42,46–50]

H = ε

2

∑
σ=±1

σ

N∑
p=1

â†
σ,pâσ,p (16)

+ λ

2

∑
σ=±1

N∑
p,q=1

â†
+σ,pâ†

+σ,qâ−σ,qâ−σ,p (17)

+ γ

2

∑
σ=±1

N∑
p,q=1

â†
+σ,pâ†

−σ,qâ+σ,qâ−σ,p, (18)

where σ and p are quantum numbers representing the level
(σ = ±1) and the index of a pair and where γ and λ tune the
strengths of the single and double excitations and deexcita-
tions.

As has been shown in Ref. [20], an exciton condensate
can be prepared on a quantum device by entangling a state
representing all N particles occupying the lower level with a
state in which all N particles occupy the upper level. Treating
each qubit as a one-particle orbital, such a preparation can be
achieved as shown in the Appendix and yields wave functions
of the form

|�〉 = 1√
2

(|1 . . . 10 . . . 0〉 + |0 . . . 01 . . . 1〉), (19)

where the first N qubits correspond to the lower level and the
last N qubits correspond to the upper level.

For this case, the upper bound is clearly defined since r =
2N . Consequently, λ� and λG̃ are related by

λ� = λG̃ − 1
4 . (20)

The theoretical maximum value of λG̃ is then N/2 so the upper
bound of λ� is

λ� � N

2
− 1

4
. (21)

The largest eigenvalue of the modified particle-hole matrix
(λG̃) and the largest eigenvalue of the cumulant (λ�) corre-
sponding to these states for various particle numbers (N) are
shown in Fig. 1. (See the Appendix for details on how these
values were obtained via postmeasurement tomography.) As
this figure demonstrates, the signature of exciton condensation
is indeed large (λG̃ > 1) and increases linearly with system
size, consistent with the theoretical maximum of N

2 . Moreover,
the large eigenvalue of the cumulant (λ�) is additionally large,
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FIG. 1. A figure detailing the signature of the extent of exciton
condensation [i.e., the largest eigenvalue of the modified particle-
hole matrix (λG̃)] as well as the proposed size-extensive signature
of exciton condensation [i.e., the largest eigenvalue of the cumulant
(λ�) matrix] for implementation of the wave function detailed in
Eq. (19) using IBM’s QASM simulator for a variety of particle
numbers (N) is shown. Note that as this wave function has maxi-
mal character of exciton condensation, we expect both signatures to
be maximal (λG̃ = N

2 , λ� = λG̃ − 1
4 = N

2 − 1
4 ), which is consistent

with the data obtained from simulation, verifying our predicted sig-
nature of condensation.

demonstrating that this eigenvalue can be utilized as a mea-
sure of condensation. The large eigenvalue in the cumulant
demonstrates that the condensation and its long-range order
arise from a nontrivial entanglement that increases linearly
with the system size. Further, in this system demonstrating
maximal exciton condensation, the eigenvalue of the cumulant
exactly matches that from the derivation shown in the Theory
section.

B. Benzene stacks

To examine the cumulant measure of exciton condensation
in a molecular system, we use variational 2-RDM theory
[23,25,26,43–45] to computationally probe stacks of benzene
molecules ranging from two to six layers (see Appendix for
calculation details). Each layer was separated by 2.5 Å, con-
sistent with previous computational studies [18]. Previous
results [22] obtained from the eigenvalues of the modified
particle-hole matrix show that exciton condensation occurs in
all stacks (indicated by an eigenvalue greater than 1) and the

FIG. 2. Comparison of the calculated eigenvalues of the modi-
fied particle-hole and cumulant matrices for benzene stacks. Circles
represent the STO-6G basis set, and diamonds are the cc-pVDZ basis
set.

TABLE I. Eigenvalues of the modified particle-hole and cumu-
lant matrices for benzene stacks.

cc-pVDZ STO-6G

Layers λG̃ λ� λG̃ λ�

2 1.1273 0.5166 1.1542 0.5618
3 1.2338 0.7598 1.2232 0.6843
4 1.3275 0.9240 1.3418 0.8635
5 1.3812 0.9735 1.4175 0.9625
6 1.4254 1.0074 1.5422 1.1128

extent increases with the number of layers in the stack. As
seen in Fig. 2 and Table I, the results for the cumulant follow
the same monotonically increasing trend. Results are given for
calculations with two different sets of basis functions: STO-
6G [51], a minimal Slater-type orbital basis set, and cc-pVDZ
[52], a double-zeta correlation consistent basis set. For both
basis sets the eigenvalues follow the same increasing trend,
indicating the trend is not basis set dependent. Consistent with
the theory presented above, the eigenvalues of the cumulant
are all less than those of the modified particle-hole matrix.
The benzene system does not reach the theoretical maximum,
so there is a greater difference between λG̃ and λ� than for the
Lipkin model, making several of the values of λ� less than
1. Despite the fact that the eigenvalues for the cumulant are
less than 1, the increase in cumulant eigenvalues following the
pattern of the modified particle-hole matrix suggests that both
matrices and their eigenvalues recover the same correlation.
Moreover, as in the Lipkin model, the large eigenvalue of
the cumulant matrix indicates that the condensation is not a
consequence of a mean-field long-range order but rather a
nondiagonal long-range order arising from nontrivial entan-
glement of the excitons. Unlike the Lipkin model, we do not
expect to saturate the bound. Saturation of the bound would
correspond to participation of all particles in condensation,
which we do not expect in benzene.

To compare the results of the two matrices, we visualize
the “exciton density” for both the cumulant and the mod-
ified particle-hole matrices. The visualization constructs a
picture of the probabilistic density of the exciton by using
the eigenvectors of the associated matrix to calculate the hole
probability for a given exciton as a function of a particle
localized in a specific atomic orbital. Details of the calculation
are found in the Appendix. Figure 3 shows the densities for
each matrix for the four-layer stack, although the same con-
clusions apply to the other stacks as well. Both densities show
similar delocalization of the hole over the layers, with the only
differences being slight variations in the size of the densities.
Since both systems show essentially the same density, it is
reasonable to conclude that the cumulant recovers the same
electron-hole correlation as the modified particle-hole matrix.

IV. DISCUSSION AND CONCLUSIONS

Exciton condensation has a signature in the particle-hole
RDM with a related signature in the particle-hole cumulant.
We derived the relationship between the eigenvalue of the
particle-hole RDM and that of the particle-hole cumulant,
showing an upper bound exists for the value of the cumu-
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FIG. 3. Comparison of the “exciton densities” calculated using
the modified particle-hole (left) and cumulant (right) matrices.

lant eigenvalue. We found a general relationship between the
eigenvalues of the particle-hole RDM and cumulant such that
the largest eigenvalue of the particle-hole RDM is greater than
or equal to that of the particle-hole cumulant with equality in
the thermodynamic limit. The large eigenvalue in the cumu-
lant matrix reveals the role of entanglement in the off-diagonal
long-range order of the condensation.

We explored the theoretical result using the Lipkin model
to prepare an exciton condensate on a quantum simulator.
The results from the Lipkin model are consistent with the
theoretical maximum predicted by the theory, showing a linear
increase in the eigenvalue with the number N of particles
corresponding to eigenvalues of N/2 for the particle-hole
RDM. Eigenvalues of the cumulant are large, but less than
those of the particle-hole RDM by 1/4, consistent with the
theoretical prediction. Additionally, we showed for a system
of stacked benzene molecules that the eigenvalues of both the
particle-hole RDM and the cumulant increase with the number
of layers. Furthermore, the modeled “exciton densities” for
the particle-hole RDM and cumulant of the stacked benzene
molecules are structurally similar. Although the eigenvalues
of the cumulant are not large, the growth in eigenvalues corre-
sponding to that of the particle-hole RDM and the similarity
of the densities indicate the same correlation corresponding to
exciton condensation in both matrices.

The cumulant is calculable directly from the 2-RDM.
While the cumulant obtained directly from the 2-RDM is
associated with particle-particle correlations, particle-hole
correlations are contained in the same cumulant and obtained
simply by switching the indices. Thus, the cumulant con-
tains the information associated with both particle-hole and
particle-particle correlations. As previous work revealed a
measure of off-diagonal long-range order in the cumulant for
the particle-particle case, from this work we conclude that
the 2-RDM cumulant offers a metric for off-diagonal long-
range order associated with condensation of both particle-hole
and fermion pairs. Significantly, a recent theoretical study re-
vealed the possibility for the existence of dual condensates of
excitons and fermion pairs, where both types of condensation
are present in a single condensate phase in the material [19].
Such a dual condensate has subsequently been prepared and
probed on an experimental quantum device [53]. The ability
of the cumulant to serve as a metric for both condensation

phenomena has great potential for applications involving dual
condensates.

The potential for application of exciton condensation to
efficient energy transport seems evident; however, the phe-
nomenon proves difficult to realize experimentally. Accessible
computational measures of exciton condensation could con-
sequently prove critical to eventually realizing this potential.
Theoretical measures, like those of the particle-hole RDM
and cumulant, provide the ability to explore exciton conden-
sation in a wide array of systems for potentially practical
realization. The nature of the cumulant is particularly well-
suited to this task, as the cumulant provides a metric for
exciton condensation that is size extensive in both the fi-
nite and the thermodynamic limits. Consequently, in the
case of two condensates at infinite separation, the cumulant
would appropriately measure both condensates, whereas in
the particle-hole RDM the separation of the two may become
obscured. Moreover, the size-extensive properties of the cu-
mulant measure may be especially important in any process
that changes the size of the condensate, i.e., a process that
separates or combines condensates. The eigenvalue of two
separate condensates is additive in the cumulant matrix, but
not in the particle-hole RDM. Because the cumulant scales
linearly with system size, it may also better capture the
off-diagonal long-range order associated with exciton conden-
sation, making it a more natural metric than the particle-hole
RDM. The cumulant signature of exciton condensation pro-
vides a valuable tool for computational explorations towards
uncovering systems and materials capable of exhibiting exci-
ton condensation.
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APPENDIX

We include details on the quantum algorithms used to
prepare the qubit states presented in the paper; the quantum
tomography of the modified particle-hole reduced density ma-
trix; the quantum tomography of the portion of the cumulant
corresponding to the large eigenvalue; relevant details on the
simulated quantum backend employed; and details of methods
used for molecular calculations.

1. State preparation

Our previous work [20] has demonstrated that maximal
exciton condensate character (as evinced by λG̃ = N

2 ) can be
obtained by

|�〉 =
(

N−1∏
i=1

CN+i
N

)(
N−1∏
i=1

Ci
0

)
XNCN

0 H0|�0〉 (A1)
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FIG. 4. A schematic demonstrating the quantum state prepara-
tion described in Eq. (A1) for N = 4, r = 8 which yields Eq. (19).
Note that qi corresponds to a qubit with index i, H corresponds to
the implementation of the Hadamard gate, X corresponds to the im-
plementation of the X gate, and each • with a related

⊕
corresponds

to a CNOT gate with the control qubit given by the • and the target
qubit given by the

⊕
.

when each individual qubit is treated as a one-particle orbital
and where Hi corresponds to a Hadamard gate on qubit i, C j

i
corresponds to a CNOT gate with qubits i and j representing
the target and control qubits, with Xi corresponding to an X
gate applied to the ith qubit, and with |�0〉 corresponding to
the conventional initial state on a quantum device in which
all qubits are in the |0〉 state. Such a preparation yields a
preparation given by Eq. (19) and is represented pictorially
in Fig. 4 for a system composed of N = 4 particles in r = 8
orbitals.

2. Quantum tomography

a. The modified particle-hole reduced density matrix

The signature of the particle-hole reduced density ma-
trix λG̃ associated with exciton condensation is computed
analogously to the methodology described in Ref. [53]. In
summary, the overall particle-hole matrix associated with the
large eigenvalue is given by the following tiling:

p=0,q=0 p=0,q=1 · · · p=0,q= N
2 −1

p=1,q=0 p=1,q=1 · · · p=1,q= N
2 −1

...
...

. . .
...

p= N
2 −1,q=0 p= N

2 −1,q=1 · · · p= N
2 −1,q= N

2 −1

with each tile being represented by

â†
qâq â†

q+4âq â†
qâq+4 â†

q+4âq+4

â†
pâp â†

pâpâ†
qâq â†

pâpâ†
q+4âq â†

pâpâ†
qâq+4 â†

pâpâ†
q+4âq+4

â†
pâp+4 â†

pâp+4â†
qâq â†

pâp+4â†
q+4âq â†

pâp+4â†
qâq+4 â†

pâp+4â†
q+4âq+4

â†
p+4âp â†

p+4âpâ†
qâq â†

p+4âpâ†
q+4âq â†

p+4âpâ†
qâq+4 â†

p+4âpâ†
q+4âq+4

â†
p+4âp+4 â†

p+4âp+4â†
qâq â†

p+4âp+4â†
q+4âq â†

p+4âp+4â†
qâq+4 â†

p+4âp+4â†
q+4âq+4

The extraneous large eigenvalue of the particle-hole matrix corresponding to a ground-state–to–ground state transition is then
removed by subtracting off

â†
qâq â†

q+4âq â†
qâq+4 â†

p+4âp+4

â†
pâp

1Dp[0, 0] 1Dq[0, 0] 1Dp[0, 0] 1Dq[0, 1] 1Dp[0, 0] 1Dq[1, 0] 1Dp[0, 0] 1Dq[1, 1]
â†

pâp+4
1Dp[0, 1] 1Dq[0, 0] 1Dp[0, 1] 1Dq[0, 1] 1Dp[0, 1] 1Dq[1, 0] 1Dp[0, 1] 1Dq[1, 1]

â†
p+4âp

1Dp[1, 0] 1Dq[0, 0] 1Dp[1, 0] 1Dq[0, 1] 1Dp[1, 0] 1Dq[1, 0] 1Dp[1, 0] 1Dq[1, 1]
â†

p+4âp+4
1Dp[1, 1] 1Dq[0, 0] 1Dp[1, 1] 1Dq[0, 1] 1Dp[1, 1] 1Dq[1, 0] 1Dp[1, 1] 1Dq[1, 1]

from each tile where 1Dp corresponds to a one-density matrix
given by

1Dp =
âp âp+4

â†
p â†

pâp â†
pâp+4

â†
p+4 â†

p+4âp â†
p+4âp+4

This matrix is computed directly from the “counts” data
obtained directly from the quantum device (i.e., how many
times each basis state was obtained upon probing the state
preparation) by representing the fermionic creation and anni-
hilation operators as the corresponding qubit operators and by
evaluating the expectation tensor product of the appropriate
creation and annihilation operators for each element of the
matrix.

The signature of excitation condensation (λG̃) can then be
directly computed by solving the following eigenvalue equa-
tion:

2
G̃ −→v i

G̃ = εi
G̃
−→v i

G̃ (A2)

with the signature corresponding to the largest eigenvalue (the
maximum εi

G̃
).

b. The cumulant

As the cumulant can be directly computed from the un-
modified particle-hole matrix and the one-particle density
matrices described in the previous section, each element of
the cumulant corresponding to the elements of the modified
particle-hole density matrix can be computed directly from
Eq. (9). Thus, the largest eigenvalue of the cumulant (λ�) can
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be obtained from solving the eigenvalue equation

2
�

−→v i
� = εi

�
−→v i

� (A3)

and obtaining the maximum εi
�.

3. Simulated quantum device specifications

Throughout this work, we have employed Qiskit Aer’s
QASM simulator from the open source QISKIT software stack,
which is available online. See the QISKIT documentation
[54,55] for detailed specifications of this quantum device sim-
ulator.

4. Computational methods

The 2-RDM for the benzene stacks is calculated directly
from the molecular structure using a variational method
[23,25,26,43–45]. N-representability conditions constrain the
2-RDM which require the 2-RDM, two-hole RDM, and
particle-hole RDM to be positive semidefinite. The STO-6G
and cc-pVDZ basis sets are used for benzene stack calcula-
tions, and active spaces are determined based on the number
of π electrons: [12,12] for the two-layer, [18,18] for the three-
layer, etc.

The 2-RDM can be used to obtain the particle-hole RDM
by the linear mapping in Eq. (3). From the particle-hole
RDM, the modified particle-hole RDM and the particle-hole
cumulant can be obtained as described in the Theory section.
Eigenvalues (λi) and eigenvectors (−→v i) of these matrices are
calculated using an eigenvalue optimization:

M−→v i = λi
−→v i, (A4)

where M can be either the modified particle-hole matrix or the
particle-hole cumulant.

The visualization of the “exciton density” plots the hole
probability as a function of a specific particle location using
a matrix of molecular orbitals in terms of atomic orbitals,
MMO,AO, calculated as

MAO,MO = (
MT

MO,AO

)−1
. (A5)

Active orbitals are isolated from the main matrix as a subma-
trix, and the eigenvector of the large eigenvalue is reshaped as
a matrix in the basis of the submatrix. The eigenvector matrix,
Vmax, is used to create a matrix representation of electron
atomic orbitals in terms of the hole coefficients corresponding
to contributions to other molecular orbitals:(

Mactive
AO,MO

)
(Vmax)

(
Mactive

AO,MO

)T
. (A6)
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